Randomized Comparison of Final Kissing Balloon Dilatation Versus No Final Kissing Balloon Dilatation in Patients With Coronary Bifurcation Lesions Treated With Main Vessel Stenting

The Nordic-Baltic Bifurcation Study III

Matti Niemelä, MD; Kari Kervinen, MD; Andrejs Erglis, MD; Niels R. Holm, MD; Michael Maeng, MD; Evald H. Christiansen, MD; Indulis Kumsars, MD; Sanda Jegere, MD; Andis Dombrovskis, MD; Pål Gunnes, MD; Sindre Stavnes, MD; Terje K. Steigen, MD; Thor Trovik, MD; Markku Eskola, MD; Sailsa Vikman, MD; Hannu Romppanen, MD; Timo Mäkikallio, MD; Knud N. Hansen, MD; Per Thayssen, MD; Lars Åberge, MD; Lisette O. Jensen, MD; Anders Hervold, MD; Juhani Airaksinen, MD; Mikko Pietilä, MD; Ole Frobert, MD; Thomas Kellerth, MD; Jan Ravkilde, MD; Jens Aarøe, MD; Jan S. Jensen, MD; Steffen Helqvist, MD; Ivar Sjögren, MD; Stefan James, MD; Heikki Miettinen, MD; Jens F. Lassen, MD; Leif Thuesen, MD; for the Nordic-Baltic PCI Study Group

Background—It is unknown whether the preferred 1-stent bifurcation stenting approach with stenting of the main vessel (MV) and optional side branch stenting using drug-eluting stents should be finalized by a kissing balloon dilatation (FKBD). Therefore, we compared strategies of MV stenting with and without FKBD.

Methods and Results—We randomized 477 patients with a bifurcation lesion to FKBD (n=238) or no FKBD (n=239) after MV stenting. The primary end point was major adverse cardiac events: cardiac death, non–procedure-related index lesion myocardial infarction, target lesion revascularization, or stent thrombosis within 6 months. The 6-month major adverse cardiac event rates were 2.1% and 2.5% (P=1.00) in the FKBD and no-FKBD groups, respectively. Procedure and fluoroscopy times were longer and more contrast media was needed in the FKBD group than in the no-FKBD group. Three hundred twenty-six patients had a quantitative coronary assessment. At 8 months, the rate of binary (re)stenosis in the entire bifurcation lesion (MV and side branch) was 11.0% versus 17.3% (P=0.11), in the MV was 3.1% versus 2.5% (P=0.68), and in the side branch was 7.9% versus 15.4% (P=0.039) in the FKBD versus no-FKBD groups, respectively. In patients with true bifurcation lesions, the side branch restenosis rate was 7.6% versus 20.0% (P=0.024) in the FKBD and no-FKBD groups, respectively.

Conclusions—MV stenting strategies with and without FKBD were associated with similar clinical outcomes. FKBD reduced angiographic side branch (re)stenosis, especially in patients with true bifurcation lesions. The simple no-FKBD procedures resulted in reduced use of contrast media and shorter procedure and fluoroscopy times. Long-term data on stent thrombosis are needed.

Key Words: angioplasty, balloon ■ coronary disease ■ drug-eluting stents ■ bifurcation

Bifurcation lesions represent 15% to 20% of percutaneous coronary interventions (PCIs).1 PCI of bifurcation lesions is challenging and associated with increased procedural costs, greater complication rates, and worse outcomes compared with PCI of simple coronary lesions.2 The rate of PCI-associated restenosis in the bare metal stent era was reported to be up to 40%, and even worse in the side branch (SB).3 The introduction of drug-eluting stents...
improved outcomes and resulted in low rates of main vessel (MV) restenosis. However, SB ostial residual stenosis and restenosis remained a problem. Bifurcation treatment involves a number of steps: predilatation, implantation of 1 or 2 stents, and postdilatation with single or kissing balloon techniques. Several studies have compared a 1-stent technique and a 2-stent technique using drug-eluting stents for bifurcation lesions.4–7 These studies reported that 2-stent techniques did not offer any advantage over stenting of the MV only but were associated with increased use of contrast, longer procedure times, and higher rates of procedure-related myocardial infarctions (MIs).4,7 Therefore, the provisional SB stenting strategy has emerged as the preferred bifurcation treatment strategy. In the Nordic Bifurcation Study, the optional SB stenting strategy resulted in a 20% SB restenosis rate at follow-up. In that study, the SB was dilated through the MV stent in one third of the patients.4 In 2-stent techniques such as culotte and crush techniques, final kissing balloon dilatation (FKBD) is currently considered mandatory.8 Whether FKBD will improve clinical and angiographic outcomes after successful stenting of the MV remains unknown. Therefore, the present study assessed, in a randomized multicenter setting, whether routine FKBD after successful stenting of the MV would improve outcomes in patients with coronary artery bifurcation lesions.

Clinical Perspective on p 86

Methods

Patients and Study Design

The study, designed as a nonblinded randomized multicenter trial, was conducted at 13 hospitals in Denmark, Finland, Latvia, Sweden, and Norway. The patients were recruited from the general PCI populations of the participating centers. From April 2007 through October 2008, a total of 477 patients were enrolled, by estimate 20% in each of the 13 participating centers. National ethics committees approved the study protocol. All patients gave their written informed consent before randomization.

Patients were eligible for randomization if they had either stable or unstable angina pectoris or silent ischemia attributable to a de novo coronary bifurcation lesion involving the MV. For inclusion, the MV diameter had to be ≥2.5 mm and the SB had to be ≥2.25 mm by visual estimate. No patients with SB lesion and no MV stenosis were included. The exclusion criteria were ST-segment elevation MI, unstable angina within 24 hours, life expectancy <1 year, serum creatinine ≥200 μmol/L, and allergy to any of the drugs used (aspirin, clopidogrel, and sirolimus).

Randomization

Patients were enrolled after successful stenting of the MV and with preserved normal Thrombolysis in Myocardial Infarction blood flow in the SB. The patients were allocated to treatment groups by use of stratified block randomization with strata defined by site, gender, and diabetes status (yes/no), each with separate computer-generated treatment allocation sequences with permuted block sizes of 2, 4, and 6 in random order. Treatment allocation was properly concealed by the use of an automated telephone allocation service provided by an independent organization.

Stent Implantation

In the patients not receiving aspirin, 250 to 500 mg aspirin was administered before the procedure. All patients received a loading dose of 300 to 600 mg clopidogrel unless they were on long-term treatment. In the catheterization laboratory, heparin or low-molecular-weight heparin was administered. Glycoprotein receptor inhibitor and bivalirudin were used at the discretion of the operator. After PCI, lifelong aspirin (≥75 mg/d) and clopidogrel (75 mg/d) for 12 months were recommended.

The operator was requested to avoid pretreatment (balloon dilatation) of MV segments that were not going to be covered by the stent. The sirolimus-eluting Cypher Select+ (Cordis/Johnson & Johnson, Miami Lakes, FL) coronary stent was used in the study. The main treatment principles of the PCI procedure were as follows: wiring of both the MV and SB, predilatation of the stenosed areas of the MV and SB at the discretion of the operator, followed by stenting of the MV and thus jailing of the SB wire. If there was Thrombolysis in Myocardial Infarction grade 3 flow in the SB after MV stenting, the patient was randomized to FKBD or no FKBD. If the patient was randomized to the no-FKBD group, the procedure was terminated even if a high-grade ostial SB stenosis was present. In the FKBD group, the SB was rewired through the MV stent, and simultaneous kissing balloon dilatation was performed. There were no specific recommendations for performing the simultaneous kissing balloon dilatation. In case of SB Thrombolysis in Myocardial Infarction flow less than grade 3 after FKBD, the SB was treated with a stent.

If the study stent could not be delivered, another drug-eluting stent or a bare metal stent was allowed. Different types of drug-eluting stents in the same vessel were not allowed. Implantation of additional stents to cover the whole lesion or to cover a dissection was allowed.

Cardiac Biomarkers and ECG

Creatine kinase-MB mass and cardiac troponin T or troponin I were measured before intervention and 12 to 18 hours after intervention.

Figure 1. Flow diagram of the Nordic-Baltic Bifurcation Study III. FU indicates follow-up.
Troponin T was used as the primary marker; creatine kinase-MB mass or troponin I was measured only if troponin T was not available. To avoid confounding by non-procedure-related marker elevation, unstable patients were included in the biomarker analysis only if preprocedure and postprocedure markers were normal. An increase in biomarker values to ≥3 times the upper limit of normal was considered significant. A 12-lead ECG was obtained before and 12 to 18 hours after the procedure.

Follow-Up
Information on death and other major adverse cardiac events (MACEs) was obtained by phone contact at 1 month. Clinical follow-up visit was performed at 6 months for primary end-point registration. An 8-month control coronary angiography was scheduled at randomization for patients who consented. If patients included in the angiographic substudy had clinical driven target lesion revascularization (TLR) in the follow-up period, their event angiogram before PCI was used for their angiographic follow-up. No patients were lost to follow-up.

Quantitative Coronary Angiography Analysis at 8 Months
Coronary angiograms obtained at baseline, at the completion of the stenting procedure, and at the 8-month follow-up were submitted to the joint angiographic core laboratory (Aarhus University Hospital, Skejby, Aarhus, Denmark, and Paul Stradins Clinical Hospital, Riga, Latvia) and analyzed with the use of a computer-based system dedicated to bifurcation analysis (QAngio XA version 7.2, Medis, Leiden, the Netherlands). Quantitative coronary analysis of the bifurcation lesion was obtained in 3 segments: the proximal MV segment, the distal MV segment, and the SB. The MV edge segments comprised the 5-mm margins to the stented segment. The first 5 mm of the SB was used for analysis regardless of the treatment. The analyses were not blinded.

Study End Points
The primary end point of the study was the clinical combined end point of the MACEs: cardiac death, non–procedure-related index lesion MI, stent thrombosis, or TLR by PCI or coronary artery bypass surgery within 6 months. Secondary end points were (1) the individual end points of total death, cardiac death, non–procedure-related MI, or TLR; (2) procedure-related increase in biochemical markers to ≥3 times the decision limit of MI (99th percentile) given a coefficient of variation <10% of creatine kinase-MB mass, troponin T, and/or troponin I; (3) the angiographic end point of significant in-segment and in-stent restenosis (>50% diameter stenosis) of the MV and/or SB; and (4) Canadian Cardiovascular Society (CCS) angina score ≥2. The clinical study end points were adjudicated blindly by an independent end-point committee.

Definitions
Non-procedure-related MI was defined as a level of biochemical markers exceeding the decision limit of MI (99th percentile) with at least 1 of the following: ischemic symptoms, ECG changes indicative of ischemia (ST-segment elevation or depression), or development of pathologic Q wave with no relation to a PCI procedure. Definite stent thrombosis was defined according to the Academic Research Consortium classification. TLR was defined as repeat revascularization by PCI or surgery of the target lesion. Percent diameter stenosis was defined as follows: (reference diameter−minimal luminal diameter)/reference diameter×100. Restenosis was defined as a minimum of 50% diameter stenosis at the 8-month angiographic follow-up. Late lumen loss was defined as postprocedure minimal luminal diameter minus minimal luminal diameter (in millimeters) at the 8-month follow-up.

Statistical Analysis
We expected a MACE rate of 2% in the FKBD group and 8% in the no-FKBD group. With an α of 5% and power of 80%, 206 patients were needed in each group (2-sided χ² test) to demonstrate this difference. By including 225 patients in each group, we accounted for a possible dropout before follow-up, and we would expect >350 patients to schedule an angiographic follow-up.

Differences in categorical variables between the 2 groups were analyzed with the χ² test or the Fisher exact test. Continuous variables were analyzed with independent-sample t test and Mann-Whitney U test, and time-to-event data were analyzed with the Kaplan-Meier method and the log-rank test. All P values were 2 sided. The level of significance was 5%. The analysis was performed on an intention-to-treat basis. All analyses were performed with SPSS 13.0 (SPSS Inc, Chicago, IL).

The authors had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the manuscript as written.

Results
Baseline Clinical Characteristics
Baseline clinical characteristics listed in Table 1 showed no significant differences between the 2 treatment groups. The mean age of study group was 65 years; 73% were male; and 17% had diabetes mellitus. The indication was stable angina pectoris in three fourths of the patients and unstable angina pectoris in one fourth of the patients. The use of aspirin, clopidogrel, glycoprotein IIb/IIIa inhibitors, and bivalirudin was similar in both groups.

Procedural and Lesion Characteristics
Details on procedural and lesion characteristics for the 2 groups are reported in Table 2. In the FKBD group, the target bifurcation lesion was located in the left anterior descending artery in 76% of patients compared with 67% of the no-FKBD group (P=0.03), whereas 12% in the FKBD group had a treatment of the circumflex artery compared with 21%
in the no-FKBD group. The left main bifurcation was treated in 8% of the patients. According to the Medina classification,10 a “true bifurcation” lesion (Medina 1,1,1; 1,0,1; 0,1,1) was observed in 50% of the patients by operator assessment. The average vessel sizes, as evaluated by the operator, were 3.4 mm in the proximal MV and 2.7 mm in the SB, with lesion lengths of 17.5 and 3.5 mm, respectively. The SB was predilated in 29.0% and 27.6% (P=0.76) in the FKBD and no-FKBD groups, respectively. The SB had a single SB dilatation through MV stent, n (%) 3 (1.3) 79 (33.3) 0.0001 SB dilatation through MV stent or FKBD, n (%) 4 (1.7) 231 (97.1) 0.0001 Treatment successful, n (%)† 236 (98.7) 236 (99.2) 1.00 Procedure time, min 47±22 61±28 0.0001 Fluoroscopy time, min 11±10 16±12 0.0001 Contrast volume, mL 200±92 235±97 0.0001 LVEF indicates left ventricular ejection fraction. Values are mean±SD when appropriate.

*By visual estimate.
†Residual stenosis <30% of MV and Thrombolysis in Myocardial Infarction grade 3 flow in SB.

Figure 2. Kaplan-Meier curves for MACE-free survival (cardiac death, non–procedure-related index lesion MI, TLR, definite stent thrombosis) in the FKBD and no-FKBD groups during the 6-month of follow-up.

6-month MACE rate was 2.1% in the FKBD and 2.5% (P=1.00) in the no-FKBD group. The individual end-point rates of the components of MACE by 6 months (Table 3) showed no differences between the 2 groups. The proportion of CCS angina class ≥2 was similar in the study groups before (97.4% versus 97.5%; P=1.00; Table 1) and 6 months after PCI (11.7% versus 12.0%; P=1.00; Table 3).

Procedural Success
Procedural success was similar in both groups. The average residual stenosis was 9.6% (P=0.05) in the FKBD group and 10.5% in the no-FKBD group (P=0.50). There was no difference in the SB stented, n (%) 0 (0) 3 (1.3) 0.12 SB stented, n (%) 238 (99.6) 238 (100) 1.00 SB dilatation through MV stent, n (%) 3 (1.3) 79 (33.3) 0.0001 SB dilatation through MV stent or FKBD, n (%) 4 (1.7) 231 (97.1) 0.0001 Treatment successful, n (%)† 236 (98.7) 236 (99.2) 1.00 Procedure time, min 47±22 61±28 0.0001 Fluoroscopy time, min 11±10 16±12 0.0001 Contrast volume, mL 200±92 235±97 0.0001 LVEF indicates left ventricular ejection fraction. Values are mean±SD when appropriate.

*By visual estimate.
†Residual stenosis <30% of MV and Thrombolysis in Myocardial Infarction grade 3 flow in SB.

Table 2. Procedural Characteristics

<table>
<thead>
<tr>
<th>Procedure Characteristics</th>
<th>No FKBD</th>
<th>FKBD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF, %</td>
<td>59±10</td>
<td>58±11</td>
<td>0.44</td>
</tr>
<tr>
<td>Lesion location, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left anterior descending artery</td>
<td>160 (66.9)</td>
<td>182 (76.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Circumflex artery</td>
<td>51 (21.3)</td>
<td>28 (11.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>Right coronary artery</td>
<td>13 (5.4)</td>
<td>9 (3.8)</td>
<td>0.51</td>
</tr>
<tr>
<td>Left main stem</td>
<td>17 (7.1)</td>
<td>19 (8.0)</td>
<td>0.73</td>
</tr>
<tr>
<td>True bifurcation lesion (Medina 1,1,1; 1,0,1; 0,1,1), n (%)*</td>
<td>117 (49.0)</td>
<td>129 (50.8)</td>
<td>0.71</td>
</tr>
<tr>
<td>Mean lesion length, mm*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV</td>
<td>17.7±10.2</td>
<td>17.3±8.6</td>
<td>0.58</td>
</tr>
<tr>
<td>SB</td>
<td>3.6±4.2</td>
<td>3.4±3.9</td>
<td>0.62</td>
</tr>
<tr>
<td>MV mean stent length, mm*</td>
<td>22.9±10.5</td>
<td>23.6±11.1</td>
<td>0.50</td>
</tr>
<tr>
<td>Proximal reference diameter, mm*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV</td>
<td>3.4±0.4</td>
<td>3.4±0.6</td>
<td>0.58</td>
</tr>
<tr>
<td>SB</td>
<td>2.7±0.4</td>
<td>2.6±0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>MV stented, n (%)</td>
<td>238 (99.6)</td>
<td>238 (100)</td>
<td>1.00</td>
</tr>
<tr>
<td>SB stented, n (%)</td>
<td>0 (0)</td>
<td>3 (1.3)</td>
<td>0.12</td>
</tr>
<tr>
<td>SB dilatation through MV stent, n (%)</td>
<td>3 (1.3)</td>
<td>79 (33.3)</td>
<td>0.0001</td>
</tr>
<tr>
<td>FKBD, n (%)</td>
<td>2 (0.8)</td>
<td>231 (97.1)</td>
<td>0.0001</td>
</tr>
<tr>
<td>SB dilatation through MV stent or FKBD, n (%)</td>
<td>4 (1.7)</td>
<td>231 (97.1)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Treatment successful, n (%)†</td>
<td>236 (98.7)</td>
<td>236 (99.2)</td>
<td>1.00</td>
</tr>
<tr>
<td>Procedure time, min</td>
<td>47±22</td>
<td>61±28</td>
<td>0.0001</td>
</tr>
<tr>
<td>Fluoroscopy time, min</td>
<td>11±10</td>
<td>16±12</td>
<td>0.0001</td>
</tr>
<tr>
<td>Contrast volume, mL</td>
<td>200±92</td>
<td>235±97</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

6-month MACE rate was 2.1% in the FKBD and 2.5% (P=1.00) in the no-FKBD group. The individual end-point rates of the components of MACE by 6 months (Table 3) showed no differences between the 2 groups. The proportion of CCS angina class ≥2 was similar in the study groups before (97.4% versus 97.5%; P=1.00; Table 1) and 6 months after PCI (11.7% versus 12.0%; P=1.00; Table 3).

Quantitative Coronary Angiography Analysis
A total of 374 patients were scheduled for 8-month angiographic follow-up, and a complete angiographic data set was available in 326 patients (87%). The results of the quantitative coronary analysis are shown in Table 4. The reference vessel diameters of the MV and SB at baseline, after stenting, and at follow-up were similar in both groups. The minimal luminal diameter of the SB tended to be larger in the FKBD group at follow-up (1.54±0.48 versus 1.63±0.59 mm; P=0.06). At follow-up, the percentage of binary (re)stenosis (diameter stenosis ≥50%) in the entire bifurcation lesion (MV and SB) was 11.0% in the FKBD and 17.3% in the no-FKBD group (P=0.11). In the in-segment MV, restenosis occurred in 3.1% and 2.5% (P=0.68) in the FKBD and no-FKBD groups, respectively. In the SB segment, the rates were 7.9% versus 15.4% (P=0.039), respectively. No patients in the FKBD group had a ≥75% diameter SB binary

Table 3. Individual Components of MACEs and Clinical Outcomes at 6 Months

<table>
<thead>
<tr>
<th></th>
<th>No FKBD (n=239), n (%)</th>
<th>FKBD (n=238), n (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncardiac death</td>
<td>0 (0)</td>
<td>1 (0.4)</td>
<td>0.49</td>
</tr>
<tr>
<td>Cardiac death</td>
<td>0 (0)</td>
<td>2 (0.8)</td>
<td>0.24</td>
</tr>
<tr>
<td>Index lesion MI*</td>
<td>3 (1.3)</td>
<td>1 (0.4)</td>
<td>0.62</td>
</tr>
<tr>
<td>TLR</td>
<td>4 (1.7)</td>
<td>3 (1.3)</td>
<td>1.00</td>
</tr>
<tr>
<td>CCS class ≥2 angina</td>
<td>29 (12.0)</td>
<td>28 (11.7)</td>
<td>1.00</td>
</tr>
<tr>
<td>Stent thrombosis</td>
<td>1 (0.4)</td>
<td>1 (0.4)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The χ² test was used.
*Not procedure related.
Table 4. Results of Quantitative Angiography in the 3 Bifurcation Segments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Proximal MV</th>
<th>Distal MV</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FKBD (n=164)</td>
<td>No FKBD (n=162)</td>
<td>P</td>
</tr>
<tr>
<td>In-stent* minimal luminal diameter, mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>1.39±0.57</td>
<td>1.43±0.63</td>
<td>0.54</td>
</tr>
<tr>
<td>After</td>
<td>2.70±0.44</td>
<td>2.64±0.45</td>
<td>0.16</td>
</tr>
<tr>
<td>Follow-up</td>
<td>2.76±0.54</td>
<td>2.65±0.56</td>
<td>0.06</td>
</tr>
<tr>
<td>In-stent* reference diameter, mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>2.78±0.58</td>
<td>2.83±0.59</td>
<td>0.51</td>
</tr>
<tr>
<td>After</td>
<td>3.06±0.45</td>
<td>3.00±0.41</td>
<td>0.25</td>
</tr>
<tr>
<td>Follow-up</td>
<td>3.16±0.48</td>
<td>3.11±0.47</td>
<td>0.27</td>
</tr>
<tr>
<td>In-stent* diameter stenosis, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>49±21</td>
<td>48±22</td>
<td>0.80</td>
</tr>
<tr>
<td>After</td>
<td>12±8</td>
<td>12±10</td>
<td>0.49</td>
</tr>
<tr>
<td>Follow-up</td>
<td>12±13</td>
<td>15±13</td>
<td>0.06</td>
</tr>
<tr>
<td>In-stent* late lumen loss, mm</td>
<td>−0.06±0.51</td>
<td>−0.01±0.53</td>
<td>0.42</td>
</tr>
<tr>
<td>Edge minimal luminal diameter, mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>2.92±0.62</td>
<td>2.88±0.57</td>
<td>0.60</td>
</tr>
<tr>
<td>Follow-up</td>
<td>2.97±0.66</td>
<td>2.98±0.60</td>
<td>0.86</td>
</tr>
<tr>
<td>Restenosis, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-stent*</td>
<td>3 (1.8)</td>
<td>3 (1.9)</td>
<td>1.00</td>
</tr>
<tr>
<td>Edge</td>
<td>2 (1.2)</td>
<td>0 (0)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Restenosis was defined as ≥50% diameter stenosis at the 8-month follow-up. The Fisher exact test, χ² test, or independent-samples t test was used. *In-stent segments included the stented areas of the MV or the first 5 mm of the SB.

True Versus Nontrue Bifurcation Subgroup Analysis

A total of 239 patients (50.1%) had a true bifurcation lesion according to the Medina classification as assessed by the operator. In this group, the 6-month MACE rates were 1.7% and 2.5% (P=0.68) and TLR rates were 0.8% and 1.7% (P=0.62) in the FKBD and no-FKBD groups, respectively. In patients with nontrue bifurcations, the 6-month MACE rates were 2.6% and 2.5% (P=1.00) and TLR rates were 1.7% and 1.7% (P=1.00) in the FKBD and no-FKBD groups, respectively. Quantitative coronary analysis was available for 172 patients in the true bifurcation and in 154 in the nontrue bifurcation subgroups. In the true bifurcation subgroup, angiographic SB results were improved by FKBD (SB minimal luminal diameter: 1.71±0.42 versus 1.50±0.53, P=0.005; SB diameter stenosis: 25±14 versus 32±21, P=0.009; and SB binary (re)stenosis: n=7 [7.6%] versus n=16 [20.0%, P=0.024]. Angiographic outcome was not improved by FKBD in the non-true bifurcation subgroup (Table 5).

Discussion

Our trial demonstrates that a simple MV stenting technique without FKBD provides excellent clinical results that are similar to those of the more complex strategy of MV stenting with FKBD in patients with coronary bifurcation lesions. At the 8-month angiographic follow-up, there was no significant

Table 5. True Versus Nontrue Bifurcation Subgroup Comparison: 8-Month Angiographic Follow-Up

<table>
<thead>
<tr>
<th>Variable</th>
<th>True Bifurcation Subgroup</th>
<th>Nontrue Bifurcation Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FKBD (n=92)</td>
<td>No FKBD (n=80)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>FKBD (n=72)</td>
</tr>
<tr>
<td>In-segment MV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS, %</td>
<td>22±15</td>
<td>22±15</td>
</tr>
<tr>
<td>≥50% DS, n (%)</td>
<td>3 (3.8)</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td>Ostial 5 mm of the SB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLD, mm</td>
<td>1.71±0.42</td>
<td>1.50±0.53</td>
</tr>
<tr>
<td>DS, %</td>
<td>25±14</td>
<td>32±21</td>
</tr>
<tr>
<td>≥50% DS, n (%)</td>
<td>7 (7.6)</td>
<td>16 (20)</td>
</tr>
</tbody>
</table>

DS indicates diameter stenosis; MLD, minimal luminal diameter. The Fisher exact test, χ² test, or independent-samples t test was used.
difference in the binary (re)stenosis rate of the entire bifurcation lesion (MV plus SB) in the 2 treatment arms, but the rate of SB (re)stenosis was increased in the no-FKBD group, primarily as a result of increased (re)stenosis in true bifurcation lesions treated without FKBD.

The optimal stenting technique for bifurcation lesions has been debated, and several techniques using either 1 or 2 stents have been introduced.11,12 The available data indicate that most patients can be treated safely and effectively with a provisional SB stenting strategy. However, it is not known whether the MV stent should always be opened at the SB ostium by SB rewiring through the MV stent and subsequent balloon dilatation. It might be expected that SB blood flow would improve after opening the MV stent at the SB ostium. On the other hand, distortion of the MV stent might be a concern. Meticulous bench testing has shown that stent deformation is consistently seen after opening of a stent, but this deformation can be corrected by FKBD.13,14 Therefore, the present study compared FKBD and no FKBD to investigate both the clinical and angiographic effects of routine opening of the MV stent struts at the SB ostium in bifurcation lesions treated with MV stenting.

Stringent criteria for SB stenting were applied in our study. The crossover rate was low, allowing a true comparison of the 2 study groups. Thus, any SB dilatation was performed in only 1.7% of the patients in the no-FKBD group, and the crossover rate from no-FKBD to FKBD strategy was only 0.8%. Furthermore, no patients in the no-FKBD group and 1.3% of patients in the FKBD group received a SB stent. Therefore, the treatment principles used in our study seem applicable to almost all bifurcation lesions with normal SB blood flow after MV stenting.

Our results are consistent with a recent study that randomized 110 patients to mandatory kissing balloon inflation or to provisional kissing after stenting.15 However, only 73% of the patients in that study compared with 97.1% in our study underwent kissing balloon dilatation in the FKBD arm, and 17.9% of the patients had stenting of the SB in the FKBD arm compared with 1.3% in the present study.

Clinical Outcomes

Both study groups had excellent clinical results. Mortality and incidence of MI were low and comparable to recent randomized bifurcation studies using drug-eluting stents that did not include procedure-related MI and slightly lower than in studies that included procedure-related MI.5–7 The rate of definite stent thrombosis was 0.4% in the 2 groups. Thus, MV stenting without FKBD could be performed without increasing the risk of stent thrombosis within the observation period. A considerable longer follow-up is needed to obtain a reliable assessment of the risk of stent thrombosis. It has been suggested that postdilatation would facilitate subsequent SB access.14 We found that the need for TLR was 2% after 6 months, indicating that the need for subsequent SB access was low.

An important observation of the present study relates to the favorable results relative to the occurrence of angina pectoris. The majority of patients had severe angina pectoris at baseline. At the 6-month follow up, symptom relief was substantial and similar in both groups.

Quantitative Coronary Angiography Analysis

The 8-month quantitative coronary analysis revealed excellent results in the MV segment and improved angiographic results in the SB in the FKBD group. The follow-up percent diameter stenosis and the incidence of (re)stenosis in the SB were higher in the no-FKBD arm compared with patients assigned to FKBD. This difference was not due to greater late lumen loss, which was similar in both treatment arms. Significant residual SB stenosis potentially causes significant angina pectoris and subsequent TLR. However, in our study, CCS class 2 or higher angina occurred with similar frequency during follow-up in both treatment arms. Furthermore, the need for clinical driven TLR in the patients included in the angiographic substudy was only 0.6% and 1.9% in the FKBD and no-FKBD groups, respectively. Thus, the clinical relevance of angiographic SB (re)stenosis, although assessed 2 months later, was negligible in the present study. Accordingly, the assessment of SB stenosis with fractional flow reserve found that this functional assessment correlated only weakly with angiography.16

True and Nontrue Bifurcation Lesions

Clinical end point rates in true and nontrue bifurcation lesions were low. Hence, possible differences in the clinical outcome between the 2 treatment groups were not detectable. In the true bifurcation lesion subgroup, FKBD reduced SB (re)stenosis significantly, an effect that might become clinically relevant and justify the more complex FKBD procedure. In the subgroup of nontrue bifurcation lesions, no difference in angiographic outcome between FKBD and no-FKBD was found.

Study Limitations

The open-label design with operators and patients being aware of the treatment assignment is a limitation of the study. It is, however, impossible to blind the operator in this type of study. Data completeness and consistency were audited centrally at the PCI Research Unit, Aarhus University Hospital, Skejby, but there were no onsite audits. The lack of onsite study monitoring might have led to an underreporting of events. MACEs were adjudicated by a blinded event committee, which should reduce the bias of the open-label design.

Mortality and incidence of MI were low in our study, and procedure-related MI was excluded from our primary end point. Hence, comparison to results from other bifurcation studies should be made cautiously. Given the observed clinical event rates, the study was underpowered. However, considering the low event rates, a properly powered study with a 6-month clinical follow-up is not realistic. Future studies will have to focus on imaging or fractional flow reserve end points or possibly longer-term follow-up.

Importantly, the average SB reference 2.33 mm by quantitative coronary analysis and 2.63 mm by visual estimation, while the SB lesion length was 3.5 mm by visual estimation. Furthermore, the prevalence of nontrue bifurcation lesions according to the Medina classification was 50% in our study.
Extrapolation of the results to all types of bifurcations, especially to genuine bifurcation lesions with a large SB or long SB lesions, should be done cautiously. Because the clinical follow-up was restricted to 6 months, no conclusions can be drawn about the long-term safety profile of either treatment strategy.

Conclusions

In coronary bifurcation lesions, MV stenting with and without FKBD was associated with favorable and similar 6-month clinical outcomes. The simple no-FKBD procedure resulted in reduced use of contrast media and shorter procedure and fluoroscopy times. Angiographic SB outcome was improved by FKBD, especially in patients with true bifurcation lesions. In nontrue bifurcation lesions, no effect of FKBD was detected by either clinical or angiographic end points. Long-term safety data are needed.

Appendix

The Nordic-Baltic PCI Study Group

The purpose of the Nordic-Baltic PCI Study Group is to conduct academic randomized clinical trials and to optimize PCI treatment in the Nordic and Baltic countries.

Steering Committee

Leif Thuesen, Jens Flensted Lassen, Per Thayssen, Terje Steigen, Pål Gunnes, Lars Åberge, Sølvi Vikman, Matti Niemelä, Kari Kervinen, Juhani Airaksinen, Andrejs Erglis, Indulis Kumsars.

Quantitative Coronary Angiography Core Laboratories

Aarhus University Hospital, Skejby, Denmark; Michael Maeng, Niels R. Holm, and Helle Hoj Dahl. Latvian Center of Cardiology, Paul Stradins Clinical Hospital, Riga, Latvia; Sandra Jegere.

Participating Centers and Inclusions per Center

Finland: Division of Cardiology, Department of Internal Medicine, University of Oulu (149); Department of Cardiology, Tampere University Hospital, Tampere (24); Department of Cardiology Turku University Hospital, Turku (13); Department of Cardiology, Kajaani Central Hospital, Kajaani (12); Department of Cardiology, Rovaniemi Central Hospital, Rovaniemi (5); Department of Cardiology, Kemi Central Hospital, Kemi (1); Department of Cardiology, Kuopio University Hospital, Kuopio (1); Denmark: Aarhus University Hospital, Skejby (81); Odense University Hospital, Odense (17); Aalborg University Hospital (7); Gentofte Hospital (4); Rigshospitalet, Copenhagen (2); Sweden: Department of Cardiology, Örebro Central Hospital, Örebro (10); Department of Cardiology, Falun Hospital, Falun (1); Department of Cardiology, Uppsala University Hospital, Uppsala (1); Norway: Department of Cardiology, The Feiring Clinic, Feiring (33); Department of Cardiology, University Hospital of Tromsø, Tromsø (32); Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo (13); Latvia: Latvian Center of Cardiology, Paul Stradins Clinical Hospital, Riga (71).

Coordination and Data Entry

Helle Bargsteen, study secretary.

Data Monitoring and Safety

Members of the Steering Committee.

Statistics

Helle Hoj Dahl, MPH, and Michael Maeng, MD, Department of Cardiology, Aarhus University Hospital, Skejby, Denmark.

Clinical End Point Committee

Kristian Thygesen, MD, Department of Medicine and Cardiology, Aarhus University Hospital, Aarhus, Denmark; Kjell Nikus, MD, Department of Cardiology, Tampere University Hospital, Tampere, Finland.

Acknowledgments

We thank the 477 patients participating in this trial.

Sources of Funding

All the participating centers received an unrestricted research grant from the Cordis/Johnson & Johnson Co. The sponsor had no access to the study data and had no role in the design, conduct, or reporting of the study.

Disclosures

None.

References

CLINICAL PERSPECTIVE

The 1-stent bifurcation stenting approach with stenting of the main vessel and optional side branch stenting using drug-eluting stents is the preferred strategy to treat coronary bifurcation lesions. It is unknown whether a successful main vessel stenting procedure should be finalized by a simultaneous kissing balloon dilatation (FKBD). In the present study, 477 patients with successful main vessel stenting were randomized to FKBD versus no FKBD. The 6-month rates of major adverse cardiac events (cardiac death, non–procedure-related index lesion myocardial infarction, target lesion revascularization, or stent thrombosis) were similar and low in the study groups. FKBD reduced angiographic side branch (re)stenosis, especially in patients with true bifurcation lesions. The simple no-FKBD procedures resulted in reduced use of contrast media and shorter procedure and fluoroscopy times. FKBD may be recommended in genuine bifurcation lesions treated with main vessel stenting but may be avoided in bifurcations without side branch stenosis. Long-term data on stent thrombosis are needed.
Randomized Comparison of Final Kissing Balloon Dilatation Versus No Final Kissing Balloon Dilatation in Patients With Coronary Bifurcation Lesions Treated With Main Vessel Stenting: The Nordic-Baltic Bifurcation Study III

Circulation. 2011;123:79-86; originally published online December 20, 2010;
doi: 10.1161/CIRCULATIONAHA.110.966879

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/1/79

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/01/02/CIRCULATIONAHA.110.966879.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org/subscriptions/
관상동맥 분지병변의 치료에 있어서 Final Kissing Balloon은 정말 필요한가?: Nordic-Baltic Bifurcation Study III의 결과를 중심으로

나 승 운 교수 고려대학교 구로병원 순환기내과

Summary

배경
관상동맥의 분지병변(bifurcation lesion)의 치료에 있어서 주혈관(main vessel, MV)에 약물융합스텐트(drug-eluting stent, DES)를 심입하고, 가지혈관(side branch, SB)에 선택적으로 스테트를 삽입하는 유선적 1-스텐트 삼입 치료전략(preferred 1-stent bifurcation stenting approach)에서 병사적 최종 동시 풍산확장술(final kissing balloon dilatation, FBKD)로 마무리해야 하는가에 대해서는 확실한 증거가 없었다. 따라서, 이 연구는 분지병변 치료에서 MV에 스테트를 삽입한 후에 FBKD를 한 경우와 하지 않은 경우로 나누어 비교분석하였다.

방 법 및 결과
등록된 477명의 환자는 MV에 스테트를 삽입한 후, FBKD군(n=238)과 no FBKD군(n=239)으로 무작위 배정되었다. 일차 연구종합의 주요 심장시각영상성 사망, 시술 관련 심근경색증, 목표 범위 자술시, 또는 6개월 이내 발생한 스테트 혈전증으로 정의하였다. 6개월째 주요 심장사망은 FBKD군에서 2.1%, no FBKD 군에서 2.5%(P=1.00)이었다. 그러나 시술시간과 X-ray 조영시간은 FBKD군에서 다 길었고, 조영제의 사용량도 더 많았다. 8개월째 326명의 환자에서 주적 관상동맥조영술과 QCA(quantitative coronary angiography) 측정을 시행하였는데, 전체 분지병변(MB, SB)에서 재협착률(binary restenosis)은 FBKD군에서 11.0%, no FBKD군에서 17.3%(P=0.11)이었다. MV에서는 FBKD군에서 3.1%, no FBKD군에서 2.5%(P=0.68), 그리고 SB에서는 FBKD군에서 7.9%, no FBKD군에서 15.4%(P=0.039)의 결과를 보여주었다. 진성 분지병변(true bifurcation lesion)에서 SB 재협착률은 FBKD군에서 7.6%, no FBKD군에서 20.0%(P=0.024)의 결과를 보여주었다.

결론
이 연구에서 MV 스테트 삽입 후에 FBKD를 하지 않거나 주요 임상 결과는 두 군 간에 차이가 없었다. 그러나 진성 분지병변에서 FBKD는 SB의 재협착률을 유의하게 줄여주었다. 단순한 no FBKD 시술전략은 조영제 사용량, 시술시간 및 병사간 노출시간을 유의하게 줄여주었다. 스테트 혈전증에 대해서는 장기간의 주적조사 결과가 필요하다.
중재시술을 하는 의사가 가장 흔하게 마주하게 되는 복잡한 병변 중 하나가 분지병변이며, 이는 전계 관상동맥 중재시술 대상환자 중 20%가량 되는 것으로 알려져 있다.1) 분지병변의 치료에 관심이 많은 이유는 이처럼 대상 환자군이 생각보다 클으며, 사물과 관련된 병변, 혈관 중의 변도 단순 병변에 비해 높고, 결과도 좋지 않기 때문에 더욱 중요한 결과를 얻기 위한 치료전략이 무엇인가에 대해 많은 연구가 진행되어 왔기 때문이다. DES의 도입과 시행기술의 장점의 발전으로 많은 어려운 병변의 시술 결과가 호전되었고, 분지병변에 있어서도 MV의 재협착률이 유의하게 줄어들었다. 그러나 S&의 재협착률은 여전히 높고 원인은 해결되지 않은 부분이지만 이에 대한 연구는 더욱 절실히 필요한 부분이라 생각한다.

그동안 여러 연구에서 2 stent technique보다 1 stent technique보다 훨씬 더 난은 점이 없다고 보고되어, 최근에는 MV stenting과 Provisional SB stenting하는 전략이 분지병변의 주요 시술 기법으로 자리 잡아 온 것이 사실이다.

Nordic Bifurcation Study에서 선택적으로 SB stenting 하는 치료전략의 SB 재협착률이 약 20%가량 되었는데, 이들 중 FKOB를 시행한 환자는 약 1/3 정도였다.2) 단출로 또는 crushing 기법 등 2개의 stent를 사용하는 경우 FKOB를 반드시 해야 하는 것으로 알려져 있으나,3) MV stenting만 single stenting하고 반드시 FKOB를 하는 것이 임상적, 혈관조영술적 결과에 도움이 되는지에 대한 결과는 부족하였다. 이 연구는 그에 대한 중요한 결과를 보여주었다는 점에서 의미가 있다고 생각된다.

일반 MV stenting한 후에 반드시 FKOB를 하지 않더라도, 최소한의 6개월까지의 임상결과는 아무 차이가 없고 주관적 혈관조영술 검사상 단지 SB의 재협착률만 더 높게 나타난다는 사실은 흔히 사물과 시술시간이 짧고, 비용과 복잡한 병변 시술에 대한 stress를 줄여 주었다는 측면에서는 고무적인지만, 1년, 2년, 3년 이상의 시간이 경과하여 혈관조영술적인 단점이 임상결과에 임기적으로 어떠한 영향을 줄 수 있을지는 정기 추적 결과를 보아야 좀 더 확실히 결론을 내릴 수 있을 것이라 생각된다. 임상적인 측면에서도 No FKOB에서 재협착률이 20%에 더 낮았지만, 두 군 간에 간의 임상적인 결과의 차이는 없었다는 점에서도 고무적인 결과라고 할 수 있었다.

이 연구의 제한점이라 생각되는 것은 시술과 관련된 심근경색증의 발생을 주요 사망사건에서 제외하기 때문에 임상사건의 반도 자체가 다른 기존의 연구에 비해서 매우 낮은 편이고, 이러한 상황에서 실제로 두 군 간에 차이를 보는 것이 어려우며, underpower된 연구라고 할 수 있다. 추후, 더 많은 환자를 대상으로 한 장기 추적 결과를 시행하여 두 시술전략의 차이에 대한 진정 승부가 가려질 것으로 생각된다. 또한, 재협착 자체에 대한 영향을 대한 의미부여보다 아니라, 심장 생리학적 접근으로 fractional flow reserve(FFR)를 통한 기능적 평가도 독립되어 연구결과에 더 의미를 부여할 수 있을 것으로 생각된다.

Reference