Mitogen-Activated Protein Kinase Inhibitors Improve Heart Function and Prevent Fibrosis in Cardiomyopathy Caused by Mutation in Lamin A/C Gene

Wei Wu, MD*; Antoine Muchir, PhD*; Jian Shan, MD; Gisèle Bonne, PhD; Howard J. Worman, MD

Background—Mutations in the lamin A/C gene, LMNA, can cause dilated cardiomyopathy. We have shown abnormal activation of the extracellular signal-regulated kinase (ERK) and the c-jun N-terminal kinase (JNK) branches of the mitogen-activated protein kinase signaling cascade in hearts from LmnaH222P/H222P mice that develop dilated cardiomyopathy. We recently showed that partial inhibition of ERK and JNK signaling before the onset of cardiomyopathy in LmnaH222P/H222P mice prevented the development of left ventricle dilatation and decreased cardiac ejection fraction at a time when they occurred in untreated mice.

Methods and Results—To determine whether pharmacological inhibitors of ERK and JNK signaling could be clinically useful to treat cardiomyopathy caused by LMNA mutation, we administered them to LmnaH222P/H222P mice after they developed left ventricular dilatation and decreased ejection fraction. LmnaH222P/H222P mice were treated with ERK and JNK signaling inhibitors from 16 to 20 or, in pilot experiments, 19 to 24 weeks of age. The inhibitors blocked increased expression of RNAs encoding natriuretic peptide precursors and proteins involved in sarcomere architecture that occurred in placebo-treated mice. Echocardiography and histological analysis demonstrated that treatment prevented left ventricular end-systolic dilatation, increased ejection fraction, and decreased myocardial fibrosis.

Conclusion—Inhibitors of ERK and JNK signaling could potentially be used to treat humans with cardiomyopathy caused by LMNA mutations. (Circulation. 2011;123:53-61.)

Key Words: cardiomyopathy ■ LMNA ■ mitogen-activated protein kinases ■ pharmacology

Dilated cardiomyopathy is characterized by ventricular dilatation and impaired systolic function with 20% to 48% of cases familial.1 Mutations in LMNA encoding A-type nuclear lamins have been shown to cause several human diseases2 with at least 3 having dilated cardiomyopathy as a predominant feature: autosomal Emery-Dreifuss muscular dystrophy,3 limb girdle muscular dystrophy type 1B,4 and dilated cardiomyopathy type 1A.5 Given the phenotypic overlap of these disorders, they can be described as LMNA dilated cardiomyopathy with variable skeletal muscle involvement.6 LMNA mutations appear to be responsible for ≈8% of familial cardiomyopathies.7–10 The onset of symptoms in LMNA cardiomyopathy is variable, ranging from the first to sixth decade of life and occurring most frequently in the third decade.7–11 Its natural history is more aggressive than most other familial cardiomyopathies, with high rates of arrhythmias leading to sudden death and advanced heart failure necessitating cardiac transplantation.7,11,12

Clinical Perspective on p 61

To identify potential targets to treat cardiomyopathy caused by LMNA mutation, we have been examining cellular signaling pathways in hearts of Lmna H222P knock-in mice, a model of the human disease. Male Lmna H222P/H222P mice develop left ventricular (LV) dilatation and depressed contractile function starting at ≈8 to 10 weeks of age and invariably develop LV dilatation and decreased cardiac contractility at 16 weeks.13 We have shown abnormal activation of the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) branches of the mitogen-activated protein kinase (MAPK) signaling cascade in hearts of Lmna H222P knock-in mice before the onset of clinically detectable cardiomyopathy.14 We have
also shown that lamin A variants that cause cardiomyopathy activate ERK and JNK when expressed in cultured cells. From these results, we hypothesized that activation of ERK and JNK plays a primary pathogenic role in the development of cardiomyopathy. Our recent work has shown that small-molecule inhibitors of ERK and JNK signaling administered to male *Lmna*^H222P/H222P^ mice before the onset of detectable cardiomyopathy prevented LV dilatation and decreases in cardiac ejection fraction (EF) at an age when placebo-treated mice had significant abnormalities in these parameters.15,16

A critical question relevant to potential treatment of human subjects with ERK and JNK inhibitors regards their effectiveness after the onset of cardiac dysfunction. It would be impractical to use such drugs as prolylphatic treatment in asymptomatic humans with *LMNA* mutations, especially given the variable age of onset, usually adulthood. To help answer this question, we initiated the present study to determine whether inhibitors of ERK and JNK signaling would be beneficial in *Lmna*^H222P/H222P^ mice after LV dilatation and decreased cardiac EF have already occurred.

Methods

An expanded Materials and Methods section is available in the online-only Data Supplement. *Lmna*^H222P/H222P^ mice were generated and genotyped with polymerase chain reaction primers as described. Drugs dissolved in dimethyl sulfoxide (DMSO) were delivered into the peritoneal cavity by injection at 3 mg · kg⁻¹ · d⁻¹ for 5 days a week. Equal volumes of DMSO were administered as placebo. Cardiac structure and contractility were assessed by echocardiography. Representative stained cardiac sections were photographed with a Microphot SA (Nikon) light microscope attached to a Spot RT Slide camera (Diagnostic Instruments) with a ×10 objective. Images were processed with Adobe Photoshop CS (Adobe Systems). RNA transcripts measured with real-time reverse-transcription polymerase chain reaction were quantified with iQ SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA). Statistical comparisons were made with an unpaired Student *t* test or 1-way ANOVA with the Tukey posthoc test to evaluate the significance of differences between means.

Results

Rationale for Treatment of *Lmna*^H222P/H222P^ Mice

Our hypothesis was that treatment with a MAPK/ERK kinase (MEK) 1/2 inhibitor, which inhibits activation of ERK, or a JNK inhibitor would improve cardiac structure and function in *Lmna*^H222P/H222P^ mice when the compounds are administered after these parameters are significantly abnormal. Because the animal care facility at Columbia University Medical Center prohibits removal and reentry of mice from its barrier facility, we could not obtain echocardiograms on individual subjects before and after treatment. To test our hypothesis, we therefore assigned 16-week-old male *Lmna*^H222P/H222P^ mice to 3 different treatment arms (placebo DMSO, n = 28; MEK1/2 inhibitor PD98059, n = 22; JNK inhibitor SP600125, n = 29) and examined parameters of cardiac structure and function at 20 weeks of age, after 4 weeks of treatment. At 16 weeks, male *Lmna*^H222P/H222P^ mice are known to have markedly increased LV end-diastolic diameter (LVEDD) and LV end-systolic diameter (LVESD) compared with *Lmna*^+/+^ mice.13,15,16 *Lmna*^H222P/H222P^ mice also have depressed cardiac contractility, with fractional shortening decreased by 20% to 40% compared with *Lmna*^+/+^ mice.13,15 Myocardial fibrosis occurs in *Lmna*^H222P/H222P^ mice at 16 weeks of age.16 At 20 weeks, LVEDD and LVESD increase further in *Lmna*^H222P/H222P^ mice, and cardiac contractility also progressively deteriorates.16 During the 4-week treatment protocol, 6 mice in the DMSO group, 3 in the PD98059 group, and 3 in the SP600125 group died before reaching 20 weeks of age for evaluation.

Effect of PD98059 and SP600125 on ERK and JNK Signaling

Systemic administration of the MEK1/2 inhibitor PD98059 and the JNK inhibitor SP600125 to *Lmna*^H222P/H222P^ mice from 16 to 20 weeks of age partially blocked the phosphorylation of ERK1/2 (Figure 1A) and JNK (Figure 1B), respectively, in hearts. At 3 mg · kg⁻¹ · d⁻¹, PD98059 was highly selective for blocking ERK signaling because phosphorylation of JNK was not significantly inhibited (Figure 1A). At 3 mg · kg⁻¹ · d⁻¹, SP600125 was specific of the JNK signaling because phosphorylation of ERK1/2 was not significantly inhibited (Figure 1B).

Effect of the PD98059 and SP600125 on Cardiac Expression of Natriuretic Peptides and Myosin Light Chain

One of the features of dilated cardiomyopathy is the upregulation of cardiac hormones such as natriuretic peptides as a compensatory mechanism to maintain cardiac output.17,18 Upregulation of genes involved in sarcomere organization also occurs.19,20 We therefore assayed the expression of Mlc-2a messenger RNA (mRNA), encoding a cardiac isoform of myosin light chain, and NppA and NppB mRNAs, encoding natriuretic peptides precursors, in hearts from *Lmna*^+/+^ mice, DMSO-treated *Lmna*^H222P/H222P^ mice, and inhibitor-treated *Lmna*^H222P/H222P^ mice (Figure 2). In hearts from DMSO-treated *Lmna*^H222P/H222P^ mice, expression of Mlc-2a mRNA was significantly increased ~30-fold compared with hearts of *Lmna*^+/+^ mice (Figure 2). Similarly, in hearts from *Lmna*^H222P/H222P^ mice, NppA and NppB mRNA levels showed significant 36-fold and 17-fold increases in expression compared with hearts of *Lmna*^+/+^ mice (Figure 2). Treatment of *Lmna*^H222P/H222P^ mice with PD98059 or SP600125 significantly decreased the expression of Mlc-2a, NppA, and NppB mRNAs at 20 weeks of age (Figure 2). Hence, pharmacological inhibition of ERK or JNK signaling reversed the molecular compensatory processes that occur in *Lmna*^H222P/H222P^ mice with cardiomyopathy.

Effect of PD98059 and SP600125 on LV Dilatation and Contractility in *Lmna*^H222P/H222P^ Mice

After 4 weeks of treatment with DMSO, PD98059, or SP600125, *Lmna*^H222P/H222P^ mice were anesthetized, and cardiac dimensions and function were measured by echocardiography. M-mode transthoracic echocardiography showed
increased LVEDD and LVESD in LmnaH222PH222P mice treated with DMSO compared with Lmna+/+ mice (Figure 3). LmnaH222PH222P mice treated with PD98059 and SP600125 had significantly smaller LVEDD compared with the DMSO-treated mice (Figure 3). Fractional shortening and EF were reduced in LmnaH222PH222P mice compared with Lmna+/+ mice but increased in the LmnaH222PH222P mice treated with PD98059 or SP600125.

The Table shows the composite echocardiographic data for the 3 treatment arms for LmnaH222PH222P mice and Lmna+/+ mice for comparison. Compared with Lmna+/+ mice, LmnaH222PH222P mice treated with DMSO had significantly increased LVEDD and LVESD. The EF of DMSO-treated male LmnaH222PH222P mice at 20 weeks was 53.87±2.58%, which was decreased by 28% compared with Lmna+/+ mice. LmnaH222PH222P mice treated with PD98059 or SP600125 had a statistically significant reduction in the LVEDD compared with mice treated with DMSO; however, LVESD was not significantly different. LmnaH222PH222P mice treated with PD98059 had an EF of 65.46±2.64%, an increase of ≈22% (P<0.005) compared with the DMSO-treated group. The EF of LmnaH222PH222P mice treated with SP600125 was 61.88±1.66%, an increase of ≈15% (P<0.005) compared with the DMSO-treated group. Overall, these results showed that PD98059 and SP600125 have positive effects on cardiac contractility when administered after cardiac dysfunction occurs in LmnaH222PH222P mice.

Effect of PD98059 and SP600125 on Myocardial Fibrosis in LmnaH222PH222P Mice

Later-stage cardiomyopathy caused by LMNA mutations is characterized by myocardial fibrosis.21,22 As shown by Sirius Red and Gomori trichrome staining, hearts from LmnaH222PH222P mice 20 weeks of age treated with DMSO had a significant increase in fibrosis compared with hearts from Lmna+/+ mice (Figure 4A and 4B). In contrast, LmnaH222PH222P mice treated with PD98059 or SP600125 had a lower degree of cardiac fibrosis than DMSO-treated mice (Figure 4A and 4B). We quantified the myocardial fibrotic area of each animal by determining the ratio of fibrotic tissue (stained blue with Gomori trichrome) to the total tissue area in each micrograph (Figure 4C). Hearts from DMSO-treated LmnaH222PH222P mice had 15.01±0.9% fibrotic tissue per total surface examined (Figure 4D). Systemic treatment with PD98059 or SP600125 significantly lowered the area of fibrotic tissue to 4.48±1% (P<0.0005) and 5.86±0.4% (P<0.0005), respectively (Figure 4D).

Excessive extracellular matrix, predominantly collagen proteins, defines fibrotic tissue. We therefore determined the expression of genes encoding a protein of the extracellular matrix (Fn1 encoding fibronectin) and genes encoding type I collagen (Col1a1 and Col1a2) using real-time reverse-transcription polymerase chain reaction. At 20 weeks of age, hearts from LmnaH222PH222P mice treated with DMSO had a 5-fold increase in Col1a1, a 4-fold increase in Col1a2, and a 4-fold increase in Fn1 mRNAs compared with hearts from Lmna+/+ mice (Figure 5). Treatment with PD98059 and SP600125 significantly lowered the expression of Col1a1, Col1a2, and Fn1 (Figure 5). These results demonstrated that LmnaH222PH222P mice treated with either MEK1/2 or JNK inhibitors had decreased progression of myocardial fibrosis.

Effect of PD98059 and SP600125 on Nuclear Shape in Cardiomyocytes in LmnaH222PH222P Mice

We have reported abnormal elongation of nuclei in cardiomyocytes of LmnaH222PH222P mice.15,16 Nuclei in cardiomyocytes in hearts from LmnaH222PH222P mice treated with DMSO were elongated compared with those in Lmna+/+ mice (Figure 6A). Nuclei of cardiomyocytes in hearts from LmnaH222PH222P mice treated with PD98059 or SP600125 had an overall shape that was more “rounded” than those in hearts of mice treated with DMSO (Figure 6A). Mean length of cardiomyocyte nuclei in hearts of LmnaH222PH222P mice treated with DMSO was significantly longer than in hearts from Lmna+/+ mice (P<0.0005; Figure 6B). The mean lengths of nuclei in cardiomyocytes in
hearts from *Lmna*^{H222P/H222P} mice treated with PD98059 or SP600125 were significantly shorter than in the hearts of mice in the DMSO-treated group (*P*<0.0005; Figure 6B). Similar nuclear elongation has also been reported in *Lmna* knockout mice, suggesting a role of lamins in determining nuclear shape in cardiomyocytes.23,24 Although other abnormalities in nuclear morphology have been observed in hearts of *Lmna*^{H222P/H222P} mice when cardiac tissue is examined by electron microscopy,13 we could not assess these ultrastructural alterations with the light microscopic methods we used.

Pilot Study of PD98059 and SP600125 to Treat More Advanced Heart Disease in *Lmna*^{H222P/H222P} Mice

In a pilot study, we assessed treatment of *Lmna*^{H222P/H222P} mice with PD98059 and SP600125 at a more advanced stage of disease and for a longer time. We assigned 19-week-old male *Lmna*^{H222P/H222P} mice to 3 different treatment arms (placebo DMSO, n=4; MEK1/2 inhibitor PD98059, n=3; JNK inhibitor SP600125, n=3) and examined parameters of cardiac structure and function. Systemic administration of PD98059 and SP600125 to *Lmna*^{H222P/H222P} mice partially blocked phosphorylation of ERK1/2 and JNK in hearts from 24-week-old mice (Figure IA in the online-only Data Supplement). At 24 weeks, *Lmna*^{H222P/H222P} mice treated with PD98059 had decreased LV dilatation and increased fractional shortening compared with DMSO-treated mice (Figure IB in the online-only Data Supplement). There was also a trend toward decreased LV dilatation and increased fractional shortening in the *Lmna*^{H222P/H222P} mice treated with SP600125 (Figure IB in the online-only Data Supplement). Cardiac expression of *Mlc-2a, NppA, NppB, Col1a1,* and *Col1a2* mRNAs was also significantly reduced in the inhibitor-treated *Lmna*^{H222P/H222P} mice at 24 weeks, except for *NppB* in those treated with SP600125 (Figure IC in the online-only Data Supplement).

Discussion

Our previous work has documented the effectiveness of inhibiting ERK and JNK signaling in preventing or delaying
the onset of cardiomyopathy in Lmna^{H222P/H222P} mice. In those studies, MEK and JNK inhibitors were administered before the onset of any detectable structural or functional cardiac abnormalities. A critical remaining question was whether MEK and JNK inhibitors would be effective in improving heart function in Lmna^{H222P/H222P} mice when initiated after the onset of cardiac disease, which would be more analogous to potential treatment in human patients. In this study, we therefore tested the extent to which a treatment course starting after the onset of cardiac disease in Lmna^{H222P/H222P} mice would be beneficial. Our results showed that pharmacological inhibitors of ERK and JNK signaling blocked increased expression of RNAs encoding natriuretic peptide precursors and proteins involved in sarcomere architecture, prevented LV end-systolic dilatation, increased cardiac EF, and decreased myocardial fibrosis. Two recent studies showed that either a calcium-sensitizing agent²⁵ or a β-blocker²⁴ also improved cardiac function in mouse models of Lmna-associated cardiomyopathy. Our work provides support for the possibility that MEK or JNK inhibitors could overcome the lack of definitive treatments for human patients suffering from cardiac disease caused by LMNA mutations.

Changes in myocardial structure and function in response to injury and proliferation of the nonmyocyte cell populations of the heart, referred to as myocardial remodeling,²⁶ alter cardiac performance over the long term. Part of such remodeling includes fibrosis, which results in exaggerated mechanical stiffness and causes systolic dysfunction.²⁷ Established therapies for heart failure may also derive a significant part of their benefit from actions on cardiac fibroblasts. A beneficial effect on cardiac fibrosis has been reported for angiotensin-converting enzyme inhibitors,^{28–30} angiotensin receptor blockers,^{31,32} diuretics,³³ and aldosterone antagonists.^{34–36} Treatment of Lmna^{H222P/H222P} mice with MEK or JNK inhibitors had a profound beneficial effect on myocardial fibrosis, a characteristic of later-stage cardiomyopathy caused by LMNA mutations.^{21,22} Activation of ERK and JNK signaling pathways by various stimuli has been correlated to several cellular processes such as cell proliferation and remodeling of extracellular matrix.³⁷ Inhibition of ERK and JNK signaling pathways could therefore have a beneficial effect on cardiac function by also acting directly to decrease the proliferation of myocardial fibroblasts. Such a hypothesis needs to be tested. It also remains to be determined whether simultaneous inhibition of both ERK and JNK signaling has additive effects in cardiomyopathy caused by Lmna mutation.

Our study in Lmna^{H222P/H222P} mice was designed similar to a human clinical trial. It assessed primary end points (LV dilatation, EF) and “surrogate” secondary end points (expression of natriuretic peptide precursors) that are used in many human clinical heart failure trials. Although mortality is a reasonable end point in a phase III clinical trial for advanced heart failure, it is rarely, if ever, used in the initial drug assessment phase or in treatment of subjects with heart disease that is not end stage,³⁸ both of which were the case in our study. Furthermore, Lmna^{H222P/H222P} mice have diaphragmatic muscle involvement (not reported in humans with LMNA mutations) and significant skeletal muscle pathology as they age, which may be noncardiac causes of mortality.¹³ Nonetheless, the measurements of LV function we used correlate with prognosis in many human clinical trials, and their behavior parallels changes in mortality with treatment.³⁸ For example, LV end-systolic volume, which is determined by measuring LVESD, is the major determinant of survival in human subjects after recovery from myocardial infarction and after coronary artery bypass grafting for impaired LV function.^{39,40} A study by Heywood et al⁴¹ also showed in human subjects with an EF <40% treated with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers that an increase of >15% in EF resulted in mortality of only 2%/y. In our study, PD98059 and SP600125 improved the EF of Lmna^{H222P/H222P} mice ∼22% and 15%, respectively, compared with placebo. Taking into account the fact that EF improvement is an important predictor for survival in human subjects with systolic dysfunction, we speculate that small-molecule inhibitors of the ERK and JNK signaling pathways could have a positive effect on survival of patients with LMNA mutations. Although not an end point in our study, during the 4-week treatment protocol starting at 16 weeks of age, 6 mice in the DMSO group, 3 in the PD98059 group, and 3 in the SP600125 group died before reaching 20 weeks of age, suggesting that treatment with MEK1/2 or JNK inhibitors trended toward improved survival. Furthermore, our pilot study treating Lmna^{H222P/H222P} mice up to 24 weeks of age, when they have a mortality rate of ∼25%,¹³ showed improvements in echocardiographic and cardiac biochemical parameters.

The choice of therapeutic agents in clinical trials is predicated, at least in part, on the efficacy of drugs studied in murine models of disease.^{42–44} Both PD98059 and SP600125, which we used in this study to inhibit ERK and JNK

<table>
<thead>
<tr>
<th>Genotype (Treatment Group)</th>
<th>n</th>
<th>HR, bpm</th>
<th>LVEDD, mm</th>
<th>LVESD, mm</th>
<th>EF, %</th>
<th>FS, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lmna<sup>+/+</sup></td>
<td>12</td>
<td>400</td>
<td>3.5±0.06</td>
<td>2.07±0.08</td>
<td>73.2±1.17</td>
<td>41.7±1.01</td>
</tr>
<tr>
<td>Lmna<sup>H222P/H222P</sup> (DMSO)</td>
<td>22</td>
<td>372</td>
<td>3.87±0.11*</td>
<td>3.00±0.13†</td>
<td>53.8±1.47§</td>
<td>27.86±1.54†</td>
</tr>
<tr>
<td>Lmna<sup>H222P/H222P</sup> (PD98059)</td>
<td>19</td>
<td>350</td>
<td>3.55±0.11</td>
<td>2.41±0.11</td>
<td>65.46±2.64§</td>
<td>35.91±1.88§</td>
</tr>
<tr>
<td>Lmna<sup>H222P/H222P</sup> (SP600125)</td>
<td>26</td>
<td>363</td>
<td>3.73±0.08</td>
<td>2.67±0.10</td>
<td>61.88±1.66§</td>
<td>33.11±1.16§</td>
</tr>
</tbody>
</table>

HR indicates heart rate; FS, fractional shortening. Values are mean±SEM.

Comparison between DMSO-treated Lmna^{H222P/H222P} and Lmna^{+/+} mice: *P<0.05, †P<0.0005. Comparison between SP600125-treated, PD98059-treated, and DMSO-treated Lmna^{H222P/H222P} mice: ‡P<0.05, §P<0.005, ||P<0.0005.
signaling, respectively, are tool compounds and are not suitable for use in humans secondary to problems with bioavailability and toxicity. Therefore, any future clinical trial of MEK or JNK inhibitor in human subjects with cardiomyopathy caused by LMNA mutations would require the use of superior drugs, including possibly those that have already entered the pipeline of pharmaceutical companies for other indications. For example, a second-generation oral MEK inhibitor, PD0325901 (Pfizer), has markedly improved properties, including better potency against MEK, better bioavailability, increased metabolic stability, and a longer MEK suppression. PD0325901 has been administered to humans and has entered a phase II clinical trial to treat advanced non–small-cell lung cancer. Similarly,
AZD6244/ARRY-142886 (AstraZeneca/Array Biopharma) is in phase II clinical trials for patients with cancers. Superior JNK inhibitors are also in preclinical development for use in humans. Hence, our results in LmnaH222P/H222P mice with cardiac dysfunction could lay the foundation for clinical trials of MEK and JNK inhibitors that are currently being developed for cancer and inflammatory conditions in human subjects with cardiomyopathy caused by LMNA mutations.

Sources of Funding
This work was supported by grants from the National Institutes of Health (AR048997) and the Muscular Dystrophy Association (MDA4287).

Disclosures
Drs Worman and Muchir are inventors on a pending PCT patent application on methods for treating and/or preventing cardiomyopathies by ERK and JNK inhibition filed by the trustees of Columbia University in New York, NY. The other authors report no conflicts.

References

CLINICAL PERSPECTIVE

Heart failure is responsible for considerable morbidity and mortality, and dilated cardiomyopathy (DCM) is a major cause. Molecular genetic studies have revealed mutations in various genes in patients with familial DCM, but the precise mechanisms of how they lead to heart muscle damage remain largely unknown. Mutations in *LMNA* encoding A-type nuclear lamins appear to be responsible for ~8% of cases of familial DCM, and patients with *LMNA* mutations have a poorer prognosis than those with DCM caused by mutations in most other genes. We have previously shown an abnormal activation of the extracellular signal-regulated kinase (ERK) and the c-jun N-terminal kinase (JNK) branches of the mitogen-activated protein kinase signaling cascade in hearts of mice with DCM caused by a mutation in *Lmna*. We now establish that treating these mice with chemical inhibitors of ERK and JNK after the onset of left ventricular dilatation and decreased cardiac ejection fraction, a time when human patients would be considered for therapy, improves cardiac function and significantly decreases myocardial fibrosis. These results provide proof of concept that pharmacological inhibitors of ERK and JNK signaling, some of which are currently in clinical development for other indications, could be studied in human clinical trials of patients with DCM caused by *LMNA* mutations.
Mitogen-Activated Protein Kinase Inhibitors Improve Heart Function and Prevent Fibrosis in Cardiomyopathy Caused by Mutation in Lamin A/C Gene
Wei Wu, Antoine Muchir, Jian Shan, Gisèle Bonne and Howard J. Worman

Circulation. 2011;123:53-61; originally published online December 20, 2010;
doi: 10.1161/CIRCULATIONAHA.110.970673
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/123/1/53

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2010/11/18/CIRCULATIONAHA.110.970673.DC1
http://circ.ahajournals.org/content/suppl/2012/01/02/CIRCULATIONAHA.110.970673.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
Lamin A/C 유전자 돌연변이에 의한 선천성 심근병증에서 MAPK 억제제는 심근의 섬유화를 방지하고 심근기능을 호전시킬 수 있다.

최동주 교수 분당서울대학교병원 순환기내과

Summary

배경
Lamin A/C 유전자인 LMNA의 돌연변이는 확장성 심근병증을 유발할 수 있다. 본 연구는 돌연변이 Lmna^{1209V}^{1209V} 생쥐에서 ERK와 JNK 단백 kinase의 신호전달체제의 변화가 심근병증을 유발한다고 알려져 있다.

방법 및 결과
ERK와 JNK 신호전달체제의 억제는 약물이 LMNA 돌연변이에 의한 심근병증 치료제로서 임상적 유용성이 있는지를 알아보기 위하여, Lmna^{1209V/1209V} 생쥐에서 심기능 저하와 좌심실 확장이 발생한 이후 억제제를 투여하였다. 지표연구로 생후 16-20주 혹은 생후 19-24주의 Lmna^{1209V/1209V} 생쥐에 ERK와 JNK 억제제를 투여하였 다. 억제제에 의하여 natriuretic peptide 신구물질 RNA의 발현과 수축기 관여하는 구조 단백 발현이 억제되었 다. 심조음파와 조직검사에서 억제제 치료는 수축기말 좌심실 확장을 예방하였고, 구출률(ejection fraction)을 증가시켰으며, 좌심실 섬유화를 억제하였다.

결론
ERK와 JNK 억제제는 LMNA 돌연변이에 의한 심근병증 치료제로 사용될 수 있다.
일반적으로 유전체 돌연변이에 의한 실험분은 약제의 치료에 의한 후광을 기대하기 어렵다. 그러니 본 연구에서는 MAPK의 일부인 ERK와 JNK를 억제하는 약물이 LMNA 돌연변이 실험중을 저해할 수 있을음을 보였다.

세포의 핵을 구성하는 A-type nuclae lamin은 LMNA 유전자로부터 전사때문에, 이 유전자의 돌연변이는 사람에서 심장의 이양구, 심장 xây의 실험중을 저해한다. A형 심장 돌연변이 실험중의 증상은 매우 다양하며 속성 후 60대까지 두두 발생할 수 있으나, 30대에서의 발현이 가장 흔하다. 이는 다른 가족형 확장성 심실중격증에 비해 중상이 심하며, 여러가 나타나며, 특히 부정맥 발병에 의한 돌연사로 많은 심장전에 의해 진행하는 심장이식을 필요하기도 한다.

본 연구에서는 LMNA 실험중에 치료 가능성을 찾기 위하여 본 실험을 목표로 하였다. LMNA H222P 유전자 변이형 실험체를 사용하였다. LMNA H222P 변이는 60대 후반에서 주로 발생한다. 실험실로 개발한 실험체로, 16주후의 실험실 확장과 기능 저하가 확장성 심실중격증과 같은 상태가 된다. 이에 본 연구에서는 LMNA H222P 유전자 변이형 실험체로 확장성 심실중격증 발생에 ERK(Extracellular signal-regulated kinase)와 JNK(Juno N-terminal kinase) 등의 MAPK(mitogen-activated protein kinase)들이 비정상적으로 활성화된 후, 즉, LMNA 돌연변이가 ERK와 JNK를 활성화시킨다. 또한, ERK와 JNK 역제제는 확장성 심실중격증 발생에 H222P 유전자 변이형 주요로 투여하였을 때 심장중격 발생을 억제하였다. 그러나 실험에서 사망하는 동물의 발생율을 억제하기 위해 이들 약물들의 임상적 투여는 바람직하지 못하다. 따라서 이에 확장성 심실중격증 발생시의 생존율을 유지시켜야 할 필요가 있다.

본 연구에서는 LMNA H222P 유전자 변이형 실험체의 확장성 심실중격증 저하에 15-20주 혹은 15-24주에 약물을 투여하였다. 약제는 ERK 역제제 PD98059와 JNK 역제제 SP600125가 사용되었다. 두 약제는 효과적으로 실험중을 통해 평가한 심장인가 저하와 심실 확장 상표를 억제하였다. 또한, natriuretic peptide 등의 발현과 수축기능 저하 등의 연구에서 MLC 단백 발현을 억제하였으며, 조직의 성장도도 억제하였다.

이러한 연구는 유전체 돌연변이 유발하는 심장의 증후군이며, 이 중 확장성 심실중격증은 심장의 주된 원인 질환이다. 그러나 대부분의 확장성 심실중격증의 원인은 밝혀져 있지 않다. 확장성 심실중격증은 여러 가지 유전자의 돌연변이에 의해 발생하는 유전적 질환으로, 이를 알아야 두들 것이다. 또한, 유전변이에 의해 증상이 생기는 경우에 서 중상의 구별을 맡을 때 명확한 원인을 찾아야 하는 것이 요구된다. 본 연구는 유전체 돌연변이에 의한 심장 중격증의 저해를 위해 ERK와 JNK의 활성화를 억제하여 실험중을 저해하는 역제제를 사용하였다. 본 연구는 확장성 심실중격증의 발현을 억제할 수 있었다. 이것은 확장성 심실중격증의 저해가 이에 없어 발생한 이후로 저해가 중요하다. 현재 발현중지 및 신호전달 체계를 이용한 치료법이 요구된다. 본 연구는 이러한 실험을 통해 ERK와 JNK의 역제제를 이용하여 실험중을 억제하는 치료제를 개발할 수 있는 기초가 될 것이다.