Myocardial Infarction and Risk of Suicide: Another Reason to Develop and Test Ways to Reduce Distress in Postmyocardial-Infarction Patients?

Redford B. Williams, MD

Editorial

Epidemiological research over the past two decades has shown that psychosocial distress, whether assessed by measures of depression, hostility, social isolation, lower socioeconomic status, or job stress, is associated with increased risk of developing coronary heart disease and poorer prognosis once clinical disease is present. (See also) We now learn, based on the report by Larsen and colleagues appearing in this issue of Circulation, that patients with psychosocial distress are not only at increased risk of dying from cardiovascular-related causes following a myocardial infarction (MI), they also seem to be at higher risk of dying by their own hand. In a sophisticated population-based case-control study that takes advantage of the availability of 5 nationwide longitudinal data registers in Denmark, Larsen et al were able to identify 19,857 persons who died by suicide from 1981 to 2006 and 190,058 controls matched for sex, day of birth, and calendar time. Compared with those with no history of psychiatric illness and who had not had an MI, persons with a history of psychiatric illness were 64 times more likely to commit suicide during the month after an MI. Even those with no history of psychiatric illness were more than 3 times more likely to commit suicide during the month after their MI. The increased suicide risk continued over more than 5 years of follow-up, albeit at lower levels than the first month after the MI, was more pronounced in younger patients, and was similar in men and women.

Confidence in the importance of these findings comes from similar results in a study of a 14-country sample of 37,915 persons that found a broad range of availability of 5 nationwide longitudinal data registers in Denmark, Larsen et al were able to identify 19,857 persons who died by suicide from 1981 to 2006 and 190,058 controls matched for sex, day of birth, and calendar time. Compared with those with no history of psychiatric illness and who had not had an MI, persons with a history of psychiatric illness were 64 times more likely to commit suicide during the month after an MI. Even those with no history of psychiatric illness were more than 3 times more likely to commit suicide during the month after their MI. The increased suicide risk continued over more than 5 years of follow-up, albeit at lower levels than the first month after the MI, was more pronounced in younger patients, and was similar in men and women.

Article see p 2388

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC.

Correspondence to Redford B. Williams, MD, Box 3926, Duke University Medical Center, Durham, NC 27710. E-mail redfordw@duke.edu (Circulation. 2010;122:2356-2358.)

© 2010 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.110.990382
Despite the encouraging evidence for the benefits of SSRI treatment and cognitive behavioral intervention from these post hoc analyses of the ENRICHD data and the recent consensus that all CHD patients should be screened for depression to identify those “who may require further assessment and treatment,” no adequately powered RCTs evaluating the effects of SSRIs and/or cognitive behavioral group training on cardiovascular morbidity/mortality have been conducted since ENRICHD in this large, at-risk population. Such interventions should be evaluated for their potential to reduce the increased mortality/morbidity in post-MI patients.

Thanks to the new report by Larsen et al in this issue of Circulation, we can now add another reason to mount RCTs testing effects of interventions to reduce depression and other indicators of stress in the post-MI patient population: in addition to reduced cardiovascular morbidity/mortality, these trials could have the added benefit of documenting that these interventions also reduce the risk of suicide.

In addition to reducing depression and increasing perceived social support, cognitive behavioral group training has other features that could make it particularly effective in reducing psychosocial distress in post-MI patients. Rather than being framed as therapy for a mental disorder, cognitive behavioral group interventions can normalize the experience and concerns associated with the MI within a social setting and enhance psychosocial coping skills. This positive framing reduces the stigma many post-MI patients associate with psychotherapy. A recent RCT in coronary bypass surgery patients evaluating psychosocial skills training showed that the training produced not only improvements in depression, anger, perceived stress, satisfaction with social support, and life satisfaction, but reduced blood pressure and heart rate at rest and during stress. Behavioral interventions that produce psychosocial and physiological improvements like these are promising candidates for reducing the increased risk of suicide found by Larsen et al in post-MI patients.

What should be the design of RCTs to evaluate interventions to reduce both cardiovascular morbidity and suicide in post-MI patients? The evidence reviewed above makes a strong case for a large trial testing SSRI treatment, cognitive behavioral interventions, and a combination of the 2 for their potential to reduce cardiovascular morbidity/mortality after MI. Rather than including only patients with increased psychosocial risk factors for cardiovascular morbidity/mortality and/or suicide, it would be better to include all post-MI patients regardless of psychosocial status, thereby ensuring that those patients without psychosocial distress when screened following their MI but will go on to develop distress over the following months may benefit. In the trial testing cognitive behavioral group training in coronary bypass surgery patients, all patients were eligible for inclusion, and those randomized to usual care showed increases in psychosocial risk factors during the follow-up period rather than the decreases observed in the active arm patients.

Cognitive behavioral group training also appears effective in reducing depression and other indicators of psychosocial distress that could be contributing to the increased suicide risk following an MI found by Larsen et al. If the RCTs testing effects of SSRI and cognitive behavioral interventions are successful in reducing cardiovascular morbidity/mortality, they could also enable us to detect a reduction in suicides.

To the well-documented increased cardiovascular morbidity/mortality in patients with psychosocial distress following an MI, we can now add increased risk of suicide—a finding that adds to the case already made for screening post-MI patients for depression. If the large trials that will be required are successful in showing that treating depression with pharmacotherapy, cognitive behavioral group training, or a combination reduces cardiovascular morbidity/mortality (and possibly suicide and even costs of medical care), the day will come when evidence-based medicine requires not only depression screening in CHD patients but also the use of interventions that have been shown to improve prognosis and well-being.

Sources of Funding
Supported by National Heart, Lung, and Blood Institute grant P01HL36587; National Institute on Aging grant R01AG19605; with co-funding by National Institute of Environmental Health Sciences; and the Duke University Behavioral Medicine Research Center.

Disclosures
Redford Williams is a founder and major stockholder of Williams LifeSkills, Inc.; and holds a US patent on the use of the 5HTTLPR L allele as a genetic marker of increased risk of cardiovascular disease in persons exposed to chronic stress.

References

Key Words: Editorials | depression | evidence-based medicine | prevention | stress | behavioral interventions
Myocardial Infarction and Risk of Suicide: Another Reason to Develop and Test Ways to Reduce Distress in Postmyocardial-Infarction Patients?
Redford B. Williams

Circulation. 2010;122:2356-2358; originally published online November 22, 2010; doi: 10.1161/CIRCULATIONAHA.110.990382

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/122/23/2356

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/