Part 8: Advanced Life Support

2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

Laurie J. Morrison, Co-Chair*; Charles D. Deakin, Co-Chair*; Peter T. Morley; Clifton W. Callaway; Richard E. Kerber; Steven L. Kronick; Eric J. Lavonas; Mark S. Link; Robert W. Neumar; Charles W. Otto; Michael Farr; Michael Shuster; Kjetil Sunde; Mary Ann Peberdy; Wanchun Tang; Terry L. Vanden Hoek; Bernd W. Böttiger; Saul Drajer; Swee Han Lim; Jerry P. Nolan; on behalf of the Advanced Life Support Chapter Collaborators

Note From the Writing Group: Throughout this article, the reader will notice combinations of superscripted letters and numbers (eg, "Cricoid PressureALS-CPR&A-007B"). These callouts are hyperlinked to evidence-based worksheets, which were used in the development of this article. An appendix of worksheets, applicable to this article, is located at the end of the text. The worksheets are available in PDF format and are open access. The topics reviewed by the International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force are grouped as follows: (1) airway and ventilation, (2) supporting the circulation during cardiac arrest, (3) periarrest arrhythmias, (4) cardiac arrest in special circumstances, (5) identifying reversible causes, (6) postresuscitation care, (7) prognosis, and (8) organ donation. Defibrillation topics are discussed in Part 6.

The most important developments and recommendations in advanced life support (ALS) since the 2005 ILCOR review are as follows:

● The use of capnography to confirm and continually monitor tracheal tube placement and quality of cardiopulmonary resuscitation (CPR).
● More precise guidance on the control of glucose in adults with sustained return of spontaneous circulation. Blood glucose values >180 mg/dL (>10 mmol/L) should be treated and hypoglycemia avoided.
● Additional evidence, albeit lower level, for the benefit of therapeutic hypothermia in comatose survivors of cardiac arrest associated initially with nonshockable rhythms.
● Recognition that many of the accepted predictors of poor outcome in comatose survivors of cardiac arrest are unreliable, especially if the patient has been treated with therapeutic hypothermia. There is inadequate evidence to recommend a specific approach to prognosticating poor outcome in post–cardiac arrest patients treated with therapeutic hypothermia.
● The recognition that adults who progress to brain death after resuscitation from out-of-hospital cardiac arrest should be considered for organ donation.
● The recommendation that implementation of a comprehensive, structured treatment protocol may improve survival after cardiac arrest.

Airway and Ventilation

Consensus conference topics related to the management of airway and ventilation are categorized as (1) basic airway devices, (2) cricoid pressure, (3) advanced airway devices, (4) confirmation of advanced airway placement, (5) oxygenation, and (6) strategies for ventilation.

Basic Airway Devices

Oropharyngeal and Nasopharyngeal AirwaysALS/BLS-CPR&A-080B

Consensus on Science

Despite frequent successful use of nasopharyngeal and oropharyngeal airways in the management of nonarrest patients, there are no published data on the use of these airway adjuncts during CPR in humans. When bag-mask ventilation was undertaken with an oral airway and compared with no oral airway, 1 study in anesthetized patients demonstrated higher tidal volumes (LOE 5).1 One study of nasopharyngeal airways in anesthetized patients showed that nurses inserting nasopharyngeal airways were no more likely than anesthesiologists to cause nasopharyngeal trauma (LOE 5).2 One study showed that the traditional methods of sizing a nasopharyngeal airway

*Co-chairs and equal first co-authors.

(Circulation. 2010;122[suppl 2]:S345–S421.)

© 2010 American Heart Association, Inc., European Resuscitation Council, and International Liaison Committee on Resuscitation.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.110.971051
intracranial placement of a nasopharyngeal airway in patients with basal skull fractures (LOE 5).1,3,6

Treatment Recommendation

Oropharyngeal and nasopharyngeal airways have long been used in cardiac arrest, despite never being studied in this clinical context. It is reasonable to continue to use oropharyngeal and nasopharyngeal airways when performing bag-mask ventilation in cardiac arrest, but in the presence of a known or suspected basal skull fracture an oral airway is preferred.

Cricoid Pressure

In adults and children during ventilation and intubation, does the application and maintenance of cricoid pressure, compared to no cricoid pressure, reduce the incidence of aspiration?

Consensus on Science

No studies addressing the use of cricoid pressure during cardiac arrest were identified. All the identified studies were conducted under anesthesia or in awake volunteers, cadavers, or manikins. (All studies are therefore LOE 5 for cardiac arrest.) Cricoid pressure in nonarrest patients may, to some extent, protect the airway from aspiration, but it may also impede ventilation or interfere with insertion of an advanced airway.

The effect of cricoid pressure on gastric inflation during bag-mask ventilation was examined by 2 adult (LOE 1; LOE 2) and 2 pediatric studies (LOE 2).9,10 All showed less gastric inflation with cricoid pressure than without, although all of the studies used ventilation volumes higher than those recommended in cardiac arrest.

Nine studies in nonarrest adult subjects undergoing anesthesia showed that cricoid pressure impairs ventilation in many patients, increases peak inspiratory pressures, and causes complete obstruction in up to 50% of patients, depending on the amount of cricoid pressure (in the range of recommended effective pressure) that is applied (LOE 1;11–13; LOE 214; LOE 415–17).

One study in anesthetized patients determined that cricoid pressure prevents correct placement and ventilation with the laryngeal tube (LT) (LOE 1).18 Eight studies in anesthetized adults showed that when cricoid pressure was used before insertion of a laryngeal mask airway (LMA), there was a reduced proportion of LMAs correctly positioned, an increased incidence of failed insertion, and impaired ventilation once the LMA had been placed (LOE 119–23; LOE 224–26). No significant impairment to tracheal intubation was found by 4 LOE-1 studies performed in anesthetized patients27–30 while 7 LOE-1 studies31–36 and 1 LOE-2 study37 did show impairment of intubation with increased time to intubation and decreased intubation success rates. One cadaver study demonstrated a worse laryngoscopic view with the application of cricoid pressure (LOE 5).38

Twenty-one manikin studies demonstrated that many providers applied less cricoid pressure than has been shown to be effective (in cadaver studies) whereas many other providers applied more pressure than has been shown to be necessary (and far in excess of the amount of pressure shown to impede ventilation) (LOE 5).39–59 Four of those studies determined that performance can be improved with training (although many cricoid pressure applications following training remain outside recommended effective pressures).54–56,59 No study examined if cricoid pressure performance to the required standard could be maintained beyond the immediate post-training period.

Cricoid pressure prevented movement of liquid from the esophagus into the pharynx in 5 cadaver studies (LOE 5)60–64; however, in 1 LOE-2 study65 of 4891 obstetric patients undergoing anesthesia, no significant difference was observed in regurgitation rates between patients who received cricoid pressure and those who did not. There are case reports where prevention of aspiration is ascribed to the application of cricoid pressure (LOE 4)66–68 and other case reports documenting that aspiration occurs despite the application of cricoid pressure (LOE 4).69–73

Treatment Recommendation

The routine use of cricoid pressure to prevent aspiration in cardiac arrest is not recommended. If cricoid pressure is used during cardiac arrest, the pressure should be adjusted, relaxed, or released if it impedes ventilation or placement of an advanced airway.

Knowledge Gaps

Future research should address whether cricoid pressure prevents regurgitation and aspiration, the pressure required to be effective, and effectiveness trials evaluating if it can be done well by responders to a cardiac arrest.

Advanced Airway Devices

The tracheal tube was once considered the optimal method of managing the airway during cardiac arrest. There is considerable evidence that without adequate training or ongoing skills maintenance, the incidence of failed intubations and complications, such as unrecognized esophageal intubation or unrecognized dislodgement, is unacceptable.74–79 Prolonged attempts at tracheal intubation are harmful if associated with interruption of chest compressions because this will compromise coronary and cerebral perfusion. Alternatives to the tracheal tube that have been studied during CPR include the bag-mask and supraglottic airway devices, such as the laryngeal mask airway, esophageal-tracheal combitube and laryngeal tube, among others. Studies comparing supraglottic airway to tracheal intubation have generally compared insertion time and ventilation success rates. No study has shown an effect
of the method of ventilation on survival. There are no data to support the routine use of any specific approach to airway management during cardiac arrest. The quality of CPR with various advanced airways was not included in the review for 2010. The best technique depends on the precise circumstances of the cardiac arrest, local guidelines, training facilities, and the competence of the rescuer.

Timing of Advanced Airway Placement

In adult cardiac arrest (prehospital or in-hospital), does an alternate timing for advanced airway insertion (eg, early or delayed), as opposed to standard care (standard position in algorithm), improve outcome (eg, return of spontaneous circulation [ROSC], survival)?

Consensus on Science

One registry study evaluated the impact of timing of advanced airway placement during 25,006 in-hospital cardiac arrests (LOE 2).80 In this study, earlier time to invasive airway (<5 minutes) was associated with no improvement in ROSC but improved 24-hour survival (NNT = 48). In an urban out-of-hospital setting, intubation in <12 minutes was associated with better survival than intubation ≥13 minutes. In an out-of-hospital urban and rural setting, patients intubated during resuscitation had better survival than patients not intubated; whereas in an in-hospital setting, patients requiring intubation during CPR had worse survival. A recent study found that delayed tracheal intubation bundled with passive oxygen delivery and minimally interrupted chest compressions was associated with improved neurologically intact survival after out-of-hospital cardiac arrest in patients with adult, witnessed, ventricular fibrillation (VF)/ventricular tachycardia (VT).

The independent contribution of the timing of the advanced airway was not available in the study.

Treatment Recommendation

There is inadequate evidence to define the optimal timing of advanced airway placement during cardiac arrest.

Knowledge Gaps

To advance the science in this area we need to define what is “early” and what is “delayed” placement of advanced airways, the superiority of advanced airways over simple bag-mask ventilation, and whether there is any significant difference between the advanced airway types.

Advanced Airway Versus Ventilation With Bag-Mask

In adult cardiac arrest (prehospital, out-of-hospital cardiac arrest [OHCA], in-hospital cardiac arrest [IHCA]), does the use of supraglottic devices, compared with bag-mask alone for airway management, improve any outcomes (eg, increase ventilation, increase oxygenation, reduce hands-off time, allow for continuous compressions, and/or improve survival)?

Consensus on Science

A retrospective case series (LOE 4) comparing a laryngeal mask airway with bag-mask ventilation in cardiac arrest patients demonstrated a regurgitation rate of 3.5% with use of a laryngeal mask airway and 12.4% with use of bag-mask ventilation.85 When a variety of supraglottic airway devices were compared with bag-mask ventilation in manikin models, 6 studies showed improved ventilation and a decrease in gastric inflation (LOE 5).86–91 One pseudorandomized and 1 nonrandomized clinical trial (LOE 2) found no difference in arterial blood gas values or survival rates when a variety of supraglottic airway devices were compared to bag-mask ventilation.82,93 Three studies performed in manikin models of cardiac arrest (LOE 5) found that, compared with a bag-mask, the use of a single-use, disposable laryngeal tube to provide ventilation may decrease no-flow times.

Knowledge Gaps

Further data are needed on the adequacy of ventilation with the various supraglottic airway devices if chest compressions are not interrupted; also needed are comparisons of the various supraglottic airway devices with each other and with bag-mask ventilation when used clinically by inexperienced and by experienced providers.

Tracheal Intubation Versus the Combitube/Laryngeal Mask Airway

In adult cardiac arrest (prehospital or in-hospital), does alternative timing (early or delayed) for the use of a single-use, disposable laryngeal tube to provide ventilation compared with alternative timing for tracheal intubation improve any outcomes (eg, ROSC, survival)?

Consensus on Science

Nine studies compared a variety of supraglottic airway devices with the tracheal tube during cardiac arrest (LOE 1; LOE 219–105) and a further 6 studies compared a variety of supraglottic airway devices with the tracheal tube in patients undergoing anesthesia (LOE 5).106–111 Overall in these studies the supraglottic airway device performed as well as, or better than, the tracheal tube with respect to successful insertion and/or time to tube insertion or to ventilation. One study retrospectively compared outcomes in cardiac arrest patients treated with an esophageal-tracheal-combitube or tracheal tube and found no difference in ROSC, survival to admission, or survival to discharge (LOE 2).104 One study compared survival in cardiac arrests managed with a laryngeal mask airway with an historical control group of cardiac arrests managed with a tracheal tube and found that ROSC was significantly higher in the study period (61% versus 36%) (LOE 3).105

Eight manikin studies with simulated cardiac arrest (LOE 5) and 8 manikin studies without simulated cardiac arrest showed that successful insertion rates and/or time to insertion or to ventilation for a variety of supraglottic airway devices were as good, or better than, for the tracheal tube (LOE 5).117–124
Nine studies documented that when a supraglottic airway device is used as a rescue airway after failed tracheal intubation, most patients can be ventilated successfully with the supraglottic airway device (LOE 289,90,103; LOE 3125–128; LOE 5107,129).

Two studies performed while wearing anti-chemical protective clothing, 1 randomized crossover trial on anesthetized patients, and a pseudorandomized study on manikins found increased time to tracheal tube insertion but not to laryngeal mask airway insertion (LOE 5).108,117

Three manikin studies comparing a supraglottic airway device with the tracheal tube during ongoing chest compressions demonstrated decreased time to intubation with the supraglottic airway device, as well as reduced no flow time (LOE 5).96,112,115 One nonrandomized manikin study found that chest compressions caused only a minor increase in time to tracheal intubation but not to supraglottic airway device insertion (LOE 5).114

Treatment Recommendation
Healthcare professionals trained to use supraglottic airway devices may consider their use for airway management during cardiac arrest and as a backup or rescue airway in a difficult or failed tracheal intubation.

Knowledge Gaps
The adequacy of ventilation with supraglottic airway devices during uninterrupted chest compressions is unknown. The performance of the various supraglottic airway devices should be compared with each other and with the tracheal tube when used in cardiac arrest. Use of the supraglottic airway devices by providers of differing experience should also be studied.

Confirming Advanced Airway Placement

Exhaled Carbon Dioxide Detection and Esophageal Detection Devices

In adult cardiac arrest (out-of-hospital [OHCA], in-hospital [IHCA]), does the use of devices (eg, CO2 detection device, CO2 analyzer, or esophageal detector device), compared with usual management, improve the accuracy of diagnosis of airway placement?

Consensus on Science
Two studies of waveform capnography (LOE D2) to verify tracheal tube position in victims of cardiac arrest after intubation demonstrated 100% sensitivity and 100% specificity in identifying correct tracheal tube placement.130,131 One of these studies included 246 intubations in cardiac arrest with 9 esophageal intubations,130 and the other included 51 cardiac arrests with an overall esophageal intubation rate of 23%,131 but it is not specified how many of these occurred in the cardiac arrest group. Three studies (LOE D1)132–134 with a cumulative total of 194 tracheal and 22 esophageal tube placements demonstrated an overall 64% sensitivity and 100% specificity in identifying correct tracheal tube placement when using the same model capnometer (no waveform capnography) on prehospital cardiac arrest victims. The sensitivity may have been adversely affected by the prolonged resuscitation times and very prolonged transport times of many of the cardiac arrest victims studied. Intubation was performed after arrival at hospital and time to intubation averaged more than 30 minutes.

Studies of colorimetric end-tidal CO2 (ETCO2) detectors (LOE D2135,136; LOE D4137–139; LOE D5140,141), the syringe aspiration esophageal detector device (LOE D1133; LOE D4142), the self-inflating bulb esophageal detector device (LOE D1),132–134 and nonwaveform end-tidal CO2 capnometers (LOE D2130,143; LOE D4137; LOE D5141) showed that the accuracy of these devices is similar to the accuracy of clinical assessment (not uniformly defined across all studies) for confirming the tracheal position of a tracheal tube in victims of cardiac arrest.

Treatment Recommendations
Waveform capnography is recommended to confirm and continuously monitor the position of a tracheal tube in victims of cardiac arrest, and it should be used in addition to clinical assessment (auscultation and direct visualization are suggested).

If waveform capnography is not available, a nonwaveform carbon dioxide detector or esophageal detector device in addition to clinical assessment (auscultation and direct visualization are suggested) is an alternative.

Knowledge Gaps
The relationships between ETCO2, time from arrest, and the response time of emergency medical services (EMS) should be determined so that the meaning of a zero reading on waveform capnography can be understood.

Thoracic Impedance

In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]), does the use of thoracic impedance, compared with usual management, improve the accuracy of diagnosis of airway placement and adequacy of ventilation?

Consensus on Science
Two studies in adults (LOE D5)144,145 and 1 study in children (LOE D5)146 in patients undergoing anesthesia demonstrated high sensitivity (0.975 to 1.0) and specificity (0.925 to 1.0) of thoracic impedance in diagnosing tracheal and esophageal intubations. One nonrandomized trial in immediately postmortem patients (LOE D2)147 demonstrated smaller changes in thoracic impedance with esophageal ventilations than with tracheal ventilations. One study (LOE D2)148 tested impedance-based ventilation recognition during cardiac arrest with ongoing compressions and was able to detect 90.4% of ventilations with a 95.5% positive predictive value. Two case reports comprising a total of 6 cardiac arrest patients with ongoing CPR (LOE D3;149 LOE 4150) demonstrated disappearance...
of ventilation-induced changes in thoracic impedance after esophageal intubation.

The evidence evaluating the use of thoracic impedance in diagnosing adequacy of ventilation is scant. Supportive evidence from 1 animal study (LOE D5)\(^1\) demonstrated that the intensity of the thoracic impedance signal was proportional to the observed tidal volumes. An exploratory study conducted in human cardiac arrest patients (LOE D2)\(^2\) demonstrated a strong correlation between thoracic impedance changes and tidal volume changes in the absence of chest compressions, but large variations in measured impedance coefficients were observed.

Knowledge Gaps

More research is needed to clarify the usefulness of thoracic impedance to independently confirm placement of a tracheal tube and adequacy of ventilation during cardio-pulmonary resuscitation.

Oxygen

Supplemental Oxygen: 100% vs Titration

In adult cardiac arrest (out-of-hospital [OHCA], in-hospital [IHCA]), does the use of titrated oxygen during cardiac arrest, compared with the use of 100% oxygen, improve outcome (eg, ROSC, neurologically intact survival)?

Consensus on Science

There were no adult (>8 years of age) human studies that addressed directly whether titrated oxygen compared with 100% oxygen during CPR affects outcome. Two animal studies (LOE 5)\(^3\) that used a fibrillatory model of cardiac arrest suggested that use of 100% oxygen during CPR and for 15 to 60 minutes after ROSC results in worse neurological outcomes compared with normoxic (21% oxygen, room air) resuscitation, whereas 1 animal study (LOE 5)\(^4\) using an asphyxial model documented that ventilation with either 100% oxygen or 21% oxygen during resuscitation did not affect outcome.

Treatment Recommendation

There is insufficient evidence to support or refute the use of a titrated oxygen concentration or constant 21% oxygen (room air) when compared with 100% oxygen during adult cardiac arrest. In the absence of any other data there is no reason to change the current treatment algorithm, which includes use of 100% oxygen during adult cardiac arrest.

Knowledge Gaps

Prospective clinical trials may be warranted to explore constant (including room air) versus titrated oxygen resuscitation approaches during human adult cardiac arrest.

Passive Oxygen vs Positive Pressure Oxygen During CPR

In adults and children in cardiac arrest (out-of-hospital [OHCA], in-hospital [IHCA]), does the use of passive oxygen delivery during CPR, compared with oxygen delivery by positive pressure ventilation, improve outcome (eg, ROSC, survival)?

Consensus on Science

Two studies (LOE 1)\(^5\) involving ALS providers in- and out-of-hospital settings, and 2 animal studies (LOE 5)\(^6\),\(^7\) suggested that passive oxygen delivery through a Boussignac tube at a flow of 15 L/min associated with continuous chest compressions (with or without active compression-decompression CPR) generated equal or improved gas exchange and hemodynamics, but without improved outcome (ROSC, hospital discharge survival, or neurological outcome), when compared with a standard tracheal tube and positive pressure ventilation.

Four animal models (LOE 5)\(^8\) using different devices or approaches (nasal cannula in the oropharynx, pharyngeal-tracheal lumen airway, and oxygen catheter tip at the level of the carina) confirmed an equivalent or better gas exchange and/or hemodynamics, with continuous oxygen inflation compared with standard ventilation.

One swine model (LOE 5)\(^9\) demonstrated equivalent gas exchange and 48-hour survival following 4 minutes VF arrest with passive oxygen supplied via tracheal tube compared with oxygen supplied by positive pressure ventilation.

Two studies (LOE 3)\(^10\),\(^11\) of a simplified minimally interrupted cardiac resuscitation (MICR) protocol (concept of cardiocerebral resuscitation), which included passive oxygen delivery via a standard oxygen mask with nonrebreather bag and continuous chest compressions, showed an improvement in neurologically intact survival in adults with bystander-witnessed cardiac arrest and an initially shockable rhythm when controlled with historical controls using standard CPR.

Another study (LOE 3)\(^12\) demonstrated better survival with passive oxygen delivery than with bag-mask ventilation. In this study the passive oxygen delivery was included as one intervention in a bundle of different treatment changes in patients with a bystander-witnessed cardiac arrest and an initially shockable rhythm. The relative effect of each component of the treatment bundle, including oxygenation, is unknown.

Treatment Recommendation

There is insufficient evidence to support or refute the use of passive oxygen delivery during CPR to improved outcomes (ROSC, hospital discharge rate, and improve neurological survival) when compared with oxygen delivery by positive pressure ventilation.
Knowledge Gaps
High-quality controlled clinical trials are required to evaluate the relationship between continuous positive airway pressure and important clinical outcomes and comparison with passive oxygen delivery during cardiopulmonary resuscitation.

Strategies for Ventilation

Monitoring Ventilatory Parameters During CPR
In adult cardiac arrest (out-of-hospital and in-hospital) with either a protected or unprotected airway, does the monitoring and control of ventilatory parameters (eg, minute ventilation and/or peak pressures), as opposed to standard care (without ventilatory monitoring), improve outcome (eg, ROSC, survival)?

Consensus on Science
There are no studies that directly addressed the relationship between monitoring of minute ventilation and peak pressure during CPR and changes in outcome (other than respiratory rate).

One animal study (LOE 5) showed that hyperventilation was associated with decreased coronary perfusion pressure and decreased survival. The study also demonstrated that hyperventilation during cardiac arrest is common. One animal study (LOE 5) showed that during CPR applying positive end-expiratory pressure (PEEP) up to 10 cm H2O, in addition to intermittent positive pressure ventilation (IPPV), may improve oxygenation compared with IPPV alone. Another study demonstrated that continuous positive airway pressure with pressure support ventilation (CPAP PSV) during resuscitation also may improve oxygenation and outcome (LOE 5).

One study (LOE 3) demonstrated that real-time feedback during CPR compared with no feedback resulted in a delivered ventilation rate closer to that indicated by current guidelines.

Treatment Recommendation
There is insufficient evidence to support or refute the use of peak pressure and minute ventilation monitoring to improve outcome from cardiac arrest. There is indirect evidence that monitoring the respiratory rate with real-time feedback is effective in avoiding hyperventilation and achieving ventilation rates closer to recommended values, but there is no evidence that ROSC or survival is improved.

Knowledge Gaps
Clinical trials evaluating ventilation monitoring during cardiac arrest resuscitation for all outcomes are needed. There is limited information on the accuracy of ventilation rate monitoring in the new defibrillator software that evaluates CPR process measures. This initial work would be helpful to enable controlled trials to determine the optimal ventilation rate associated with survival.

Monitoring Physiological Parameters During CPR
In adult cardiac arrest (out-of-hospital [OHCA], in-hospital [IHCA]), does the use of physiological feedback about CPR quality (eg, end-tidal CO2 monitoring), compared with no feedback, improve any outcomes (eg, ROSC, survival)?

Consensus on Science
None of the 17 studies that were reviewed evaluated physiological feedback (ETCO2, coronary perfusion pressure, superior vena caval central venous oxygen saturation, bispectral index monitoring) specifically as a tool to guide resuscitation intervention in real time to improve outcomes from cardiac arrest. Eleven studies showed that physiological monitoring values (ETCO2, coronary perfusion pressure, venous oxygen saturation) increased when ROSC was achieved (LOE 4) and that they may be an indication of ROSC before it can be seen in vital signs.

Five of the studies found that ETCO2 was accurate for predicting patients who could not be resuscitated; some gave a time frame for that prediction of 20 minutes (LOE 4). However, 2 studies documented patients who did not meet the ETCO2 range but who survived (LOE 4). Multiple studies by 1 group (LOE 4) showed that when ETCO2 exceeded 10 mm Hg, all patients achieved ROSC. In 1 of these studies all the survivors had an initial ETCO2 higher than 10 mm Hg. Similarly, 2 studies showed that if the ETCO2 did not exceed 10 mm Hg, survival was zero.

One study showed no correlation between bispectral index (BIS) values during cardiopulmonary resuscitation and ROSC and survival (LOE 4).

Treatment Recommendation
Continuous capnography or capnometry monitoring, if available, may be beneficial by providing feedback on the effectiveness of chest compressions. The prognostic value of end tidal CO2 is further reviewed in the section on prognostication.

Knowledge Gaps
Animal and human studies evaluating the effects of modification of resuscitation based on physiological feedback would be helpful.

Automatic Transport Ventilators

Automatic Ventilators vs Manual Ventilation During CPR
In adults and children in cardiac arrest (out-of-hospital [OHCA], in-hospital [IHCA]) and who have advanced airways in place, does the use of automatic ventilators, compared with manual ventilation, improve outcome (eg, ventilation, oxygenation, reduce hands-off time, allow for continuous compressions and/or improves survival)?

Consensus on Science
One pseudorandomized study suggested that the use of an automatic transport ventilator with intubated patients may...
enable the EMS team to perform more tasks while subjectively providing ventilation similar to that provided by hand with a resuscitation bag (LOE 2). One study suggested that the use of an automatic transport ventilator with intubated patients provides oxygenation and ventilation similar to that achieved with a bag-valve device but with no difference in survival (LOE 2).187

Treatment Recommendation
There is insufficient evidence to support or refute the use of an automatic transport ventilator over manual ventilation during resuscitation of the cardiac arrest victim with an advanced airway.

Knowledge Gaps
Studies evaluating adequacy of oxygenation, difference between volume and pressure cycled ventilation, and survival and complication rates when comparing manual ventilation versus automatic transport ventilator in cardiopulmonary resuscitation with an advanced airway in place are needed to advance the science in this area.

Supporting the Circulation During Cardiac Arrest
Questions related to circulatory support during cardiac arrest that were discussed during the 2010 Consensus Conference are categorized as (1) timing of drug delivery, (2) vasopressors during cardiac arrest, (3) other drugs during cardiac arrest, (4) intravenous (IV) fluids, and (5) extracorporeal support. It is recognized that the vast majority of studies assessing the effects of drugs on survival have been unable to control for the quality of cardiopulmonary resuscitation. Furthermore most drug evaluations to date have been conducted before recent advances in post–cardiac arrest care, including therapeutic hypothermia. Since most drug trials have, at most, demonstrated only short-term outcome advantage, it may be important to evaluate long-term outcome when these drugs are combined with optimized post–cardiac arrest care. One study (LOE 1)188 compared the use of IV access and drugs (epinephrine, amiodarone, atropine, vasopressin, without isolating the effect of each individual drug alone), with no IV access and no drugs in adult out-of-hospital CPR without isolating the effect of each individual drug alone, with placebo in adult out-of-hospital CPR and demonstrated improvement in ROSC and survival to hospital and intensive care unit (ICU) admission, but no difference in survival to discharge or neurological outcomes at discharge and at 1-year follow-up; however, that study was not powered to detect clinically meaningful differences in long-term outcome. Similarly 1 study (LOE 3)189 with a before-and-after design compared various outcomes after out-of-hospital cardiac arrest; it was unable to demonstrate any improvements after introduction of advanced life support (epinephrine, atropine, lidocaine). Neither of these studies was able to isolate outcomes specifically related to individual drug administration.

Timing of Drug Delivery
In adult cardiac arrest (out-of-hospital or in-hospital), does an alternate timing for drug delivery (eg, early or delayed), as opposed to standard care (standard position in algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
There are no studies that addressed the order of drug administration. Subgroup analyses from 2 clinical studies reported decreased survival for every minute drug delivery was delayed, measured from call received at EMS dispatch (LOE 4).190,191 This finding was likely to be biased by a concomitant delay in onset of ALS. In 1 study the interval from the first shock to the injection of the drug was a significant predictor of survival (LOE 4).190 One animal study reported lower coronary perfusion pressure when delivery of vasopressor was delayed (LOE 5).192 Time to drug administration was a predictor of ROSC in a retrospective analysis of cardiac arrest in swine (LOE 5).193

Treatment Recommendation
There is inadequate evidence to define the optimal timing or order for drug administration. An incomplete review of animal studies suggests that timing of vasopressor administration may affect circulation, and further investigations are important to help guide the timing of drug administration.

Knowledge Gaps
Advancing the science in the timing of drug administration is closely related to the need to conduct placebo-controlled trials to determine the efficacy of some drugs in CPR. The timing of drug administration and route of delivery are important data points to be captured in future studies. Animal models and clinical trials addressing efficacy can also be designed to provide substantial information on how timing and delivery can affect outcome. In the future, inclusion of studies on pharmacokinetics combined with dose response, as well as studies addressing the impact of timing of defibrillation on circulation and drug effect, might better address the question of optimal timing of drug delivery.

Vasopressors
Despite the continued widespread use of epinephrine and increased use of vasopressin during resuscitation in some countries, there is no placebo-controlled study that shows that the routine use of any vasopressor during human cardiac arrest increases survival to hospital discharge.

In adult patients in cardiac arrest (asystole, pulseless electric activity [PEA], pulseless VT, and VF) (out-of-hospital [OHCA], in-hospital [IHCA]), does the use of vasopressors (epinephrine, norepinephrine, others) or combination of vasopressors, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, ROSC, survival)?

Consensus on Science
One study retrospectively compared epinephrine with no epinephrine for sustained VF and PEA/asystole and found
improved ROSC with epinephrine for both rhythms but no difference in survival (LOE 2).194 In a large retrospective registry-based study from Sweden (LOE 4) epinephrine was an independent predictor of poor outcome (LOE 4).195

Three studies (LOE 1)196–198 and a meta-analysis (LOE 1)199 demonstrated no difference in outcomes (ROSC, survival to discharge, or neurological outcome) with vasopressin when compared with epinephrine as a first-line vasopressor in cardiac arrest.

Two studies (LOE 1)200,201 demonstrated no difference in outcomes (ROSC, survival to discharge, or neurological) comparing epinephrine in combination with vasopressin with epinephrine alone in cardiac arrest.

No study demonstrated a survival benefit with high-dose versus standard-dose epinephrine in cardiac arrest. Two studies (LOE 1)202,203 reported improvement in ROSC using high-dose epinephrine. One meta-analysis (LOE 1)204 of pooled data from 5 studies202,203,205–207 supported improvement in ROSC with high-dose epinephrine but no change in survival outcomes.

Treatment Recommendation
Although there is evidence that vasopressors (epinephrine or vasopressin) may improve ROSC and short-term survival, there is insufficient evidence to suggest that vasopressors improve survival to discharge and neurological outcome. There is insufficient evidence to suggest the optimal dosage of any vasopressor in the treatment of adult cardiac arrest. Given the observed benefit in short-term outcomes, the use of epinephrine or vasopressin may be considered in adult cardiac arrest.

Knowledge Gaps
Placebo-controlled trials to evaluate the use of any vasopressor in the treatment of adult cardiac arrest.

Other Drugs During Cardiac Arrest
There is no convincing evidence that the routine use of other drugs (atropine, amiodarone, lidocaine, procainamide, bretylium, magnesium, buffers, calcium, hormones, or fibrinolytics) during human CPR increases survival to hospital discharge.

AtropineALS-D-024B
In adult patients in cardiac arrest (asystole, PEA, pulseless VT, and VF) (out-of-hospital, in-hospital), does the use of atropine or atropine in combination with other drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, ROSC, survival)?

Consensus on Science
Three studies (LOE 4)208–210 (total of 12 operating rooms, 2 catheterization laboratories, 2 out-of-hospital cardiac arrest patients, and 4 in-hospital cardiac arrest patients) documented improvement in survival when atropine was given to patients in asystole in combination with epinephrine208,210 and following induction with succinylcholine and fentanyl.209 One study documented improvement in ROSC (14% versus 0%) when atropine was given to adults in asystolic out-of-hospital cardiac arrest in combination with epinephrine and sodium bicarbonate, but none survived to discharge (LOE 3).211

Three studies suggested that the use of atropine for treatment of cardiac arrest was not associated with any change in survival (LOE 2212; LOE 5213,214). Four human studies suggested that the use of atropine was associated with poor survival (LOE 4).83,215–217

Treatment Recommendation
There is insufficient evidence to support or refute the use of atropine in cardiac arrest to improve survival to hospital discharge.

Knowledge Gaps
Randomized placebo-controlled trials are required to define the role of atropine in PEA and asystolic cardiac arrest.

Lidocaine, Procainamide, Amiodarone, Bretylium, MagnesiumALS-D-025A, ALS-D-025B
In adult cardiac arrest (asystole, PEA, pulseless VT, and VF) (out-of-hospital, in-hospital), does the use of antiarrhythmic drugs (lidocaine, procainamide, amiodarone, bretylium, magnesium) or combination with other drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, ROSC, survival)?

Consensus on Science
There was little evidence to suggest a survival-to-discharge advantage with any antiarrhythmic drug used during resuscitation from out-of-hospital or in-hospital cardiac arrest. Two randomized trials demonstrated the benefit of amiodarone over standard of care, which included lidocaine in 80% of cases,191 or routine use of lidocaine190 for shock refractory or recurrent VT/VF for the end point of survival to hospital admission, but not to survival to hospital discharge. A retrospective review demonstrated improved survival to admission with lidocaine (compared with standard treatment) for patients in VF out of hospital (LOE 4).218

A retrospective review found procainamide was associated with increased survival to 1 hour postarrest in patients with VF in hospital (LOE 4).214 Four randomized, controlled trials did not show any increase in ROSC or survival when magnesium was compared with placebo for patients in VF in out-of-hospital, ICU, and emergency department (ED) settings (LOE 1).219–222

Treatment Recommendation
Amiodarone may be considered for those who have refractory VT/VF, defined as VT/VF not terminated by defibrillation, or VT/VF recurrence in out-of-hospital cardiac arrest or in-hospital cardiac arrest. There is inadequate evidence to support or refute the use of lidocaine in the same settings.
Knowledge Gaps
All the studies to date were done with stacked shocks; it may be helpful to reevaluate the efficacy of amiodarone in the setting of a single-shock defibrillation strategy.

CalciumALS-D-026A, ALS-D-026B
In adult cardiac arrest (asystole, PEA, pulseless VT, and VF) (out-of-hospital, in-hospital), does the use of calcium alone or combination with other drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, ROSC, survival)?

Consensus on Science
Three randomized control trials (LOE 1)^223–225 and 3 cohort studies (LOE 2)^214,217,226 and 1 case series (LOE 4)^227 demonstrated no effect on survival when calcium was given to in-hospital or out-of-hospital cardiac arrest patients. Two adult studies suggest that calcium administration during cardiac arrest was associated with decreased survival to hospital discharge (LOE 2).217,228

In VF, calcium did not restore a spontaneous circulation (LOE 4).227 In 1 study of PEA arrests, calcium demonstrated improved ROSC, without reporting long-term survival, but only in a subgroup of patients with wide QRS (LOE 1).224

Another study showed improved ROSC and survival to hospital arrival; however, there was no significant effect on survival (LOE 4).227 Another study showed decreased rate of ROSC in the calcium group (LOE 2).228 In 2 studies of asystole calcium administration failed to show any improvement in ROSC or survival to hospital discharge (LOE 1).223,225 One study showed reduced ROSC in the calcium group (LOE 2).228

Treatment Recommendation
Routine administration of calcium for treatment of in-hospital and out-of-hospital cardiac arrest is not recommended.

Knowledge Gaps
More data are needed on the administration of calcium for specific circumstances, such as hyperkalemia, documented hypocalcemia, hypermagnesemia, calcium channel blocker overdose, or wide QRS complexes.

Steroid and Hormonal TherapyALS-D-027
During adult cardiac arrest (asystole, PEA, pulseless VT, and VF) (out-of-hospital, in-hospital), does the use of steroid or hormonal therapy (estrogen, progesterone, hydrocortisone, insulin, growth factor, etc.) alone or in combination with other drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, ROSC, survival)?

Consensus on Science
There were no human or animal studies that directly addressed the use of the estrogen, progesterone, insulin, or insulin-like growth factor in cardiac arrest. Early observational studies of the use corticosteroids during cardiac arrest suggested possible benefit (LOE 4).229,230 One complex randomized pilot study (LOE 1)231 and 1 nonrandomized human study (LOE 2)232 suggested benefit with corticosteroids, whereas 1 small, older, human prehospital controlled clinical trial suggested no benefit (LOE 1).233 One animal study of corticosteroids suggested possible benefit (LOE 5).234

Treatment Recommendation
There is insufficient evidence to support or refute the use of corticosteroids alone or in combination with other drugs during cardiac arrest.

Knowledge Gaps
High-quality clinical trials are required to determine if there is a role in cardiopulmonary resuscitation for hormonal therapy with or without vasopressor while controlling for in-hospital use of hormonal therapy postarrest.

BuffersALS-D-029A, ALS-D-029C
In adult cardiac arrest (asystole, PEA, pulseless VT, and VF) (out-of-hospital, in-hospital), does the use of buffering agents alone or combination with other drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, ROSC, survival)?

Consensus on Science
Two studies evaluated buffering agents during CPR (LOE 1).235,236 Both had limitations but showed no improvement in outcome. Two retrospective cohort studies also showed no benefit in the use of buffering agents during CPR (LOE 2).237,238 Two studies demonstrated increased ROSC, hospital admission, and survival at hospital discharge with bicarbonate use (LOE 2; LOE 3).239 Four cohort studies reported that bicarbonate use was associated with poor short- and long-term outcome (LOE 2).217,241–243

Treatment Recommendation
Routine administration of sodium bicarbonate for treatment of in-hospital and out-of-hospital cardiac arrest is not recommended.

Knowledge Gaps
There are large differences in direction and effect between results from the laboratory and those derived from clinical trials; therefore, well-designed trials, using bicarbonate or non-CO\textsubscript{2} generating buffers, are necessary to clarify the role of buffers in the treatment of short or prolonged cardiac arrest.

FibrinolyticsALS-D-028A, ALS-D-028B
In adult cardiac arrest, does the use of fibrinolytics alone or in combination with other drugs, compared with not using drugs, improve outcomes?

Consensus on Science
Two studies failed to show any improvement in short- or long-term outcomes with the use of fibrinolytics (LOE 4).229,230 One complex randomized pilot study (LOE 1)231 and 1 nonrandomized human study (LOE 2)232 suggested benefit with corticosteroids, whereas 1 small, older, human prehospital controlled clinical trial suggested no benefit (LOE 1).233 One animal study of corticosteroids suggested possible benefit (LOE 5).234
One study showed an increased risk of intracranial bleeding associated with the routine use of fibrinolytics during cardiac arrest (LOE 1). Seven studies showed benefit from fibrinolytic therapy in the treatment of victims of cardiopulmonary arrest unresponsive to standard therapy; however, those studies had significant limitations (LOE 1–46; LOE 2–50; LOE 3–51,52).

Treatment Recommendation

Routine administration of fibrinolytics for the treatment of in-hospital and out-of-hospital cardiac arrest is not recommended. (See “Cardiac Arrest Caused by Pulmonary Embolus” for the treatment of patients with ROSC following suspected pulmonary embolus.)

Knowledge Gaps

The potential role of adjuvant antithrombotic and antiplatelet drugs needs exploration.

IV Fluids During Cardiac Arrest

In adult cardiac arrest (out-of-hospital, in-hospital), does the use of IV fluids, compared with no using fluids (or standard resuscitation), improve outcomes (eg, ROSC, survival)?

Consensus on Science

No published human study directly compared outcome of routine IV fluid administration with no fluid administration during CPR. Two animal studies reported that normothermic fluid infusion during CPR causes a decrease in coronary perfusion pressure (LOE 5), and another animal study showed that the coronary perfusion pressure rise with epinephrine during CPR is not improved with the addition of a fluid infusion (LOE 5). Most animal studies of fluid infusion during CPR lack a control group that receives no fluids; without a control group, it is difficult to assess of benefit or harm from fluid therapy (LOE 5).

Hypertonic Fluid

One small randomized clinical trial (RCT) in adults found no significant ROSC or survival benefit with hypertonic IV fluid infusion when compared to isotonic IV fluid infusion during CPR (LOE 5). One animal study showed that hypertonic saline improves cerebral blood flow during CPR (LOE 5). Two animal studies found neither benefit nor harm with infusion of hypertonic saline (LOE 5).

Chilled Fluid vs Room-Temperature Fluid

Two adult studies (LOE 5) and 2 animal studies (LOE 5) showed no improvement in ROSC when cold IV fluids (compared with room temperature IV fluids) were infused during CPR. One of the reported animal studies showed that the infusion of cold fluids during CPR caused a decrease in coronary perfusion pressure when compared to no fluids (LOE 5).

Treatment Recommendation

There is insufficient evidence to recommend for or against the routine infusion of IV fluids during cardiac arrest resuscitation.

Knowledge Gaps

Future research should define the criteria for ECPR after out-of-hospital cardiac arrest and the criteria for ECPR as a bridge to left ventricular assist device (LVAD) or transplant. It is recommended that the intraaortic balloon pump (IABP) and LVADs be included in the list of questions to pursue in 2015.
Antiarrhythmics in the Periarrrest Period
Narrow-Complex Tachycardia (Excluding Atrial Fibrillation)

There are 4 options for the treatment of narrow-complex tachycardia in the periarrrest setting: electrical conversion, physical maneuvers, pharmacological conversion, or rate control. The choice depends on the stability of the patient and the rhythm. In a hemodynamically unstable patient, narrow complex tachycardia is best treated with electrical cardioversion.

In adult patients with narrow-complex tachycardia (out-of-hospital and in-hospital), does the use of any drug or combination of drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, reversion rates)?

Consensus on Science

Five trials supported the use of adenosine in the treatment of narrow-complex tachycardia (LOE 1).272–276 Six trials demonstrated the effectiveness of verapamil in conversion to sinus rhythm (LOE 1).277–279,280 The effectiveness of diltiazem in conversion to sinus rhythm is supported by 4 trials (LOE 1).273,277,279,280 The evidence to support the use of other drugs for conversion to sinus rhythm is limited to a few trials for each drug, including sotalol (LOE 1),281 amiodarone (LOE 4),282 propafenone (LOE 1),283 and nadolol (LOE 1).284 The study on nadolol suggested treatment effect on rate as well. There was no evidence of benefit with cibenzoline (LOE 1)285 or magnesium (LOE 4).286; 2 studies reported that the response to magnesium is superior with cibenzoline (LOE 1).285 or magnesium (LOE 1),295,329,330 although 1 meta-analysis showed benefit for magnesium in rate control (LOE 1).295,329,330

Two studies demonstrated conversion effectiveness of vagal maneuvers (carotid massage and Valsalva) (LOE 1).279, LOE 4.290

Treatment Recommendation

Vagal maneuvers, IV adenosine, verapamil, and diltiazem are recommended as first-line treatment strategies in the termination of narrow-complex tachycardias. Nadolol, sotalol, propafenone, and amiodarone may be considered.

Knowledge Gaps

Future studies should consider evaluating the safety of combining antiarrhythmic drugs and the efficacy of second-line therapies (some β-blockers, digoxin, amiodarone) for termination of narrow-complex tachycardia.

Atrial Fibrillation

In adult patients in atrial fibrillation (prehospital and in-hospital), does the use of any drug or combination of drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, reversion rates)?

Consensus on Science

This topic has been comprehensively reviewed by the European Society of Cardiology, the American Heart Association, and the American College of Cardiology.291

Rate Control in Atrial Fibrillation. A systematic review (LOE 1)292 demonstrated superiority for β-blockers (esmolol, metoprolol, and propranolol) with 70% success in meeting target heart rate or verapamil and diltiazem with 54% success293 as first-line therapy for rate control in atrial fibrillation without a known accessory pathway and amiodarone when an accessory pathway was known and amiodarone or digoxin when fast atrial fibrillation occurred with heart failure (LOE 1).292

Four studies showed benefit for diltiazem in controlling rate in hospital (LOE 1 294–296; LOE 2 297), and 1 study for out of hospital (LOE 3).298 Two studies showed that verapamil is equally effective in rate control for atrial fibrillation (LOE 1).329,330 Adverse event rates with calcium channel blockers were reported as 18%.300

Amiodarone may control rate and rhythm (LOE 1),301 but significant complications were described in placebo-controlled trials: the risk of adverse events was 26.8% as a pooled estimate, and the most common side effects encountered were phlebitis, bradycardia, and hypotension (LOE 1).301

Digoxin is not effective for cardioversion (LOE 1),302–304 but in some studies it has been shown to have moderate rate controlling properties (LOE 1).307,303,304

Rhythm Control of Atrial Fibrillation. Ibutilide has consistently been more effective in converting atrial fibrillation to sinus rhythm when compared with placebo (LOE 1),305–307 or other antiarrhythmic drugs (LOE 1: sotalol,308 procainamide,309 and amiodarone,310) and equal to other drugs (LOE 1: flecainide111).

Propafenone has been consistently more effective than placebo in converting AF to sinus rhythm (LOE 1),312–314 but inferior to other drugs (LOE 1: amiodarone,310 procainamide,315 and flecainide316).

There are also data supporting flecainide (LOE 1)317–320 and dofetilide (LOE 1)321,322 for conversion in patients without coronary artery disease.

Data supporting amiodarone for cardioversion are relatively weak (LOE 1)310,323–325; however, amiodarone does have rate-controlling properties (LOE 1).323,326

Sotalol has consistently been shown to be inferior in conversion compared to other drugs (LOE 1: flecainide318 and ibutilide308), but equal to amiodarone in 1 study (LOE 1).325

Most studies showed no conversion benefit for magnesium (LOE 1),327,328 although 1 meta-analysis showed conversion benefit (LOE 1).329 Most studies showed a benefit for magnesium in rate control (LOE 1),329,329,330 although 1 study was neutral for magnesium for rate control (LOE 1).328

Quinidine has been shown to have greater conversion than sotalol in 2 studies (LOE 1),331,332 although this was with greater toxicity. Clonidine has rate-controlling properties compared with placebo (LOE 1).333,334

Procainamide has shown increased efficacy in conversion of AF to sinus rhythm when compared with placebo335 and to propafenone,315 but appears to be as effective as amiodarone.336
Treatment Recommendation
Patients who are hemodynamically unstable with atrial fibrillation should receive prompt electrical cardioversion.

Rate Control in Atrial Fibrillation. Beta-blockers and diltiazem are the drugs of choice for acute rate control in most individuals with atrial fibrillation and rapid ventricular response. Digoxin and amiodarone may also result in cardioversion to normal sinus rhythm. Magnesium and clonidine have rate-controlling effects, though there are fewer data supporting their use.

Rhythm Control of Atrial Fibrillation. Chemical cardioversion can be achieved with ibutilide, dofetilide, and flecainide. Amiodarone can also be used for chemical cardioversion, but it is less effective. Quinidine or procainamide may be useful for cardioversion, but their use is less well established. Propafenone is more effective than placebo but not as effective as amiodarone, procainamide, or flecainide. There is no role for digoxin in chemical cardioversion.

Knowledge Gaps
Future research should address unstable atrial fibrillation and the balance between rate control versus electrical cardioversion versus pharmacological cardioversion. Head-to-head comparisons to find the optimal drug with the best safety profile have not been done.

Wide-Complex Tachycardia
There are 2 options for the treatment of wide-complex tachycardia in the periarrest setting: electrical conversion and chemical conversion. The choice depends on the stability of the patient and the rhythm. In a hemodynamically unstable patient, wide complex tachycardia is best treated with electrical cardioversion.

Monomorphic VT
In adult patients in hemodynamically stable monomorphic ventricular tachycardia (out-of-hospital, in-hospital), does the use of any drug or combination of drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, reversion rates)?

Sotalol
A double-blind study comparing lidocaine with sotalol documented an improved reversion rate over lidocaine (100 mg) when sotalol (100 mg) was given to patients with spontaneous onset hemodynamically stable sustained mVT in the hospital setting (LOE 1).

Amiodarone
The evidence on the effectiveness of amiodarone (150 to 300 mg) in terminating VT is conflicting with reported conversion rates between 20% to 40% based on 1 controlled trial (LOE 1) and 3 case series (LOE 4) in patients with coronary artery disease with a low left ventricular ejection fraction in the hospital setting. The use of amiodarone (300 mg) was associated with side effects (primarily hypotension), but the effect of these on outcome remains unclear.

Lidocaine
Lidocaine was less effective than sotalol (LOE 1), procainamide (LOE 2), and amiodarone (LOE 2) in terminating VT. Three retrospective analyses showed lidocaine was poorly effective when given to patients with or without a history of myocardial infarction with spontaneous sustained stable VT in the hospital setting (LOE 4). One randomized controlled study (LOE 5) and 1 case series (LOE 5) suggested a variable termination of the arrhythmia when lidocaine was injected by paramedics intramuscularly in patients with acute myocardial infarction and VT in the prehospital setting.

Cibenzoline
One case series suggested cibenzoline (70+/−12 mg) may be effective in terminating VT (LOE 4).

Magnesium
One study suggested magnesium was effective in terminating VT (LOE 5).

Adenosine
Adenosine may aid in diagnosing VT, but it will not terminate it (LOE 4).

Calcium Channel Blockers
The evidence for the use of calcium channel blockers in VT is conflicting, with most studies opposing their use (LOE 4), but 1 study supported the use as long as coronary disease was not present (LOE 5).

Nifekalant
Two retrospective control studies (LOE 3), 1 case series (LOE 4), and 1 other study (LOE 5) suggested that nifekalant improved outcome in patients with shock refractory VF/VT, even though it did not seem to be effective in immediately terminating the arrhythmia.
Preventing recurrence and late conversion in refractory ventricular tachyarrhythmias including mVT:

Amiodarone
Two RCTs (LOE 1) comparing amiodarone with lidocaine,540 or bretylium,361 2 double-blind randomized dose-range studies (LOE 4),362,363 and 5 case series (LOE 4)364–368 suggested that amiodarone reduced the number of life-threatening arrhythmias (event rate), required shocks, and episodes of symptomatic sustained VT that occurred in patients with recurrent refractory ventricular arrhythmias in hospital.

β-Blockers
A prospective case series (LOE 4)369 suggested that recurrent and refractory ventricular arrhythmias were reduced while long- and short-term survival were improved in patients treated with sympathetic blockade (including β-blockers) during electrical storm.

Electrical Cardioversion
Electrical cardioversion at an early stage or as first-line treatment was reasonable based on a prospective case series (LOE 4).370 Indirect evidence was also provided by 3 case studies (LOE 4).344,371,372

Treatment Recommendation
Procainamide is recommended for patients with hemodynamically stable monomorphic ventricular tachycardia (mVT) who do not have severe congestive heart failure or acute myocardial infarction. Amiodarone is recommended for patients with hemodynamically stable mVT with or without either severe congestive heart failure or acute myocardial infarction. Nifekalant (not approved for use in all countries) may be useful in improving outcomes in shock refractory VF/VT even though it did not seem to be effective in immediately terminating the arrhythmia.

Sotalol may be considered for patients with hemodynamically sustained mVT, including patients with acute myocardial infarction.

Knowledge Gaps
Overall the evidence for different drugs, in terms of both their efficacy and their side effects, is conflicting, and the evidence supporting the use of drugs such as sotalol and procainamide is limited to just 1 study each. There are no placebo-controlled trials comparing antiarrhythmics, nor are there studies comparing electrical with pharmacological strategy for sustained hemodynamically stable mVT. Future research should define a standard drug therapy to be used as the reference control for scientific advancement in this area.

Undifferentiated Regular Stable Wide-Complex Tachycardia
In adult patients with undifferentiated regular stable wide-complex tachycardia (prehospital and in-hospital), does the use of adenosine or adenosine in combination with other drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, reversion rates)?

Consensus on Science
Five studies involving more than 300 patients (LOE 4)351,352,373–375 demonstrated that adenosine could safely be administered in regular wide-complex tachycardia: it converted wide-complex tachycardia secondary to supraventricular tachycardia to normal sinus rhythm, but rarely terminated VT. One small study showed poor rates of conversion to sinus rhythm in patients known to have VT (LOE 4).344 No patient in these trials had serious adverse events; however, there are case reports in patients with irregular wide-complex tachycardia (generally pre-excited atrial fibrillation) in whom VF was precipitated by adenosine (LOE 4).376–379

Other studies that included lidocaine showed poor rates of conversion to sinus rhythm with lidocaine in patients known to have VT (LOE 4).344 In 1 study, 11 of 25 patients known to have VT and treated with verapamil developed profound hypotension (LOE 4).380

Treatment Recommendation
In undifferentiated regular stable wide-complex tachycardia, IV adenosine may be considered relatively safe, may convert the rhythm to sinus, and may help diagnose the underlying rhythm.

Knowledge Gaps
The science in this area is limited: randomized trials have not been done.

Polymorphic Wide-Complex Tachycardia
In adult patients in polymorphic wide-complex tachycardia (prehospital and in-hospital), does the use of any drug or combination of drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, reversion rates)?

Consensus on Science
Evidence for benefit from these therapies is limited, mainly anecdotal, extrapolated, or from small, observational studies and based on the presumed mechanism for polymorphic wide-complex tachycardia, which may not always be clinically evident. There are 3 subtypes of polymorphic VT:

1. Polymorphic VT with delayed abnormal repolarization, usually known as torsades de pointes (twisting of the QRS complexes around the baseline), with long QT, as well as “pause-dependent” initiating sequence, and coexisting factors associated with delayed repolarization with 2 subtypes:
 a. Congenital long QT with torsades de pointes
 b. Acquired long QT with torsades de pointes
2. Polymorphic VT caused by ischemia, which usually has a short QT; ischemia often present by history,
clinical picture, and ECG findings of ischemia or infarction

3. Polymorphic VT of unknown cause, usually in the context of severe left ventricular dysfunction with or without congestive heart failure or severe structural heart disease

Familial (Congenital) Long QT (Torsades de Pointes)

Recurrences of polymorphic wide-complex tachycardia associated with congenital long QT may be reduced with IV magnesium, based on extrapolation from a small case series of children (LOE 5)\(^{381}\); overdrive pacing (atrial or ventricular); or \(\beta\)-blockers derived from extrapolation from 2 registry case series of secondary prevention in patients with congenital long QT (LOE 5)\(^{382,383}\). There is virtually no published experience regarding the acute use of these therapies in such patients.

Acquired Long QT (Torsades de Pointes)

Recurrences of polymorphic wide-complex tachycardia associated with acquired or drug-precipitated Long QT may be reduced with IV magnesium, based on studies (LOE 2\(^{384}\); LOE 4 \(^{385}\); LOE 5 (pediatrics) \(^{381}\); LOE 5 (animals) \(^{386,387}\); overdrive pacing (atrial or ventricular) based on studies (LOE 4 \(^{385,388–391}\); LOE 5 [extrapolation from secondary prevention in patients with congenital LQTS] \(^{382,383}\); and IV isoproterenol (when not contraindicated by presence of ischemia or hypertension) is supported by 4 studies (LOE 4 \(^{385,388}\); LOE 5 (animal) \(^{387,392}\)) but opposed by 1 study (LOE 4) \(^{389}\).

Preventing Recurrences of Polymorphic Wide-Complex Tachycardia Secondary to Other Mechanisms

The science on the management of polymorphic wide-complex tachycardia caused by short QT syndrome is limited to case reports involving amiodarone, \(\beta\)-blockers, and quinidine (LOE 4) \(^{393,394}\).

Polymorphic wide-complex tachycardia associated with acute myocardial ischemia responded to IV \(\beta\)-blockers in a modestly sized study (LOE 3) \(^{399}\); however, there was no benefit from IV magnesium in a small study (LOE 3) \(^{384}\). A LOE-4 study \(^{395}\) and extrapolation from a small case series suggested that isoproterenol attenuated the ST elevation associated with Brugada syndrome (LOE 5) \(^{396}\). Extrapolation from 1 case series suggested worsened Brugada ST elevation with class IA antiarrhythmics (LOE 5) \(^{396}\).

A pediatric case report (LOE 5) \(^{397}\) and extrapolation from a small case series of secondary prevention using oral \(\beta\)-blockers alone (LOE 5) \(^{398}\) or in combination with verapamil (LOE 5) \(^{399,400}\) suggested IV propranolol successfully terminated catecholamine-induced polymorphic wide-complex tachycardia.

Hemodynamically Unstable Polymorphic VT of Unspecified Morphology and Mechanism

Among patients with impaired ventricular function due to structural heart disease (ischemic, valvular, or cardiomyopathy), in the absence of QT prolongation or drug provocation, treatment of hemodynamically unstable VT with IV amiodarone reduced the frequency of recurrent arrhythmias. This evidence rests on extrapolation from 3 prospective RCTs (LOE 3) \(^{361–363}\) performed in the in-hospital setting but in which VT morphology was not addressed specifically.

Treatment Recommendation

Polymorphic wide-complex tachycardia associated with familial long QT may be treated with IV magnesium, pacing and/or \(\beta\)-blockers; however, isoproterenol should be avoided. Polymorphic wide-complex tachycardia associated with acquired long QT may be treated with IV magnesium. Addition of pacing or IV isoproterenol may be considered when polymorphic wide-complex tachycardia is accompanied by bradycardia or appears to be precipitated by pauses in rhythm. Polymorphic wide-complex tachycardia without long QT may be responsive to IV \(\beta\)-blockers (ischemic VT; catecholaminergic VT) or isoproterenol (Brugada).

Knowledge Gaps

Since the occurrence of these unusual arrhythmogenic mechanisms is rare, randomized clinical trials are unlikely; therefore, future registries may contribute to associations that may guide treatment and advance care.

Bradydysrhythmia ALS-D-022A

In adult patients in significant bradycardia (out-of-hospital and in-hospital), does the use of any drug or combination of drugs, compared with not using drugs (or a standard drug regimen), improve outcomes (eg, reversion rates)?

Consensus on Science

Four case series (LOE 4) demonstrated that in-hospital transcutaneous pacing had slightly higher success rates for rhythm capture \(^{401}\) and survival to discharge (18% to 75%) \(^{402–404}\) compared with survival-to-discharge rates (69%) when transcutaneous pacing was given for out-of-hospital bradycardia (LOE 1) \(^{405}\). A systematic review supported this survival-to-discharge rate of 15% to 70% in the prehospital setting (LOE 3) \(^{406}\).

Few studies have compared drugs with transcutaneous pacing for the treatment of bradycardia. A randomized trial of 45 patients (LOE 1) \(^{407}\) comparing atropine, glycopyrrolate, and transcutaneous pacing in intraoperative patients showed no significant differences in long-term outcomes. Recurrent episodes of bradycardia were less common in the paced group. One feasibility study (LOE 1) \(^{405}\) compared dopamine with transcutaneous pacing in patients with bradycardia refractory to atropine. There were no differences in outcomes of survival to discharge (70% versus 69%). Enrollment was slow in this feasibility trial because most patients got better with full-dose atropine in...
the out-of-hospital setting, making them ineligible for randomization.

One randomized clinical trial (LOE 1)\(^4\) 2 retrospective cohort studies (LOE 4)\(^4\) 2 additional observational studies (LOE 4)\(^4\) documented that IV atropine improved heart rate and symptoms and signs associated with bradycardia. An initial dose of 0.5 to 1 mg, repeated as needed to a total of 1.5 to 3 mg, was effective in both in-hospital and out-of-hospital treatment of symptomatic bradycardia. One study (LOE 4)\(^4\) reported that a ≥0.8 mg dose increased the incidence of tachycardia. One other study in 10 healthy volunteers (LOE 5)\(^4\) indicated that a 3-mg dose of atropine produces the maximum achievable increase in resting heart rate. Two studies indicated that atropine may paradoxically cause high-degree atrioventricular (AV) block in patients after cardiac transplantation (LOE 5)\(^4\); LOE 4)\(^4\). One study (LOE 4)\(^4\) reported that a 3-mg dose of atropine produces the maximum achievable increase in resting heart rate. Two studies indicated that atropine may paradoxically cause high-degree atrioventricular (AV) block in patients after cardiac transplantation (LOE 5)\(^4\); LOE 4)\(^4\).

Second-line drug therapy with dopamine (LOE 1)\(^4\) and epinephrine for undifferentiated hemodynamically unstable bradycardia may be successful; it should be tailored according to potential causes in individual patients. For the treatment of bradycardia unresponsive to atropine after inferior myocardial infarction, cardiac transplant, or spinal cord injury, theophylline may be administered (LOE 2)\(^4\); LOE 4)\(^4\).

Treatment Recommendation
First-line drug treatment for symptomatic bradycardia is atropine 0.5 to 1 mg IV repeated every 3 to 5 minutes as needed up to 1.5 to 3 mg total. If not effective, then consider epinephrine (2 to 10 µg/min) or dopamine (2 to 10 µg/kg/min). Transcutaneous pacing may be considered when full-dose atropine fails, although it may not be any more effective than second-line drug therapy.

Other second-line choices for symptomatic bradycardia should be tailored according to potential causes. After inferior myocardial infarction, cardiac transplant, or spinal cord injury, theophylline 100 to 200 mg slow injection IV (maximum 250 mg) may be given. Atropine should be used with caution in patients with bradycardia after heart transplant as it may cause paradoxical AV block.

Knowledge Gaps
Randomized trials comparing transcutaneous pacing with pharmacotherapy in hemodynamically unstable bradycardia are required to advance the management. Based on the low incidence of bradycardia that is resistant to atropine these trials may not be pragmatic or possible.

Cardiac Arrest in Special Circumstances

Environmental

Cardiac Arrest Caused by Avalanche\(^{ALS-SC-078B}\)
For avalanche victims in out-of-hospital cardiac arrest, what factors when present, compared with when absent, are associated with/predict an increased survival to hospital discharge?

Consensus on Science

Time of Burial and Patent Airway. Four studies (LOE P)\(^3\) demonstrated a progressive nonlinear reduction in survival as time of burial lengthened. In 8 studies (LOE P)\(^3\) victims who were buried beyond 35 minutes did not survive if they had an obstructed airway (defined as obstructed by avalanche debris or by other means) on uncovering the head. One study (LOE P)\(^5\) demonstrated that when breathing in simulated air pockets of different volumes, hypoxia and hypercapnia achieved a steady state after 10 minutes. This finding suggested that long-term survival was possible as long as an air pocket, even as small as 1 L, was present. One study (LOE P)\(^5\) indicated that deflection of expired air away from an air pocket may slow the development of hypoxia and hypercapnia.

Core Temperature. Two relevant LOE P-studies in the general hypothermia literature found that survival decreased with core temperatures less than 32°C and reported the use of extracorporeal rewarming only when core temperatures were less than 32°C. One relevant LOE P-study reported a maximum cooling rate of 8°C/hour in buried victims. An avalanche case report described a maximum cooling rate of 9°C/h (LOE P). Those cooling rates suggested that, at 35 minutes of burial, the core temperature may drop as low as 32°C. Three relevant studies (LOE P)\(^2\) and 4 case series or reports (LOE P)\(^4\) recorded ROSC in 22, and survival to hospital discharge in 7 of those 22, buried avalanche victims in cardiac arrest with a core temperature less than 32°C with aggressive rewarming using extracorporeal circulation.

Serum Potassium. A serum potassium of less than 8 mmol/L on hospital admission was found to be predictive of increased ROSC in avalanche burial victims in 1 study (LOE P)\(^4\) and for increased survival to hospital discharge in 2 studies (LOE P)\(^2\).

Five studies found an inverse correlation between admission potassium concentration and survival to discharge in all-cause hypothermic patients (LOE P)\(^3\) Four studies (LOE P)\(^4\) found that high potassium values were associated with asphyxia in all hypothermic patients. The highest reported serum potassium value in an avalanche survivor was 6.4 mmol/L, although survival to hospital discharge from all-cause hypothermia with a potassium concentration as high as 11.8 mmol/L has been documented.

Treatment Recommendation
Avalanches occur in areas that are difficult for rescuers to access in a timely manner, and burials frequently involve multiple victims. The decision to initiate full resuscitative measures should be determined by the number of victims.
and the resources available, and it should be informed by the likelihood of survival.

Avalanche victims are not likely to survive when they are

- Buried >35 minutes and in cardiac arrest with an obstructed airway on extrication.
- Buried initially and in cardiac arrest with an obstructed airway on extrication, and an initial core temperature of <32°C.
- Buried initially and in cardiac arrest on extrication with an initial serum potassium of >8 mmol/L or more.

Full resuscitative measures, including extracorporeal rewarming, when available, are indicated for all other avalanche victims without evidence of an unsurvivable injury.

Knowledge Gaps

Prospective validation studies of patent airway, core temperature, and serum potassium as prognostic factors among patients in cardiac arrest on extrication and prospective studies on effectiveness of prehospital treatment of nonarrested hypothermic avalanche victims would advance the science of avalanche resuscitation.

Pregnancy

In pregnant women with cardiac arrest (out-of-hospital or in-hospital), do any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science

There are no RCTs evaluating the effect of specialized obstetric resuscitation versus standard care in postarrest pregnant women. Many studies of women not in cardiac arrest document the important physiological changes that occur in pregnancy that may influence treatment recommendations and guidelines for resuscitation of cardiac arrest in pregnancy.

Aortocaval Decompression to Improve Maternal Hemodynamics and Fetal Well-Being. In the nonarrested literature, left lateral tilt improved maternal blood pressure, cardiac output, and stroke volume (LOE 5) and improved fetal parameters of oxygenation, nonstress test, and fetal heart rate. While chest compressions in the left lateral tilt position were shown to be feasible in a manikin study, they have been shown to result in less forceful chest compressions than in the supine position. Two studies found no improvement in maternal hemodynamic or fetal parameters in nonarrested patients with 10 to 20° left lateral tilt. One study found more aortic compression at 15° left lateral tilt when compared to a full left lateral tilt. In addition, aortic compression has been found to persist at over 30° of tilt; however, the majority of these patients were in labor. Two nonarrest studies found that manual left uterine displacement (which is done with the patient supine) was as good as, or better than, left lateral tilt in relieving aortocaval compression, as assessed by the incidence of hypotension and ephedrine use.

Respiratory Considerations. One study documented that the upper airways in the third trimester of pregnancy are smaller (supine mean difference 0.20; 95% confidence interval [CI] 0.06 to 0.35) compared with their postpartum state and to nonpregnant controls (LOE 5). One study found increased intrapulmonary shunting in normal pregnancy at 12.8 to 15.3% compared with the nonpregnant state normal value of 2% to 5% (LOE 5), suggesting a change in the approach to oxygenation demands and in the size of the advanced airway may be physiologically justifiable in maternal cardiac arrest.

Perimortem Caesarean Section. One retrospective cohort study of 55 maternal cardiac arrests evaluated the incidence of perimortem caesarean section after the introduction of a targeted training course and compared it with a historical rate (LOE 4). One systematic review of perimortem caesarean sections documented 38 cases, with 34 surviving infants and 13 maternal survivors at discharge, suggesting that perimortem caesarean section may have improved maternal and neonatal outcomes (LOE 4). At older gestational ages (30 to 38 weeks), infant survival was possible even when delivery was after 5 minutes from the onset of maternal cardiac arrest (LOE 4). One retrospective study concluded that for delivery of infants between 22 to 25 weeks gestational age, neonatal outcome is best at 25 weeks, and there was no infant survival when delivery occurred at 22 weeks (LOE 5).

Changes in Pharmacokinetics. One study documented an increase in glomerular filtration rate, cardiac output, and plasma volume early in the first trimester that starts to return to normal in the end of the third trimester, suggesting that known physiological vascular and fluid changes of pregnancy may respond to fluid resuscitation during maternal cardiac arrest (LOE 5).

Defibrillation. One underpowered case control study reported no difference in transthoracic impedance during pregnancy compared with postpartum, suggesting current energy requirements for adult defibrillation were appropriate (LOE 4).

Positioning. One study indicated that the human wedge technique can provide left lateral tilt and effective external chest compressions in a manikin (LOE 5). However, another study found that the estimation of the degree of table tilt is unreliable and often overestimated, suggesting rescuers are more likely to employ an insufficient amount of tilt to achieve the required hemodynamic benefit (LOE 5). A small study assessed the efficacy of resuscitation at various angles of inclination using a calibrated force transducer (LOE 5). This study found that the maximum possible resuscitative force decreased as the angle of
Therapeutic Hypothermia Postarrest. A single case report suggested that post–cardiac arrest hypothermia was used safely and effectively in early pregnancy with fetal heart monitoring and resulted in favorable maternal and fetal outcome after a term delivery (LOE 4).462

Knowledge Gaps
Research in the area of maternal resuscitation is lacking, and most of the science is extrapolated from nonpregnant women, manikin studies, or case reports. Epidemiological studies are needed to document the incidence of cardiac arrest in pregnancy as there as is a perception that it is increasing because of increased numbers of women with congenital heart conditions who are now having children.

Cardiac Arrest in Morbid Obesity ALS-SC-074A
In morbidly obese adult patients with cardiac arrest (out-of-hospital or in-hospital), does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
Evidence from 2 studies did not find a survival difference associated with obesity following out-of-hospital cardiac arrest (LOE 2).463–465

Treatment Recommendation
There is insufficient evidence to suggest any change to cardiac arrest resuscitation treatment algorithms for obese patients.

Knowledge Gaps
There is a paucity of research in this area, and studies looking at epidemiology, current variations from the standard protocol, and associated outcomes, as well as simple experimental studies, would be helpful.

Cardiac Arrest Caused by Asthma ALS-SC-067B
In adult cardiac arrest due to asthma, does any modification of treatment, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
There are no RCTs that specifically evaluate or compare adjuvant treatment with standard treatment for cardiac arrest in asthmatic patients. Most of the literature comprises case reports and case series.

Evidence from 3 non–cardiac arrest case series involving 35 patients suggests that asthmatic patients are at risk for gas trapping during cardiac arrest, especially if their lungs are ventilated with high tidal volumes and/or rapid rates (LOE 5).466–468 One volunteer adult study demonstrated that increasing PEEP caused increased transthoracic impedance (LOE 5).469

Seven case series involving 37 patients suggested increased ease of ventilation and ROSC with lateral chest compressions at the base of the ribs (LOE 4).470–476 In a single case report, lateral chest compressions were associated with cardiac arrest and poor cardiac output (LOE 4).477 Three single case reports (2 intraoperative and 1 ED) involving cardiac arrest caused by asthma suggested improvement in ease of ventilation and ROSC with thoracotomy and manual lung compression (LOE 4).471,475,476

Treatment Recommendation
There is insufficient evidence to suggest any routine change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by asthma.

Knowledge Gaps
Several key areas for research include: the role of disconnecting from positive pressure ventilation and the ideal duration of this disconnection; the role of lateral external compression and the timing with respect to chest compressions; the comparison of these techniques and their cumulative advantage; and the role of magnesium infusions and ECMO in cardiac arrest caused by asthma.

Cardiac Arrest Caused by Anaphylaxis ALS-SC-066A, ALS-SC-066B
In adult cardiac arrest caused by anaphylaxis, does any modification of treatment, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
There are no RCTs evaluating conventional versus alternative therapies for the treatment of cardiac arrest caused by anaphylaxis. Evidence is limited to case reports, extrapolations from nonfatal cases, interpretation of pathophysiology, and animal studies.

One human study of a randomized venom immunotherapy trial where 19 of 21 patients became symptomatic and
required emergency treatment suggests that carefully titrated continuous infusion of IV epinephrine in addition to volume infusion may be effective for the treatment of anaphylactic shock (not in cardiac arrest) (LOE 5).479 One randomized controlled crossover study of animals pre-shock, but symptomatic with ragweed sensitivity, showed that a continuous IV infusion of 0.01 mg/kg epinephrine maintained a mean arterial pressure at 70% of preshock levels better than no treatment or bolus treatment (LOE 5).479

A small case series of patients with anaphylactic shock with or without cardiac arrest suggested that patients who did not respond to standard therapy may benefit from vasopressin (LOE 4).480,481 A few small case series (LOE 4) have described promising initial findings with α-agonists such as norepinephrine,482 methoxamine,483 terlipressin,484 and metaraminol.485–487 A few small case reports (LOE 4) of cardiac arrest suggest cardiopulmonary bypass488,489 or mechanical support of circulation490 may be helpful in the setting of anaphylaxis.

Several case reports (LOE 4) document the use of a variety of interventions for cardiac arrest caused by anaphylaxis: 6 case reports support high dose α-1 receptor agonists: metaraminol,485,486 methoxamine,483,487 and norepinephrine.482 Other case reports document the use of terlipressin,484 vasopressin,481 steroids and antihistamines,491 and cardiopulmonary bypass.488–489

Treatment Recommendation
There is insufficient evidence to suggest any routine change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by anaphylaxis.

Knowledge Gaps
Future research should consider a comparison between the different IV α-agonists and a comparison of infusion versus bolus doses for cardiac arrest caused by anaphylaxis. The value of secondary therapies such as glucagon, antihistamines, volume infusions, and steroids should be explored.

Drug Overdose and Poisoning
The majority of questions addressing cardiac arrest caused by drug toxicity remain unanswered. Epidemiological studies are required to document the incidence of cardiac arrests caused by drugs, current treatment strategies, and the safety and efficacy of existing treatments. Animal models, controlled clinical trials, and pharmacodynamic studies are needed to advance the treatment of cardiac arrest caused by drugs. Most of the evidence is limited to case reports, extrapolations from nonfatal cases (including severe cardiovascular toxicity cases), and animal studies.

Cardiac Arrest Caused by Local Anesthetic
In adult cardiac arrest (out-of-hospital or in-hospital) caused by local anesthetic toxicity, does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
Local anesthetic toxicity typically occurs in the setting of regional anesthesia, when a bolus of local anesthetic inadvertently enters the arterial or venous system, leading to refractory seizures and/or rapid cardiovascular collapse. There are no RCTs evaluating conventional versus alternative therapies for the treatment of cardiac arrest caused by local anesthetics (lidocaine). Evidence is limited to case reports involving cardiac arrest and severe cardiovascular toxicity and animal studies.

Five single-case reports describe patients in cardiac arrest attributed to local anesthetic intoxication, who were refractory to advanced life support conventional treatment, but who obtained ROSC soon after treatment with IV lipid emulsion (LOE 4).492–496 Five single-case reports (LOE 5) describe patients with acute, life-threatening cardiovascular toxicity from local anesthetic intoxication, but who were not pulseless at the time of lipid administration. In 3 cases497–499 severe cardiovascular toxicity resolved rapidly following IV lipid, but in 2 other cases500,501 the patient’s condition deteriorated to cardiac arrest after IV lipid, although the patients were resuscitated and survived to hospital discharge.

Five controlled animal studies demonstrated that a variety of dosages of IV lipid emulsion were more effective than placebo in models of local anesthetic intoxication with ROSC as the primary outcome (LOE 5).502–506

Two controlled animal studies suggested that, in combination with basic life support (BLS), IV lipid emulsion improved the rate of ROSC when compared with vasopressor therapy (vasopressin and epinephrine) (LOE 5).503,506 Contrasting results were published in 1 controlled animal study that demonstrated a survival advantage with vasopressin and epinephrine over lipid emulsion therapy in a model of asystole induced by low-dose bupivacaine and asphyxia (LOE 5).507 Two controlled animal studies reported no additional benefit from lipid emulsion infusions when combined with high-dose epinephrine 0.1 mg/kg (LOE 5)508 and 0.01 and 0.025 mg/kg (LOE 5).509 Lipid emulsion bolus doses and infusion rates vary across case reports and animal studies. Typical bolus doses were 1 to 3 mL/kg. When infusions were used the typical doses were 0.1 to 0.3 mL/kg/h. A 20% solution of long-chain fatty acid emulsion was used in almost all reports.

Two controlled animal studies showed a survival advantage when cardiac arrest from local anesthetic toxicity was treated with high-dose insulin (1 to 2 U/kg IV bolus) accompanied by glucose and sometimes potassium, compared with basic life support resuscitation alone (LOE 5).510,511 There were no animal studies comparing this intervention with advanced life support resuscitation.

The use of clonidine (150 μg boluses, repeated as needed) to treat cardiac arrest caused by local anesthetic was described in 1 human case report (LOE 4)512 while a second case report (LOE 4)513 was neutral, and a third
Controlled clinical trials are needed to advance the treatment of cardiac arrest caused by benzodiazepine toxicity.

Knowledge Gaps

In adults, there is no RCTs evaluating conventional versus alternative treatment of cardiac arrest caused by \(\beta \)-blockers. Evidence is limited to case reports, extrapolations from nonfatal cases, severe cardiovascular toxicity cases, and animal studies. The wide variety of \(\beta \)-blockers with differing pharmacological and physiochemical profiles makes it difficult to generalize from the limited data available.

In 13 case studies \((n=16)\) of human patients with severe cardiovascular toxicity caused by \(\beta \)-blockers refractory to standard treatment, including vasopressors, the administration of glucagon \((50 \text{ to } 150 \mu\text{g/kg})\) was followed by hemodynamic improvement and survival \((\text{LOE } 5)\).\(^{526,538}\)

In 2 animal studies, high-dose insulin infusions \((1 \text{ U/kg/h})\) given with glucose supplementation and electrolyte monitoring appeared effective \((\text{as measured by rates of improved hemodynamic stability and survival})\) in the setting of cardiovascular toxicity associated with \(\beta \)-blockers \((\text{LOE } 5)\).\(^{530,540}\)

Case reports described the use of phosphodiesterase inhibitors \((\text{LOE } 5)\), calcium salts \((\text{LOE } 4)\), extracorporeal support \((\text{LOE } 5)\), intraaortic balloon pumps \((\text{LOE } 4)\), and ECMO \((\text{LOE } 4)\).\(^{546,547}\) Animal studies supported the use of calcium salts \((\text{LOE } 5)\) and the phosphodiesterase inhibitor amrinone \((\text{LOE } 5)\).\(^{549}\) Animal studies suggested that dopamine \((\text{LOE } 5)\), a combination of dopamine and isoproterenol \((\text{isoprenaline})\) \((\text{LOE } 5)\), and milrinone \((\text{LOE } 5)\) may decrease the effectiveness of glucagon as an antidote for \(\beta \)-blocker toxicity.

Treatment Recommendation

There is insufficient clinical evidence to suggest any change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by \(\beta \)-blockers.

Animal studies and case reports suggest severe cardiovascular toxicity caused by \(\beta \)-blockers may respond to treatment with IV glucagon, high-dose insulin \((\text{with glucose supplementation and electrolyte monitoring})\), or IV calcium salts in addition to conventional treatment.
Knowledge Gaps
Controlled clinical trials are needed to advance the treatment of cardiac arrest caused by β-blockers. While case reports focus on propranolol toxicity, the different properties of other β-blockers may affect the response to the suggested treatment. Other special interest topics include the use of new and emerging therapies, namely IV lipid infusion and high-dose insulin and the safety and effectiveness of glucagon in combination with new therapies.

Calcium Channel Blocker Toxicity
In adult cardiac arrest (out-of-hospital or in-hospital) caused by calcium channel blocker toxicity, does use of any specific intervention, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
There are no RCTs evaluating conventional versus alternative therapies for the treatment of cardiac arrest caused by calcium channel blockers. Evidence is limited to extrapolations from nonfatal case reports of severe cardiovascular toxicity.

In 16 human case series (n=28) high-dose insulin (bolus 0.5 to 2 U/kg followed by 0.5 U/kg/h infusion) given with glucose supplementation and electrolyte monitoring appeared effective (as measured by improved hemodynamic stability and survival) in the setting of severe cardiovascular toxicity associated with calcium channel blockers (LOE 5). There is insufficient clinical evidence to suggest any change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by calcium channel blockers. Case reports suggest severe cardiovascular toxicity caused by calcium channel blockers may respond to treatment with high-dose insulin given with glucose supplementation and electrolyte monitoring in addition to conventional treatment.

Consensus on Science
Three studies suggested that most patients who develop cardiac arrest from carbon monoxide poisoning will not survive to hospital discharge, regardless of whether hyperbaric oxygen therapy is administered following ROSC (LOE 4). Two studies (LOE 5) suggested that neurological outcomes were improved in patients (all severity excluding cardiac arrest); and mild-to-moderate, excluding loss of consciousness and cardiac instability) who received hyperbaric oxygen therapy for carbon monoxide poisoning. However, 2 studies found no difference in neurologically intact survival (LOE 5). Two systematic reviews concluded that improvement in neurologically intact survival following the administration of hyperbaric oxygen to carbon monoxide poisoning patients was possible but unproven (LOE 5). Two studies demonstrated that patients with carbon monoxide toxicity treated with hyperbaric oxygen who developed myocardial infarction have an increased risk of cardiovascular and all-cause mortality lasting at least 7 years after the event (LOE 5).

Treatment Recommendation
Patients who develop cardiac arrest caused by carbon monoxide rarely survive to hospital discharge, even if ROSC is achieved; however, hyperbaric oxygen therapy may be considered in these patients because it may reduce the risk of developing persistent or delayed neurological injury. The risks inherent in transporting critically ill postarrest patients to a hyperbaric facility may be significant; it must be weighed against the possibility of benefit on a case-by-case basis. Patients who develop myocardial injury caused by carbon monoxide have an increased risk of cardiac and all-cause mortality lasting at least 7 years after the event; it is reasonable to recommend cardiology follow-up for these patients.

Knowledge Gaps
The epidemiology of cardiac arrest and severe cardiotoxicity caused by carbon monoxide needs further documentation. More precise estimates of the proportion of patients who survive to hospital discharge and who have full neurological recovery following severe carbon monoxide poisoning treated with various interventions are needed. Though challenging, further prospective treatment studies are important and necessary.

Cocaine Toxicity
In adult cardiac arrest (out-of-hospital or in-hospital) caused by cocaine, does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?
Consensus on Science

Cardiac Arrest (Primary Question). There are no RCTs evaluating conventional versus alternative therapies for the treatment of cardiac arrest caused by cocaine. Evidence is limited to a small case series that demonstrated excellent overall and neurologically intact survival (12/22, 55%) in patients with cocaine-associated cardiac arrest treated with standard therapy (LOE 4).580

Severe Cardiotoxicity Caused by Cocaine (Secondary Question). No studies were found that addressed the treatment of severe cardiotoxicity caused by cocaine; however, human studies have evaluated the treatment of cocaine-associated wide-complex tachycardia and ischemic acute coronary syndrome, as well as coronary artery vasospasm caused by cocaine. Thus the benefit or harm of specific agents in cocaine-associated peri-arrest states (defined as severe hypertension, tachycardia, cocaine-induced arrhythmias) is informed by LOE 5-studies (extrapolation for nonarrest patients and, in some cases, cocaine naïve patients).

α-Blockers. A single study demonstrated reversal of cocaine-induced coronary artery vasospasm in the coronary catheterization laboratory with phentolamine (LOE 5).581

Benzodiazepines. A single study (LOE 5)582 of patients with cocaine-associated chest pain demonstrated improved autonomic findings and resolution of chest pain when treated with diazepam. An additional study reported no additional benefit associated with benzodiazepine administration in patients already receiving nitroglycerin (LOE 5).583

β-Blockers. A retrospective case series of patients hospitalized for acute coronary syndrome associated with cocaine use suggested that there was a decrease in the incidence of death and nonfatal myocardial infarction with the use of β-blockers (LOE 5).584 A prospective clinical trial in cocaine-naïve volunteers suggested that propanolol reduced cocaine-induced tachycardia (LOE 5).585 A prospective clinical trial demonstrated worsening of cocaine-induced coronary artery vasoconstriction following the administration of propanolol to cocaine-naïve research subjects (LOE 5).586 A retrospective case series of 7 ED and hospitalized patients with cocaine-associated cardiovascular toxicity demonstrated no consistent improvement in hypertension or tachycardia following treatment with esmolol (LOE 5).587 Three of 7 patients developed apparent adverse effects (hypertension, hypotension, and CNS depression with vomiting).

β-Blockers With Partial α-Adrenergic Antagonism. In a pair of double-blind, crossover studies (LOE 5) of volunteers with a history of crack cocaine use, pretreatment with oral carvedilol588 or labetolol589 attenuated the cocaine-induced increases in heart rate and blood pressure compared with placebo, without apparent adverse effect. A prospective clinical trial demonstrated no change in cocaine-induced coronary artery vasoconstriction following the administration of labetolol to cocaine-naïve research subjects (LOE 5).590

Calcium Channel Blockers. One study of cocaine-naïve human volunteers demonstrated resolution of cocaine-induced coronary artery vasospasm with verapamil (LOE 5).591

Lidocaine. A retrospective case series of 29 patients who received lidocaine in the setting of cocaine-associated myocardial infarction included 8 patients with wide-complex tachycardia (2 sustained, 6 nonsustained) (LOE 5).592 No patient developed complications and all survived the event.

Morphine. One study of cocaine-naïve human volunteers demonstrated that morphine partially reversed cocaine-induced coronary artery vasospasm (LOE 5).593

Nitroglycerin. In a clinical trial of cocaine-naïve volunteers administration of nitroglycerin reversed cocaine-induced coronary artery vasospasm (LOE 5).594 In a prospective observational study of patients presenting with cocaine-associated acute coronary syndrome, 37/83 (45%) of patients treated with nitroglycerin reported reduction in the severity of chest pain, while 5 patients had other forms of clinical improvement (resolution of ischemia based on ECG, 2; hypertension, 2; or congestive heart failure, 1) (LOE 5).595

Treatment Recommendation

There is insufficient clinical evidence to suggest any change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest or cardiotoxicity caused by cocaine. In patients with severe cardiovascular toxicity (defined as severe hypertension, tachycardia, and/or cocaine-induced arrhythmias) it may be reasonable to try drugs known to be effective in acute coronary syndromes: α-blockers (phentolamine), benzodiazepines (lorazepam, diazepam), calcium channel blockers (verapamil), morphine, and sublingual nitroglycerin. The available data do not support the use of 1 drug over another.

Knowledge Gaps

Controlled clinical trials are needed to advance the treatment of cardiac arrest and cardiotoxicity due to cocaine. Future studies should evaluate the role of sodium bicarbonate and lidocaine and the safety and effectiveness of other antiarrhythmic drugs, such as amiodarone, in the treatment of cocaine-associated VT.

Cyanide ToxicityALS-SC-073-07

In adult cardiac arrest (out-of-hospital or in-hospital) caused by cyanide, does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science

There are no RCTs evaluating conventional versus alternative therapies for the treatment of cardiac arrest caused by cyanide. The use of hydroxocobalamin (alone or with sodium thiosulfate) for cardiac arrest caused by cyanide...
was suggested by 3 LOE 4-studies.596–598 The use of hydroxocobalamin (alone or with sodium thiosulfate) in life-threatening cardiovascular toxicity was supported by 7 studies (LOE 5).596–602 The use of nitrates plus sodium thiosulfate was suggested by 3 studies, none of which enrolled cardiac arrest patients (LOE 5).600,603,604 However, 1 additional study found no benefit to this strategy (LOE 5).605

Treatment Recommendation

Patients with severe cardiotoxicity (cardiac arrest, cardiovascular instability, metabolic acidosis, or altered mental status) caused by known or suspected cyani de poisoning should receive cyanide antidote therapy. In addition to standard resuscitation, initial therapy should include a cyanide scavenger (either IV hydroxocobalamin or a nitrite—ie, IV sodium nitrite and/or inhaled amyl nitrite), followed as soon as possible by IV sodium thiosulfate. Hydroxocobalamin and nitrates are equally effective, but hydroxocobalamin may be safer because it does not cause methemoglobin formation or hypotension.

Knowledge Gaps

Controlled clinical trials are needed to advance the treatment of cardiac arrest and cardiotoxicity caused by cyanide. Comparative studies on antidote therapy and health outcomes including neurological outcomes are required to address the question of which combination of drugs is most effective.

Tricyclic Antidepressant ToxicityALS-SC-073-08B

In adult cardiac arrest (out-of-hospital or in-hospital) caused by tricyclic antidepressants, does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science

There are no RCTs evaluating conventional versus alternative treatments for cardiac arrest caused by tricyclic antidepressant toxicity. Evidence was limited to 1 small case series of cardiac arrest patients; it demonstrated improvement with the use of sodium bicarbonate and epinephrine (LOE 4).606 Notably in that case series the prearrest use of physostigmine was a significant potential confounder.

The evidence for the management of cardiotoxicity caused by tricyclic antidepressant was limited to case reports, case series, and animal studies. The use of sodium bicarbonate has been described in 2 case series (LOE 5).607,608 and 6 animal studies (LOE 5).609–614 The use of hyperventilation was described in 1 small case series (LOE 5).615 and 1 animal study (LOE 5).612 The evidence for the efficacy of specific antidysrhythmics (lidocaine, magnesium, amiodarone, phenytoin) was limited to negative case reports (LOE 5).612,616–622 Specific vasopressors that have been associated with improvement in the treatment of tricyclic-induced hypotension include norepinephrine (LOE 5),618,623–625 epinephrine (LOE 5),611,618,626 dopamine (LOE 5),625,627,628 and dobutamine (LOE 5).627 Diazepam improved seizure control and survival in 1 animal study (LOE 5).627 The use of physostigmine for tricyclic-induced anticholinergic symptoms was not supported by the current literature given the conflicting associations suggested by several case series (LOE 417; LOE 5).608,629,630 Limited animal research demonstrates a benefit for IV lipid infusions in models of tricyclic toxicity (LOE 5).631,632 Anti-cyanide Fab has been beneficial in animal models of varying degrees of tricyclic cardiotoxicity (LOE 5),633–638 and 1 small human study (LOE 5)639 provided evidence of safety and pharmacokinetic advantage; however, clinical benefit has yet to be demonstrated clearly.

Treatment Recommendation

There is insufficient clinical evidence to suggest any change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest or cardiotoxicity caused by tricyclic antidepressants. Because sodium bicarbonate bolus is the mainstay of therapy in the setting of tricyclic-induced cardiac conduction abnormalities, and this treatment strategy should be applied to the postarrest period of care for patients surviving cardiac arrest caused by tricyclic antidepressant toxicity associated with wide QRS complexes. When mechanical ventilation is required, respiratory acidosis should be avoided.

Knowledge Gaps

Controlled clinical trials are needed to advance the treatment of cardiac arrest and cardiotoxicity caused by cyanide. Comparative studies on antidote therapy and health outcomes including neurological outcomes are required to address the question of which combination of drugs is most effective.

Digoxin ToxicityALS-SC-073-09A

In adult cardiac arrest (out-of-hospital or in-hospital) caused by digoxin, does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science

There are no RCTs evaluating conventional versus alternative treatments for cardiac arrest caused by digoxin. Evidence is limited to 14 studies demonstrating the usefulness of antidigoxin Fab fragments for severe cardiac glycoside toxicity (LOE 5).640–653 The use of physostigmine for tricyclic-induced anticholinergic symptoms was not supported by the current literature given the conflicting associations suggested by several case series (LOE 417; LOE 5).608,629,630 Limited animal research demonstrates a benefit for IV lipid infusions in models of tricyclic toxicity (LOE 5).631,632 Anti-cyanide Fab has been beneficial in animal models of varying degrees of tricyclic cardiotoxicity (LOE 5),633–638 and 1 small human study (LOE 5)639 provided evidence of safety and pharmacokinetic advantage; however, clinical benefit has yet to be demonstrated clearly.

Treatment Recommendation

There is insufficient clinical evidence to suggest any change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by digoxin. In adults and children with severe cardiovascular toxicity caused by digoxin and related cardiac glycosides, antidigoxin Fab fragment therapy should be administered.
Knowledge Gaps
Animal models and controlled clinical trials are needed to advance the treatment of cardiac arrest caused by digoxin. Pharmacokinetic and clinical studies would help establish the dosing of antidigoxin Fab fragment for digoxin cardiotoxicity.

Opioid Toxicity
In adult cardiac arrest (prehospital or in-hospital) caused by opioids, does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
There are no RCTs evaluating conventional versus alternative treatments for cardiac arrest caused by opioids. Evidence is limited to studies of mild, moderate, and severe cardiovascular toxicity (LOE 5 for cardiac arrest). Evidence from studies assessing other endpoints (efficacy of naloxone), as well as animal studies, support the use of assisted ventilation before giving naloxone in opioid-poisoned patients with severe cardiopulmonary toxicity (LOE 1, 654, 655; LOE 3, 656; LOE 4, 657–659; LOE 5, 660).

The use and safety of naloxone is supported by human studies (LOE 4, 657–659, 661–664) as well as those assessing other endpoints (alternate routes of administration) (LOE 1554; LOE 3658; LOE 4665, 666). Naloxone can be given intravenously (LOE 4, 657, 658, 662, 665 intramuscularly (LOE 1554; LOE 4657, 658), intranasally (LOE 1554; LOE 4665), and into the trachea (LOE 5, 667).

Treatment Recommendation
There is insufficient clinical evidence to suggest any change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by opioids. In adults with severe cardiovascular toxicity caused by opioids, ventilation should be assisted using a bag-mask, followed by naloxone, and tracheal intubation if there is no response to naloxone. Naloxone should be given intravenously or intramuscularly. Intranasal or tracheal routes may be used if conditions preclude IV or intramuscular administration.

Knowledge Gaps
Animal models and controlled clinical trials are needed to advance the treatment of cardiac arrest caused by opioids. In particular such studies should determine if naloxone has a role in the resuscitation of the cardiac arrest patient prior to ROSC.

Cardiac Arrest During Coronary Catheterization
In adult cardiac arrest during percutaneous coronary intervention, does use of any specific intervention, as opposed to standard care, improve outcome?

Consensus on Science
There are no RCTs evaluating alternative treatment strategies as opposed to standard care for cardiac arrest during percutaneous coronary intervention (PCI). Evidence is limited to case studies for all interventions.

Mechanical CPR During PCI. Three adult human case reports (LOE 4, 668–670) and human case series (LOE 4, 671–673) and 1 animal study (LOE 5)669 reported that the use of a mechanical chest compression device in cardiac arrest during PCI maintained circulation and enabled the procedure to be completed. Although a small proportion of patients in the case series (13/60) survived to hospital discharge, no randomized controlled or comparison study of this intervention has been performed.

Emergency Cardiopulmonary Bypass During PCI. One case study suggested that the use of emergency cardiopulmonary bypass to stabilize and facilitate emergency coronary angioplasty improved the survival of patients who had cardiac arrest during PCI that was unresponsive to advanced life support (LOE 4, 674).

Cough CPR during PCI. Five studies (LOE 4675–677; LOE 5678, 679) supported the use of cough CPR as a temporary intervention to maintain adequate blood pressure and level of consciousness in patients who developed ventricular arrhythmias during PCI676, 677, 679 and PCI675 while definitive therapy for malignant arrhythmias was instituted.

Treatment Recommendation
There are insufficient data to support or refute the use of mechanical chest compression, cough CPR, or emergency cardiopulmonary bypass to improve outcome of cardiac arrest during PCI.

Knowledge Gaps
Clinical trials, perhaps initially with historical controls, are needed to advance the treatment of cardiac arrest during PCI.

Cardiac Arrest After Open or Closed Heart Surgery
In adult cardiac arrest following open (including heart and lung transplantations) and closed heart surgery, does use of any specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
Resternotomy. Eleven studies documented improvement in outcome in patients with cardiac arrest following cardiac surgery who were treated with resternotomy and internal cardiac compression compared with standard protocol, when administered by experienced personnel in ICUs (LOE 2680, 681; LOE 4682–690). Five studies neither supported nor opposed this finding (LOE 4691–694; LOE 5695). One study documented that the risk of infection was not significant after resternotomies conducted appropri-
ately outside of the operating room (LOE 4)689; whereas 3 studies demonstrated very poor outcomes when resternotomy was performed outside an ICU (LOE 2680; LOE 4686; LOE 5695).

Mechanical Circulatory Support. Six studies supported the use of mechanical circulatory support devices during cardiac arrest following cardiac surgery (LOE 3690; LOE 4696–698; LOE 5699,700). Three studies reported equivocal findings (LOE 5).701–703 No studies opposed use of mechanical circulatory support. Mechanical circulatory support devices in these studies included extra-corporeal membrane oxygenation or cardiopulmonary bypass.

Graft Damage by Chest Compressions. Two case reports described damage to the heart caused possibly by external chest compressions before resternotomy (LOE 5).704,705

Epinephrine. One study reported 2 cases that responded to escalating doses of epinephrine (LOE 4).706

Antiarrhythmic Therapy. One study reported 18 cases with VF/VT after cardiac surgery (LOE 4).707

Treatment Recommendation

Resternotomy for patients with cardiac arrest following cardiac surgery should be considered in an appropriately staffed and equipped ICU. Resternotomy performed outside these specialized environments has poor results. Chest compressions should not be withheld while preparing for emergency resternotomy. Mechanical circulatory support may be considered in the setting of cardiac arrest following cardiac surgery. There is insufficient evidence to make any recommendations about epinephrine dose, antiarrhythmic use, or any other intervention separate from those recommended in standard protocols.

Knowledge Gaps

Clinical trials are needed to determine the safety and efficacy of mechanical circulatory support devices, chest compressions, and pharmacological adjuncts for the treatment of cardiac arrest after cardiac surgery.

Cardiac Arrest Caused by Cardiac TamponadeALS-SC-070B

In adult cardiac arrest (out-of-hospital or in-hospital) caused by cardiac tamponade, does use of specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science

Five studies indicate that echocardiographically guided pericardiocentesis is a safe and effective method of relieving tamponade, especially when used in conjunction with a pericardial drain, and it may obviate the need for subsequent treatment in the operating room (LOE 5).708–712

One study documented 39 patients who received prehospital emergency thoracotomy by physicians to treat cardiac arrest from penetrating trauma (LOE 4).713 Eighteen patients had cardiac tamponade and 4 (22%) survived. Two additional studies indicated that ED thoracotomy may be beneficial in patients who have cardiac arrest associated with cardiac tamponade and may yield improved results over standard needle pericardiocentesis (LOE 4).714,715 One study indicated that ED thoracotomy may be especially beneficial if gross blood causes clotting and blocking of a pericardiocentesis needle (LOE 2).716 Two studies indicated that emergency thoracotomy may also be beneficial in patients who have postprocedure complications (LOE 4).692,717 One study indicated that a more definitive sternotomy or thoracotomy in an operating room may also be beneficial if transportation to the operating room does not introduce significant delay (LOE 5).718

Treatment Recommendation

Pericardiocentesis guided by echocardiography should be considered for treatment of cardiac arrest associated with cardiac tamponade while nonimage-guided pericardiocentesis is an acceptable alternative if echocardiography is not available. Placement of a pericardial drain may be beneficial and may obviate the need for subsequent treatment in the operating room. ED thoracotomy and pericardiotomy should be considered as an acceptable alternative to operating room thoracotomy and pericardiotomy for treatment of traumatic cardiac arrest associated with cardiac tamponade, and they can be considered for use in the treatment of nontraumatic cardiac arrest when pericardiocentesis is unsuccessful in relieving cardiac tamponade.

Knowledge Gaps

Clinical trials should include patients with pericardial tamponade secondary to nontraumatic arrest and compare safety and efficacy of needle drainage versus thoracotomy and prehospital versus emergency department versus operating room thoracotomy.

Cardiac Arrest Caused by Pulmonary EmbolusALS-SC-071B

In adult cardiac arrest (out-of-hospital or in-hospital) caused by pulmonary embolus, does use of etiology-specific interventions, as opposed to standard care (according to treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science

One double-blind RCT showed no improvement in survival to discharge with the use of tissue plasminogen activator following cardiac arrest with PEA (LOE 1).244 One RCT of fibrinolytics showed no difference in short- or long-term (30 days) survival or bleeding in patients randomized to receive tenecteplase or placebo during CPR (LOE 1).245 Patients with suspected pulmonary embolism were excluded from the study if open fibrinolysis was
possible in the prehospital setting. Thirty-seven cases with suspected pulmonary embolism were randomized in the trial. Of those, 2 of 15 patients survived when treated with tenecteplase compared with no survivors in the 22 patients of the placebo-treated group.245

One meta-analysis of 8 retrospective cohort studies with a variety of causes of cardiac arrest (pulmonary embolism, 2 studies; myocardial infarctions, 4 studies; cardiology diseases, 1 study; and nontraumatic etiologies, 1 study) demonstrated an increased rate of ROSC, survival to discharge, and long-term neurological function with fibrinolytic, but it also showed an increased risk of severe bleeding (LOE 2).719

Nine studies of patients with presumed pulmonary embolism or all patients with cardiopulmonary arrests showed improvement with fibrinolysis in ROSC and admission to the hospital or ICU, but no improvement in survival to discharge (LOE 1246; LOE 2248,250, LOE 3251; LOE 4724,720–723). Three studies showed good neurological function in those who survived after successful fibrinolysis during CPR (LOE 2719; LOE 3722; LOE 4721).

Treatment Recommendation

Fibrinolytic therapy may be considered when pulmonary embolism is suspected as the cause of the cardiac arrest. Routine use of fibrinolytics in undifferentiated cardiac arrest is addressed earlier in “Fibrinolytics.”

Knowledge Gaps

The true incidence of pulmonary embolus as a cause of cardiac arrest is not well documented. Surveillance studies of cardiac arrest noting contributing factors and pathological reports may help define the impact on public health of this cause of cardiac arrest.

Cardiac Arrest Caused by Electrolyte Disorders

In adult cardiac arrest (out-of-hospital and in-hospital), does the treatment of electrolyte disturbances (eg, hypokalemia, hyperkalemia, hypomagnesemia, hypermagnesemia, hypocalcemia, or hypercalcemia), as opposed to standard care (according to treatment algorithm, but without treatment of electrolyte disturbances), improve outcome (eg, ROSC, survival)?

Consensus on Science

Magnesium. No studies were identified that specifically addressed the treatment of cardiac arrest caused by hypocalcemia or hypercalcemia.

Calcium. No studies were identified that specifically addressed the treatment of cardiac arrest caused by hypocalcemia or hypercalcemia.

Potassium. There are no randomized trials on the treatment of potassium abnormalities in the setting of cardiac arrest. The management of hypokalemia and hyperkalemia in the setting of cardiac arrest is based on case reports and animal studies. One case series of 2 patients reported the resolution of torsades de pointes with potassium replacement in patients with hypokalemia (LOE 4).734 Several clinical studies report an association between hypokalemia and the development of VF (LOE 5),724,735–737 and an animal study reported that hypokalemia lowers the VF threshold (LOE 5).738 In an animal model of cardiac arrest, it was reported that hyperkalemic animals had a higher rate of survival (LOE 5).739

Treatment Recommendation

There are insufficient data to support or refute the routine treatment of electrolyte abnormalities during cardiac arrest resuscitation.

Knowledge Gaps

Epidemiological studies are required to document the incidence of cardiac arrests secondary to electrolyte disturbance. Studies are needed to determine the safety and efficacy of current treatments and electrolyte replacement strategies during cardiac arrest.

Identifying Reversible Causes

Ultrasound During Cardiac Arrest

In adult cardiac arrest (out-of-hospital or in-hospital), does the use of ultrasound (including transthoracic and transesophageal echocardiography) during cardiac arrest, compared with standard CPR, improve any outcomes (eg, ROSC, survival)?

Consensus on Science

No studies examined the impact of ultrasound or echocardiography on patient outcomes in cardiac arrest specifically. Three studies examined the prognostic value of the presence or absence of sonographic cardiac motion in cardiac arrest (LOE 4).184,740,741 One retrospective chart review (LOE 4)742 and 1 prospective comparison (LOE 4)743 documented the diagnostic accuracy of transesophageal ultrasound in detecting the cause of circulatory collapse. One study documented the frequency of pulmonary embolism in PEA arrest as detected with transesophageal ultrasound (LOE 4).744 An additional 2 prospective observational studies examined the use of transthoracic ultrasound by “nonexpert” sonographers to detect pericardial effusion and other causes of PEA (LOE 4745; LOE 5746).

Three prospective studies examined ultrasound determination of cardiac standstill as a predictor of clinical outcomes and ROSC in patients in cardiac arrest (LOE 4),184,740,741 Absence of cardiac motion on sonography
during resuscitation of patients in cardiac arrest was highly predictive of death: of the 341 patients from the 3 studies, 218 had no detectable cardiac activity and only 2 of those had ROSC (no data on survival to hospital discharge).

Treatment Recommendation
There is insufficient evidence to support or refute the routine use of ultrasound or echocardiography to guide cardiac arrest resuscitation.

Knowledge Gaps
Future research should address the role ultrasound (both transesophageal and transtracheal) can perform as a targeted intervention (detection of potential causes, guidance of key procedures) during cardiac arrest resuscitation. With increasing emphasis on uninterrupted chest compressions, there is the potential for harm with the use of transthoracic ultrasound because it often requires interruption of compressions and ventilation to acquire adequate images. This is less of a concern with transesophageal or intracardiac echocardiography.

Postresuscitation Care

Postresuscitation Treatment Protocol

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of comprehensive treatment protocol, as opposed to standard care, improve outcome (e.g., survival)?

Consensus on Science
There are no RCTs addressing the use of comprehensive treatment protocols after sustained ROSC. Before-and-after studies report increase in survival of comatose patients with sustained ROSC after out-of-hospital cardiac arrest with implementation of a comprehensive treatment protocol (LOE 2^747; LOE 3^748,749). Protocols included multiple elements such as hypothermia, glucose control, goal-directed hemodynamic optimization, ventilation, and PCI. The independent effect of each element of the bundle of care could not be established.

Treatment Recommendation
A comprehensive treatment protocol that includes multiple interventions provided in a structured way may improve survival after cardiac arrest.

Knowledge Gaps
Studies are needed to determine whether a comprehensive treatment protocol after cardiac arrest with a sustained ROSC improves short- and long-term outcomes. Future studies should define what interventions other than hypothermia are important inclusions in an effective comprehensive treatment protocol.

Treatment of Precipitating Causes of Cardiac Arrest

Pulmonary Embolism

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital) diagnosed as pulmonary embolism, does the use of early fibrinolytic therapy with or without thrombectomy, as opposed to standard care, improve outcome (e.g., survival)?

Consensus on Science
Despite good theoretical reasons why fibrinolysis following cardiac arrest in patients with suspected pulmonary embolism might be beneficial, there is no direct evidence to that effect. Several studies (LOE 5)251,750 and247,248,751 and a case series (LOE 4)752 showed no significant increase in survival to hospital discharge. There was an increase in bleeding complications following fibrinolysis in most of those studies. One study suggested that the risk of major hemorrhage was further increased in patients who have undergone CPR (LOE 5).247

Five retrospective reviews demonstrated that pulmonary embolectomy following cardiac arrest had a high mortality rate (LOE 4).753–757 One case series reported outcomes of 7 patients who had a cardiac arrest caused by pulmonary embolism and who were treated with percutaneous mechanical thrombectomy (LOE 4)720; 3 patients also received recombinant tissue plasminogen activator. Only 1 of the 7 patients died and pulmonary perfusion was restored in the majority (85.7%).

Treatment Recommendation
In patients with diagnosed or suspected pulmonary embolism after ROSC following cardiac arrest, there is inadequate evidence to recommend for or against the use of fibrinolytic therapy in addition to heparin. Because the mortality with surgical embolectomy for suspected or diagnosed pulmonary embolism is high if it follows cardiac arrest, it should be avoided in patients who have received CPR. There are few data on percutaneous mechanical thromboembolectomy, but it may be beneficial and may be considered in patients sustaining cardiac arrest from a pulmonary embolism who are not candidates for fibrinolytic therapy.

Knowledge Gaps
Clinical studies directly comparing fibrinolysis, standard therapy, and percutaneous mechanical thromboembolectomy in patients with ROSC following cardiac arrest from confirmed or suspected pulmonary embolism are needed to further advance our knowledge on safety and efficacy.

Ventilation

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of a specific ventilation strategy (including specific CO₂ goal), as opposed to standard care, improve outcome (e.g., survival)?
Conclusions on Science
There were limited studies that addressed alternative ventilation strategies after cardiac arrest. A human study (LOE 2)158 and studies in animals (LOE 5)759–762 indicated that hyperventilation reduced cerebral blood flow after cardiac arrest. This cerebral blood flow response to hyperventilation and to hypoventilation may be absent after prolonged cerebral ischemia (LOE 5).763,764 Avoiding hyperventilation, as part of a bundle of care, improved long-term outcome in humans (LOE 3)749 and in dogs (LOE 5),765 but the independent effect of ventilation could not be determined. A single animal study suggested that hyperventilation reduced degenerating neurons (LOE 5).766,767

Use of tidal volumes \(\leq 9\) mL/kg in patients after cardiac arrest is associated with increased incidence of atelectasis (LOE 3).768 Manipulation of tidal volume and PEEP are not associated independently with improved survival in cohorts, including cardiac arrest patients (LOE 2769; LOE 3768).

Treatment Recommendation
After restoration of circulation, routine hyperventilation leading to hypocapnia should be avoided in order to prevent additional cerebral ischemia.

Knowledge Gaps
It is unclear if the changes in cerebral blood flow caused by hypercapnia or hypocapnia are important because there are no studies that relate ventilation strategies to patient-oriented outcomes in patients with sustained ROSC after resuscitation from cardiac arrest.

Controlled OxygenationALS-PA-061A, ALS-PA-061B
In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of a controlled oxygenation strategy (including specific oxygenation goal), as opposed to standard care, improve outcome (eg, survival)?

Conclusions on Science
One neutral randomized prospective clinical trial compared ventilation with 30% oxygen or 100% oxygen for the first 60 minutes after ROSC (LOE 1).770 Mean partial pressure of oxygen in arterial blood (PaO\textsubscript{2}) at 60 minutes after ROSC was 14.6±3.3 kPa (110±25 mm Hg) in the 30% oxygen group and 46.5±23.2 (343±174 mm Hg) in the 100% oxygen group. No statistical difference was detected in serum biomarkers of acute brain injury, survival to hospital discharge, or the percent of patients with good neurological outcome (cerebral performance category of 1 or 2) at hospital discharge. However, this study was not adequately powered to detect important differences in survival and cerebral performance category at hospital discharge (n=14 per group). A significant subset of patients in this study (30%) who were ventilated with 30% oxygen after ROSC required increased FiO\textsubscript{2} to maintain a pulse oximetry reading of \(>95\%\). The study was underpowered to determine efficacy or harm.

One supportive animal cardiac arrest study demonstrated that ventilation with 100% oxygen (generating PaO\textsubscript{2} > 450 mm Hg) during the first 15 to 60 minutes after ROSC caused neurodegeneration and worse-function neurological outcome when compared with FiO\textsubscript{2} titrated to an arterial pulse oximetry reading between 94% and 96% (LOE 5).771

Six supportive animal cardiac arrest studies demonstrated that ventilation with 100% oxygen (generating PaO\textsubscript{2} > 250 to 350 mm Hg) during the first 10 to 60 minutes after ROSC causes increased brain lipid peroxidation, increased metabolic dysfunction (glucose utilization and mitochondrial dysfunction), increased neurodegeneration, and worse-functional neurological outcome when compared to ventilation with room air (LOE 5).153,154,772–775 These studies reported only short-term evaluation of outcomes (\(\leq 24\) hours).

One animal study did not detect any difference in outcomes at 72 hours when animals were ventilated with 100% oxygen or room air during CPR and for the first hour after ROSC (LOE 5).155 Another animal study failed to show any difference in outcome comparing 2 levels of hypoxic FiO\textsubscript{2} (0.085 and 0.12) with normoxic resuscitation when given for the intra- and early (15 minutes) period after ROSC (LOE 5).776 The study did not demonstrate a significant difference in neurological assessment scores at 72 hours or in survival. The study also failed to show a significant difference in the serum biomarkers of oxidant injury.

One supporting animal study reported that a PaO\textsubscript{2} of 250 to 350 mm Hg during the first 10 minutes of cardiopulmonary bypass reperfusion after cardiac arrest resulted in worse cardiac function compared to a PaO\textsubscript{2} of 40 to 90 mm Hg during the same time period (LOE 5).777 A second animal study found no difference in myocardial function or injury when PaO\textsubscript{2} was gradually increased from 40 mm Hg to 110 mm Hg over the first 15 minutes of cardiopulmonary bypass reperfusion after cardiac arrest compared to initiating reperfusion at 90 to 110 mm Hg (LOE 5).778

Treatment Recommendations
There is insufficient clinical evidence to support or refute the use of inspired oxygen concentration titrated to arterial blood oxygen saturation in the early care of cardiac arrest patients following sustained ROSC.

Knowledge Gaps
Prospective randomized controlled clinical trials are needed to compare ventilation with 100% oxygen versus ventilation with inspired oxygen titrated to an arterial blood oxygen saturation goal (possibly 94% to 96%) for the first hour after sustained ROSC. Studies evaluating combined myocardial infarction and cardiac arrest are needed to evaluate the impact of post–cardiac arrest arterial hyperoxemia on cardiovascular outcomes.
Support of the Circulation

Fluid Therapy^{ALS-PA-043A, ALS-PA-043C}

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital) who have cardiovascular dysfunction, does the use of IV fluids, as opposed to standard care (or other IV fluids), improve outcome (eg, survival)?

Consensus on Science

There are no human studies that compare the use of IV fluids after sustained ROSC in patients with cardiovascular dysfunction compared with no IV fluids. One small human study used IV fluid (0.9% saline or lactated Ringer’s) as part of early goal-directed therapy in post–cardiac arrest syndrome and found an improvement in survival that was not statistically significant (LOE 5).⁷⁴⁸ In an additional before-and-after study (LOE 5), IV fluids (0.9% saline, lactated Ringer’s, or colloids) were administered as part of a package of care (including PCI and therapeutic hypothermia) that improved survival with favorable neurological outcome in adult patients with sustained ROSC after cardiac arrest (prehospital or in-hospital).⁷⁴⁹ The intervention period had a significantly increased positive fluid balance (345 mL versus 2300 mL). Six human studies showed that rapid infusion of fluids (500 mL to 3000 mL of 0.9% saline or lactated Ringer’s) to induce therapeutic hypothermia after sustained ROSC produced little evidence of harm (LOE 5).^{779–784} One human study showed that the deterioration in oxygenation that occurs after ROSC was not significantly affected by the infusion of cold 0.9% saline (3427 mL ± 210 mL) (LOE 5).⁷⁸⁵ Three animal studies reported neurological and cardiac protection with the administration of hypertonic fluid compared to normal saline (LOE 5).^{786–788} One animal study showed an increase in cerebral blood flow with fluid for hemodilution combined with induced hypertension (LOE 5).⁷⁸⁹

Treatment Recommendation

There is insufficient evidence to support or refute the routine use of IV fluids following sustained ROSC after cardiac arrest. Rapid infusion of cold 0.9% saline or lactated Ringer’s appears to be well tolerated when used to induce therapeutic hypothermia. Based on the pathophysiology of post–cardiac arrest syndrome, it is reasonable to use IV fluids as part of a package of post–cardiac arrest care.

Knowledge Gaps

Larger studies are needed to assess optimal fluid strategy for hemodynamic optimization in patients with sustained ROSC after adult cardiac arrest.

Hemodynamic Optimization^{ALS-PA-056B}

In adult patients (out-of-hospital and in-hospital) with ROSC after cardiac arrest, does early hemodynamic optimization, as opposed to standard care, improve outcome (eg, survival)?

Consensus on Science

There are no published RCTs addressing early hemodynamic optimization after cardiac arrest. Only 1 study suggested that the introduction of hemodynamic optimization (fluids, inotropic agents, intra-aortic balloon pump, and reperfusion) as part of a bundle of interventions improved outcome in comparison with historical controls (LOE 3).⁷⁴⁰ The independent effect of early hemodynamic optimization was not assessed in this study. A recent study that included early hemodynamic optimization as part of a post–cardiac arrest treatment bundle was not powered to measure a survival benefit (LOE 3).⁷⁴⁸

Treatment Recommendation

Despite limited clinical data, the known pathophysiology of post–cardiac arrest syndrome provides a rationale for titrating hemodynamics to optimize organ perfusion.

Knowledge Gaps

Clinical research is needed to define the optimal targets for hemodynamic optimization and the best strategies to achieve these targets (fluids, vasopressors, inotropes, circulatory support, etc.).

Cardioactive Drugs^{ALS-PA-057A}

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital) who have cardiovascular dysfunction, does the use of any specific cardioactive drugs, as opposed to standard care (or different cardioactive drugs), improve outcome (eg, survival)?

Consensus on Science

There are no clinical trials that have determined or compared the independent effect of vasopressor and/or inotrope use in the post–cardiac arrest period on cardiovascular dysfunction and/or survival to discharge. Four clinical trials have suggested improved survival to discharge with vasopressor or inotropes, but have been confounded by multiple simultaneous treatments and/or they are underpowered for survival (LOE 3)^{748,749,790}; LOE 4⁷⁹¹). Six experimental studies showed improvement in postresuscitation cardiac dysfunction (left ventricular function) with the administration of cardioactive drugs, such as dobutamine or levosimendan, but none have shown that such improvement in function translates into improved survival (LOE 5).^{792–797}

Treatment Recommendation

There is insufficient evidence to support or refute the routine use of vasopressors and/or inotropes for improving survival in adult patients with cardiovascular dysfunction after resuscitation from cardiac arrest.

Knowledge Gaps

Specific clinical research is required to investigate whether treatment of post–cardiac arrest cardiovascular dysfunction with vasopressors and/or inotropes will yield incre-
mental beneficial impact on long-term outcomes beyond those achieved with therapeutic hypothermia alone.

Antiarhythmic Drugs

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of prophylactic antiarrhythmic drugs, as opposed to standard care, improve outcome (eg, survival)?

Consensus on Science

No controlled studies addressed specifically and directly the use of amiodarone, lidocaine, or β-blockers early or immediately after resuscitation from cardiac arrest. One uncontrolled retrospective study did not demonstrate an improvement in 6-month survival when amiodarone or lidocaine was given to patients resuscitated from VF or tachycardia during early (first 72 hours) in-hospital postresuscitation care (LOE 4).798 One single prospective nonrandomized study suggested that recurrent VF was reduced and long- and short-term survival were improved in patients treated with β-blockers during electrical storm (LOE 5).369 One study reported an incidence of approximately 5% for VF or VT in hospitalized post–cardiac arrest patients (LOE 4).799 Five RCTs documented consistently 5% for VF or VT in hospitalized post–cardiac arrest patients (LOE 4).799 Five RCTs documented consistently 5% for VF or VT in hospitalized post–cardiac arrest patients (LOE 4).799 Five studies of nonarrested patients in cardiogenic shock or severe heart failure showed that left ventricular assist device or continuous aortic flow augmentation improved hemodynamics but not survival (LOE 5).805–809 Two case series reported the use of the intraaortic balloon pump in patients with severe myocardial dysfunction after sustained ROSC, but the effect was impossible to isolate from other interventions (LOE 4).749,810

Treatment Recommendation

There is insufficient evidence to support or refute the use of mechanical circulatory support in post–cardiac arrest patients who have cardiovascular dysfunction.

Knowledge Gaps

RCTs are needed to explore different techniques for mechanical support in patients with severe cardiovascular dysfunction after sustained ROSC.

Temperature Control

Prevention and Treatment of Hyperthermia

In adult patients (out-of-hospital or in-hospital) who are comatose after cardiac arrest, does treatment of pyrexia, compared with no temperature intervention, improve outcome (eg, survival)?

Consensus on Science

There are no RCTs evaluating the effect of treatment of pyrexia (defined as ≥37.6°C) compared with no temperature control in patients after cardiac arrest. Eleven studies suggested that there was an association between pyrexia and poor outcomes (LOE 4811–815; LOE 5816–821). For comparison, patients with cerebrovascular events who developed pyrexia had worsened short- and long-term outcomes (LOE 5816–821).

Treatment Recommendation

Patients who develop hyperthermia after cardiac arrest have a worse prognosis. Despite the lack of evidence, it is reasonable to treat hyperthermia if it occurs in the postresuscitation period.

Knowledge Gaps

Clinical trials are needed to determine whether the management of pyrexia after cardiac arrest improves outcomes and what strategy of care produces effective control in this patient population.
Therapeutic Hypothermia

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does therapeutic hypothermia, compared with usual care, improve morbidity or mortality?

Consensus on Science

Who to Cool? All studies of post–cardiac arrest therapeutic hypothermia have included only patients in coma. One trial defined coma as “not responding to verbal commands” (LOE 1).822 The other trials defined coma similarly, used the Glasgow Coma Score (GCS) ≤8, or did not provide a clear definition.

One randomized trial (LOE 1)822 and a pseudorandomized trial (LOE 2)823 demonstrated improved neurological outcome at hospital discharge or at 6 months after hospital discharge in comatose patients after out-of-hospital VF cardiac arrest. Cooling was initiated within minutes to hours after ROSC, and a temperature range of 32 to 34°C was maintained for 12 to 24 hours. Two studies with historical control groups (LOE 3) showed improvement in neurological outcome after therapeutic hypothermia for comatose survivors of VF cardiac arrest.824,825 One systematic review demonstrated that conventional cooling methods were more likely to reach a best cerebral performance category score of 1 or 2 (5-point scale where 1 is good and 5 is brain death) with a relative risk of 1.55 (99.5% CI 1.22 to 1.96) and more likely to survive to hospital discharge (relative risk of 1.35 95% CI 1.1 to 1.65) compared with standard postresuscitation care (LOE 1).826

One small (n = 30) randomized trial showed reduced plasma lactate values and oxygen extraction ratios in a group (n = 16) of comatose survivors after cardiac arrest with asystole or PEA who were cooled with a cooling cap (LOE 1).827 Six studies with historical control groups showed benefit using therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest after all-rhythm arrests (LOE 3).749,826–832 One study with historical controls showed better neurological outcome after VF cardiac arrest but no difference after cardiac arrest from other rhythms (LOE 3).833

Two nonrandomized studies with concurrent controls indicated possible benefit of hypothermia following cardiac arrest from other initial rhythms in- and out-of-hospital (LOE 2).834,835 One registry study, which included almost 1000 cooled comatose patients following cardiac arrest from all rhythms, showed that survival with good outcome at 6 months was 56% after initial VT/VF, 21% after initial asystole, and 23% after initial PEA (LOE 4).836

How to Cool? (See also Implementing Therapeutic Hypothermia in Section 12.) Nineteen studies indicated that cooling could be initiated safely with IV ice-cold fluids (30 mL/kg of saline 0.9% or Ringer’s lactate) (LOE 3748,749,825,831,833,837; LOE 4779,780,782–785,810,836,838–843). Six studies indicated that cooling with IV cold saline can be initiated in the prehospital phase (LOE 1811,844; LOE 2845; LOE 3261,846). Thirteen studies documented the use of an intravascular heat exchanger to induce and maintain hypothermia (LOE 3834,835; LOE 3748,749; LOE 4782,839,841,847–852). Twelve studies documented the use of ice packs and either water- or air-circulating blankets to induce and maintain hypothermia (LOE 2834; LOE 3749,825,829,832,833; LOE 4748,841,850,853–855). Seven studies documented the use of ice packs (sometimes combined with wet towels) alone to induce and maintain hypothermia (LOE 2823; LOE 3824,828,830; LOE 4847,849,856). Four studies documented the use of ice packs alone to maintain hypothermia (LOE 3837; LOE 4810,840,843). Seven studies documented the use of cooling blankets or pads alone to induce and maintain hypothermia (LOE 2857; LOE 3858; LOE 4841,859–862). Eight studies documented the use of water-circulating, gel-coated pads to induce and maintain, or just maintain, hypothermia (LOE 3749,831; LOE 4838,841,842,854,860,863). One RCT (LOE 1) used a cold-air tent822 and another used a cooling helmet827 to induce and maintain hypothermia. In 1 registry study, cooling was maintained with ice packs (17%), air cooling (8%), circulating water blankets (63%), an intravascular cooling device (16%), and other methods (8%) (LOE 4).836

When to Cool? One registry-based case series of 986 comatose post–cardiac arrest patients suggested that time to initiation of cooling (median 90 minutes; interquartile range [IQR] 60 to 165 minutes) was not associated with improved neurological outcome postdischarge (LOE 4).836 A case series of 49 consecutive comatose post–cardiac arrest patients who were intravasally cooled after out-of-hospital cardiac arrest also documented that time to target temperature (median 6.8 hours; [IQR 4.5 to 9.2 hours]) was not an independent predictor of neurological outcome (LOE 4).832

Safe with Percutaneous Coronary Intervention? Five studies indicated that the combination of therapeutic hypothermia and PCI is feasible and safe after cardiac arrest caused by acute myocardial infarction (LOE 3749,837,864; LOE 4810,836).

Treatment Recommendation

Comatose adult patients (not responding in a meaningful way to verbal commands) with spontaneous circulation after out-of-hospital VF cardiac arrest should be cooled to 32 to 34°C for 12 to 24 hours. Induced hypothermia might also benefit comatose adult patients with spontaneous circulation after out-of-hospital cardiac arrest from a nonshockable rhythm, or cardiac arrest in hospital. Rapid infusion of ice-cold IV fluid 30 mL/kg or ice packs are feasible, safe, and simple methods for initially lowering core temperature up to 1.5°C. When IV fluids are used to induce hypothermia, additional cooling strategies will be required to maintain hypothermia. Limited available evidence suggests that PCI during therapeutic hypothermia is feasible and safe and may be associated with improved outcome.

Knowledge Gaps

Although the data support cooling to 32°C to 34°C, the optimal temperature has not been determined. Furthermore the optimal method, onset, duration and rewarming rate, and therapeutic window remain unknown. Further investigation is also needed to determine the benefit of post–cardiac arrest therapeutic hypothermia after nonshockable cardiac arrest, in-hospital cardiac arrest, and in children. Epidemiological and safety data would help describe the safety and adversity.
when cooling is interrupted across the system of care. Clinical and cost comparisons are required of the methods used for inducing and maintaining therapeutic hypothermia in- and out-of-hospital. The safety and efficacy of therapeutic hypothermia during cardiac arrest resuscitation needs to be explored through controlled clinical trials.

Seizure Control

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of seizure prophylaxis or effective seizure control, as opposed to standard care (no prophylaxis or ineffective seizure control), improve outcome (eg, survival)?

Consensus on Science

No controlled clinical trials directly addressed prophylactic treatment for seizures after cardiac arrest. Five studies documented a 3% to 44% incidence of seizures after sustained ROSC (LOE 4). Two studies reported no difference in neurological outcome after use of single-dose diazepam or magnesium or both; or thiopental given after sustained ROSC (LOE 5). There are no studies addressing prompt and aggressive treatment after the first seizure occurring after circulation was restored. Seizures in the postarrest period may be refractory to multiple medications (LOE 4). There was no reported difference in the occurrence of seizures after sustained ROSC in patients treated with therapeutic hypothermia or with normothermia care (LOE 5).

Treatment Recommendation

There are insufficient data to support or refute the use of specific antiseizure medication in the prevention or treatment of seizures after ROSC.

Knowledge Gaps

Studies need to determine the true incidence of clinical and electrographic seizures in patients after cardiac arrest, particularly in those treated with therapeutic hypothermia.

Clinical trials are required to assess interventions and drugs for the prevention and treatment of seizures. Studies should evaluate whether continuous electroencephalograph (EEG) monitoring to diagnose and treat seizures after cardiac arrest is feasible, interpretable, of prognostic value, and beneficial for patients.

Other Supportive Therapies

Blood Glucose Control

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of a specific strategy to manage blood glucose (eg, target range), as opposed to standard care, improve outcome (eg, survival)?

Consensus on Science

One human randomized interventional study that prospectively evaluated strict glucose control (72 to 108 mg/dL, 4 to 6 mmol/L) compared with moderate glucose control (108 to 144 mg/dL, 6 to 8 mmol/L) in patients resuscitated from prehospital cardiac arrest with VF found no survival benefit with strict glucose control (LOE 1). Five retrospective studies in post–cardiac arrest patients suggested an association of higher glucose levels with increased mortality and worse neurological outcomes, but those findings may be related to other factors (LOE 4). Based on those studies, the suggested target ranges for glucose values have been variable. A good randomized trial of intensive glucose control versus conventional glucose control in the largest number of ICU patients to date reported increased mortality in patients treated with intensive glucose control (LOE 5). Two meta-analyses of studies of tight glucose control versus conventional glucose control in critically ill patients showed no significant difference in mortality but found tight glucose control was associated with a significantly increased risk of hypoglycemia (LOE 5).

Treatment Recommendation

Strategies to treat hyperglycemia >180 mg/dL (>10 mmol/L) should be considered in adult patients with sustained ROSC after cardiac arrest. Hypoglycemia should be avoided.

Knowledge Gaps

Adequately powered intervention trials of moderate ranges of glucose control in patients who survive cardiac arrest are required.

Steroid Therapy

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does treatment with corticosteroids, as opposed to standard care, improve outcome (eg, survival)?

Consensus on Science

Two observational studies (LOE 2) and 2 animal studies (LOE 5) failed to demonstrate any benefit or harm from the use of steroids after successful resuscitation from cardiac arrest. One small, single-center randomized placebo-controlled trial showed benefit from the use of a package of care consisting of vasopressin and dexamethasone in addition to epinephrine during resuscitation, combined with the treatment of post–cardiac arrest shock with hydrocortisone in the study group (LOE 1). The complex design of this study makes it impossible to determine the independent effect of any interventions on outcome.

Treatment Recommendation

There is insufficient evidence to support or refute the use of corticosteroids for patients with ROSC following cardiac arrest.

Knowledge Gaps

It is important to determine the incidence of adrenal insufficiency after sustained ROSC following cardiac arrest. Clinical trials are needed to determine the effect of exogenous steroids administered after cardiac arrest.
HemofiltrationALS-PA-054A

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of hemofiltration as opposed to standard care, improve outcome (eg, survival)?

Consensus on Science

One RCT demonstrated no difference in survival or neurological outcome between groups treated with high-volume hemofiltration (200 mL/kg/h for 8 hours) with or without mild hypothermia, and control group without hemofiltration (LOE 1). The combined hemofiltration-only and hemofiltration-plus-hypothermia groups had increased survival at 6 months after cardiac arrest when compared to controls. One study suggested improved survival and neurological outcome in patients treated with high-volume hemofiltration after resuscitation from cardiac arrest (LOE 2).

Knowledge Gaps

Prospective, double-blind RCTs of promising neuroprotective agents alone, in combination, or in combination with therapeutic hypothermia are encouraged.

Specific research and larger clinical trials are required on the use of coenzyme Q10 in patients with therapeutic hypothermia of 33°C on neurologically intact survival.

Prognostication

End-Tidal CO2 and Prediction of OutcomeALS-D&P-014A

In adult cardiac arrest (out-of-hospital or in-hospital), does the use of end-tidal CO2 (eg, absolute CO2 values or changes in waveform), compared with not using end-tidal CO2, accurately predict outcomes (eg, ROSC, survival)?

Consensus on Science

Thirteen studies (LOE P2 176–178, 182, 183, 886, 887; LOE P3 888–891) indicated that higher maximal end-tidal CO2 levels can predict ROSC. Seven studies demonstrate that end-tidal CO2 values <10 mm Hg (1.33 kPa) obtained after intubation and during CPR efforts are associated with a low probability of survival from cardiac arrest (LOE P2). Two prospective human studies demonstrated a significant increase in end-tidal CO2 when ROSC occurs (LOE 5).

Treatment Recommendation

Quantitative measurement of end tidal CO2 may be a safe and effective noninvasive indicator of cardiac output during CPR and may be an early indicator of ROSC in intubated patients. Although low values of end tidal CO2 are associated with a low probability of survival, there are insufficient data to support or refute a specific cutoff of end tidal CO2 at different time intervals as a prognostic indicator of outcome during adult cardiac arrest.

Knowledge Gaps

More well-designed prognostic studies of end tidal CO2 monitoring designed to measure long-term morbidity, mortality, and neurological survivability are recommended.

In future studies the cause of cardiac arrest should be documented. Use of vasopressors and ventilation rates may lower end-tidal CO2; and this effect should be controlled in future studies. Evaluation of end-tidal CO2 for prognosis should be repeated with supraglottic airway devices.

Prognostication After Resuscitation

Clinical ExaminationALS-PA-041

In adult and pediatric patients who are comatose after cardiac arrest (out-of-hospital or in-hospital), does the use of neuroprotective drugs (thiopental, glucocorticoids, nimodipine, lidoflazine, or diazepam) alone or as an adjunct to therapeutic hypothermia in comatose cardiac arrest after ROSC.

Knowledge Gaps

Randomized clinical trials are needed comparing hemofiltration to a control group that has similar management of temperature and other confounding protocols of care. It is unknown whether hemofiltration will have different effects in different subgroups of patients.

Neuroprotective TherapyALS-PA-055A, ALS-PA-055C

In adult patients with ROSC after cardiac arrest (out-of-hospital or in-hospital), does the use of neuroprotective drugs, as opposed to standard care, improve outcome (eg, survival)?

Consensus on Science

One small pilot study in witnessed, out-of-hospital cardiac arrests of presumed cardiac etiology showed improved survival at 3 months when therapeutic hypothermia (35°C) was followed by 150 mg TID for 5 days) was compared with therapeutic hypothermia alone; however, there was no difference in neurologically intact survival (LOE 1).

Four RCTs (LOE 1) using nimodipine, lidoflazine, or diazepam in out-of-hospital cardiac arrest showed no benefits from any of the drugs when compared with standard care. Two RCTs (LOE 1) using thiopental or nimodipine in out-of-hospital cardiac arrest were unable to show any benefits when compared with standard care. A retrospective analysis using glucocorticoids in intubated patients. Although low values of end tidal CO2 are associated with a low probability of survival in intubated patients, there are insufficient data to support or refute a specific cutoff of end tidal CO2 at different time intervals as a prognostic indicator of outcome during adult cardiac arrest.

Treatment Recommendation

The value of routine use of coenzyme Q10 in patients treated with hypothermia is not certain. There are insufficient data to recommend for or against the use of neuroprotective drugs alone, in combination, or in combination with therapeutic hypothermia in comatose cardiac arrest after ROSC.

Knowledge Gaps

Evaluation of end-tidal CO2 for prognosis should be repeated with supraglottic airway devices.
of the bedside neurological examination, as opposed to standard care, allow accurate prediction of outcome (eg, survival)?

Consensus on Science
In adult patients comatose after cardiac arrest who had not been treated with therapeutic hypothermia, the following parameters predicted poor outcome (CPC 3 or 4, or death) with a false-positive rate (FPR) of 0%: absent vestibulo-ocular reflexes at ≥24 hours ([95% CI 0% to 14%]) (LOE P1)923,893; absence of pupillary light and corneal reflex at 72 hours ([95% CI 0% to 9%]) (LOE P1)993; GCS <5 at 48 hours (95% CI 0% to 13%) (LOE P1)895 and on day 3 (95% CI 0% to 6%) (LOE P2)896 and a clinical examination score <15 on day 4 ([95% CI 0% to 18%]) (LOE P1).897 However, in 1 study an absent motor response (GCS motor=1) at 72 hours after cardiac arrest predicted poor outcome with a FPR of 5% ([95% CI 2% to 9%]) (LOE P1).894 The presence of myoclonus status in adults was strongly associated with poor outcome (LOE P1)866,894; LOE P3868,898; LOE P4499), but rare cases of good neurological recovery have been described and accurate diagnosis was problematic.900–904

Treatment Recommendation
There are no clinical neurologic signs that reliably predict poor outcome <24 hours after cardiac arrest. In adult patients who are comatose after cardiac arrest, have not been treated with hypothermia and have no confounding factors (eg, hypotension, sedatives or neuromuscular blockers), the absence of both pupillary light and corneal reflex at ≥72 hours reliably predicts poor outcome. Absence of vestibulo-ocular reflexes at ≥24 hours and a GCS motor score of 2 or less at ≥72 hours are less reliable. Other clinical signs, including myoclonus, are not recommended for predicting poor outcome.

Knowledge Gaps
The reevaluation of prognostic indicators during therapeutic hypothermia and in the presence of other confounders needs to be completed to guide current post– cardiac arrest care.

Biochemical Markers
In adult patients who are comatose after cardiac arrest (out-of-hospital or in-hospital), does the use of biochemical markers, as opposed to standard care, allow accurate prediction of outcome (eg, survival)?

Consensus on Science
Serum neuronal-specific enolase (NSE) elevations are associated with poor outcome for comatose patients after cardiac arrest (LOE P1905,906; LOE P2894,897,907,913,915,917,918,923–928; LOE P3921). Many other serum markers measured after sustained ROSC have been associated with poor outcome after cardiac arrest, including brain natriuretic peptide (BNP) (LOE P3)929; vWF (LOE P3)930; ICAM-1 (LOE P3)930, procalcitonin (LOE P2)924; IL-1ra, RANTES, sTNFRII, IL-6, IL-8 and IL-10 (LOE P3).931 However, other studies found no relationship between outcome and serum IL-8 (LOE P1),923 and procalcitonin and sTREM-1 (LOE P3).932

Worse outcomes for comatose survivors of cardiac arrest are also associated with increased levels of cerebrospinal fluid (CSF)-CK (LOE P2)933 and cerebrospinal fluid-CKBB (LOE P1905,906; LOE P2908,919,934,935; LOE P3936–938). However, 1 study found no relationship between cerebrospinal fluid-CKBB and prognosis (LOE P2).939

Outcomes are also associated with increased cerebrospinal fluid levels of other markers including NSE (LOE P1906; LOE P2915,919); S100 (LOE P2)915; LDH, GOT (LOE P2)908,934; neurofilament (LOE P3)940; and acid phosphatase and lactate (LOE P2).934 Cerebrospinal fluid levels of β-d-N-acetylglucoamidase and pyruvate were not associated with the prognosis of cardiac arrest (LOE P2).934

Treatment Recommendation
Evidence does not support the use of serum or cerebrospinal fluid biomarkers alone as predictors of poor outcomes in comatose patients after cardiac arrest with or without treatment with therapeutic hypothermia. Limitations included small numbers of patients and/or inconsistency in cutoff values for predicting poor outcome.

Knowledge Gaps
Future studies should identify and resolve the heterogeneity of cutoff values used to predict poor outcome with a FPR of zero. Studies also must account for confounders that may alter levels or predictive performance of various markers (eg, hypothermia, underlying disease, pregnancy, intra-aortic balloon pump, brain instrumentation, hemodialysis, or other organ failure). Studies examining whether biomarkers can be used to monitor ongoing injury and response to therapy may be useful.

Electrophysiological Studies
In adult patients who are comatose after cardiac arrest (out-of-hospital or in-hospital), does the use of neurological electrophysiological studies, as opposed to standard care, allow accurate prediction of outcome (eg, survival)?

Consensus on Science
Somatosensory evoked potentials measured between 4 hours and 2 weeks after cardiac arrest were associated with poor outcome in 14 studies (LOE P1903,904,905,904–946; LOE P2907, LOE P3936,947–949). In a meta-analysis of patients not treated with therapeutic hypothermia, the absence of cortical N20 response to median nerve stimulation at 24 to 72 hours after
cardiac arrest predicted poor outcome (CPC 3 or 4, or death) with a FPR of 0.7% (95% CI 0.1 to 3.7) (LOE P1).905

Abnormal Brain Stem Auditory Evoked Potentials. Abnormal brain stem auditory evoked potentials recorded 1 to 56 days after cardiac arrest in patients not treated with hypothermia predicted poor outcome with a FPR of 0% (95% CI 0 to 14) in 1 LOE P1-study.942 Abnormal brainstem auditory evoked potentials recorded 55 to 235 minutes after cardiac arrest before initiation of therapeutic hypothermia predicted poor outcome with a FPR of 0% (95% CI 0 to 32) (LOE P1).950 One study found no predictive value with brainstem auditory evoked potentials (LOE P1).946 In patients not treated with therapeutic hypothermia, medium-latency auditory evoked potentials predicted poor outcome after cardiac arrest in 1 LOE P1-study with a FPR of 0% (95% CI 0 to 14)942 and in 1 LOE P3-study.948 Auditory N100 and mismatch negativity potentials predicted poor outcome after cardiac arrest in 1 study.942 Abnormal brainstem auditory evoked potentials predicted poor outcome after cardiac arrest in 12 studies (LOE P1893,894,905,941,951–953; LOE P3954,955; LOE P4956,957; LOE P5958). In a meta-analysis, EEG showing a burst-suppression pattern associated with generalized epileptic activity, or diffuse periodic complexes on a flat background 12 to 72 hours after sustained ROSC predicted a poor outcome (FPR of 3%, 95% CI 0.9% to 11%) in patients not receiving therapeutic hypothermia (LOE P1).905

Electroencephalography predicted poor outcome in comatose survivors of cardiac arrest within 1 week after cardiac arrest in 12 studies (LOE P1893,894,905,941,951–953; LOE P3954,955; LOE P4956,957; LOE P5958). In a meta-analysis, EEG showing generalized suppression to less than 20μV, burst-suppression pattern associated with generalized epileptic activity, or diffuse periodic complexes on a flat background 12 to 72 hours after sustained ROSC predicted a poor outcome (FPR of 3%, 95% CI 0.9% to 11%) in patients not receiving therapeutic hypothermia (LOE P1).905

Treatment Recommendation
No electrophysiological study reliably predicts outcome of comatose patient after cardiac arrest in the first 24 hours treated without therapeutic hypothermia. After 24 hours, bilateral absence of the N20 cortical response to median nerve stimulation predicts poor outcome in comatose cardiac arrest survivors not treated with therapeutic hypothermia. In the absence of confounding circumstances, such as sedatives, hypotension, hypoxemia, or hypoxemia, it is reasonable to use unprocessed electroencephalography interpretation (specifically identifying generalized suppression to less than 20μV, burst suppression pattern with generalized epileptic activity, or diffuse periodic complexes on a flat background) observed between 24 and 72 hours after sustained ROSC to assist the prediction of a poor outcome in comatose survivors of cardiac arrest not treated with hypothermia.

Knowledge Gaps
More data are needed about the performance and timing of somatosensory evoked potentials and electroencephalography criteria for aiding prognostication in patients treated with induced hypothermia.

Imaging Studies

In adult patients who are comatose after cardiac arrest (out-of-hospital or in-hospital), does the use of imaging studies, as opposed to standard care, allow accurate prediction of outcome (eg, survival)?

Consensus on Science

Magnetic Resonance Imaging. There are no LOE P1- or LOE P2-studies that support the use of magnetic resonance imaging (MRI) to predict outcome of comatose cardiac arrest survivors. Use of MRI to predict outcome is supported by 32 studies (LOE P3959–963; LOE P4964–976; LOE P5977–990). The timing of MRI in these studies ranged from 1 day to 10 months after sustained ROSC. MRI parameters associated with poor outcome included lower gray matter volume, lower hippocampal volume, global cerebral atrophy, higher number of neuroradiologic findings, extensive abnormalities on digital weight imaging, increased lactate on magnetic resonance spectroscopy, hypertense lesions in basal ganglia, extensive digital weight imaging abnormalities, global apparent diffusion coefficient depression, extensive white matter abnormalities, and cortical laminar enhancement. Overall these studies were limited by small sample sizes, variable time of imaging (many very late in the course of the event), lack of comparison with a standardized method of prognostication, often nonmodern MRI techniques, and early withdrawal of care. One study found that MRI performed on comatose cardiac arrest survivors 1 to 47 days after sustained ROSC did not correlate with outcome (LOE P2).991 MRI parameters used in this study were leukoaraiosis, cerebral infarcts, and edema. Modern MRI techniques (ie, diffusion-weighted imaging) were not used in this study.

Computed Tomography. There are no LOE P1- or LOE P2-studies that support the use of computed tomography (CT) imaging to predict outcome of comatose cardiac arrest survivors. Use of CT imaging is supported by 22 studies (LOE P3992; LOE P4969,984,993–1001; LOE P5980,981,985,1002–1006). The timing of CT in those studies ranged from 1 hour to 20 days after sustained ROSC. CT parameters associated with poor outcome included gray matter to white matter Hounsfield unit ratio <1.22, cerebral atrophy (chronic), low cerebral blood flow, low acetazolamide reactivity, bicaudate ratio, low Hounsfield number in putamen and cortex, low density in basal ganglia and thalamus, diffuse mass effect, and global cortical gray matter density. Overall those studies were limited by small sample sizes, variable time of imaging (many very late in the course of the event), lack of comparison with a standardized method of prognostication, and early withdrawal of care. Two LOE P3-studies found that CT did not predict outcome,954,1007 and 1 LOE P4-study was neutral in its findings.1008 The timing of CT in those studies ranged from <72 hours to 96 hours after ROSC. CT parameters not associated with poor outcome included normal scans. Overall these studies were limited by small sample sizes, imaging performed too early in the clinical course, nonmodern CT imaging, and early withdrawal of care.

Single photon emission CT (SPECT) is supported by 3 LOE P5-studies990,1006,1009 and is opposed by 1 LOE P2-study.1010 The timing of SPECT in these studies ranged from 1 to 23 days after sustained ROSC. SPECT parameters associated with poor outcome included diminished cerebral blood flow, particularly frontal and temporal, particularly when persistent on repeated imaging. SPECT parameters not associated with outcome included the anterior-posterior perfusion ratio. These studies were
limited by small sample sizes, variable imaging times, early withdrawal of care, and lack of comparison with a standardized method of prognostication.

Cerebral angiography has been reported by 1 case report (LOE P5). The timing of cerebral angiography was 1 day after sustained ROSC. Cerebral angiography parameters associated with poor outcome included delayed cerebral circulation time.

Transcranial Doppler was evaluated in 1 study (LOE P4). The timing of transcranial Doppler in this study ranged from 4 to 120 hours after ROSC. Transcranial Doppler parameters associated with poor outcome included delayed hyperemia. This study was limited by a small sample size, early withdrawal of care, and lack of comparison with a standardized method of prognostication.

Nuclear Medicine. One case report was supportive of nuclear medicine studies (LOE P5) but the timing of the images after sustained ROSC was not described. Nuclear medicine parameters associated with poor outcome included abnormal tracer uptake in the cerebral cortices. This case report included only a limited description of the findings; it was further limited by lack of comparison with a standardized method of prognostication.

Near-Infrared Spectroscopy. One study of near-infrared spectroscopy was not supportive (LOE P3). The timing of near-infrared spectroscopy in this study ranged from 6 to 24 hours after sustained ROSC. This study was limited by a small sample size, early withdrawal of care, inclusion of non–cardiac arrest patients, and lack of comparison with a standardized method of prognostication.

Treatment Recommendation

There is insufficient evidence to recommend for or against the routine use of neuroimaging to predict outcome of adult cardiac arrest survivors.

Knowledge Gaps

Adequately powered prospective studies are required to evaluate the accuracy of CT, MRI, or both in prognosticating outcome of comatose cardiac arrest survivors. Prognostication studies should include calculation of FPR with 95% confidence intervals for predicting poor outcome. Outcome prediction should include a comparison with more conventional methods, including clinical examination and electrophysiology (eg, somatosensory evoked potentials). All studies should allow for sufficient time to realize patient recovery, avoiding the bias of self-fulfilling prophecy and premature withdrawal of care. Specific brain structures responsible for coma and recovery after cardiac arrest (eg, thalamus, rostral brainstem) should be a focus of future studies. The optimal timing of neuroimaging after cardiac arrest and the impact of hypothermia should be explored. Prognostic modalities have focused on predicting poor outcome, and the need to identify those with likely good outcome is becoming more important, especially because effective therapies exist. Neuroimaging should be performed in a safe setting for critical patients or be done at the bedside.

Impact of Therapeutic Hypothermia on Accuracy of Post–Cardiac Arrest Prognostication

In post–cardiac arrest patients treated with hypothermia, can the same prognostication tools that are used in normothermic patients reliably predict outcome?

Consensus on Science

Two studies (LOE P1) provided evidence that status myoclonus (FPR 0%, 95% CI 0% to 40%), absence of corneal and pupillary reflexes at 3 days post-sustained ROSC (FPR 0%, 95% CI 0% to 48%), and bilateral absence of N20 peak on somatosensory evoked potentials at 24 hours post-sustained ROSC (FPR 0%, 95% CI 0% to 69%) in patients treated with therapeutic hypothermia predict poor outcome. One study evaluated somatosensory evoked potential responses in 112 post-arrest patients more than 24 hours after cardiac arrest who were treated with hypothermia and found that 35 of 36 patients with bilateral absent N20 cortical response had a poor outcome (FPR 3%, 95% CI 0% to 14%). One patient with bilaterally absent N20 and another with a barely detectable N20 had a good recovery; both were evaluated at 3 days post–cardiac arrest (LOE P1). One LOE P1 study provided evidence that a Glasgow Coma Motor Score of 2 or less at 3 days after sustained ROSC in patients treated with therapeutic hypothermia has a FPR of 14% (95% CI 3% to 44%) for poor outcome. Two studies provided evidence that status epilepticus in post-arrest patients treated with hypothermia has a FPR of 7% (95% CI 1% to 25%) to 11.5% (95% CI 3% to 31%) for predicting poor outcome (LOE P2; LOE P3). One study (LOE P3) suggested that glial fibrillary acidic protein level >1.0 ng/dL drawn 12 to 48 hours after sustained ROSC predicts poor outcome (defined as CPC score 3 to 5 at 6 months) both in post–cardiac arrest patients treated with normothermia (FPR 0% 95% CI 0% to 27%) or hypothermia (FPR 0% 95% CI 0% to 48%). One study provided evidence that NSE and S-100b protein cutoff values that reliably predict poor outcome are significantly higher in post–cardiac arrest patients treated with hypothermia compared with those not treated with hypothermia (LOE P2). Two studies prospectively measured NSE in cohorts of patients treated with post–cardiac arrest hypothermia and reported cutoff values for 0% FPR (LOE P2); 1 study reported that all patients with a 48-hour NSE value >33 μg/L had a poor outcome (FPR 0%, 95% CI 0% to 23%); the other study reported that all patients with a 48-hour NSE >28 μg/L had a poor outcome (FPR 0%, 95% CI 0% to 18%). Variability in 0% FPR cutoff values from these derivation cohorts potentially results from variability among assays and performance sites. Two studies examined the utility of bispectral index monitoring in prognosticating poor outcome in post–cardiac arrest patients treated with hypothermia who were under neuromuscular blockade (LOE P1). One study reported that an initial bispectral index monitoring score of ≥22 predicted poor outcome with a FPR of 6% (19 patients having a positive test), and a suppression ratio ≥48 predicted poor outcome with a FPR of 7% [(95% CI 1% to 26%)]. The other study reported that a bispectral index monitoring level of 0 at any time in the first 72 hours after cardiac arrest predicted poor outcome.
outcome with a FPR of 0% [0% to 27%]. Finally, 1 study (LOE P1) of 111 post–cardiac arrest patients treated with therapeutic hypothermia attempted to validate prognostic criteria proposed by the American Academy of Neurology. That study demonstrated that clinical examination findings at 36 to 72 hours were unreliable predictors of poor neurological outcome [motor response less than flexion (FPR 16%, 95% CI 6% to 35%); ≥1 brainstem reflexes absent (FPR 8%, 95% CI 2% to 25%); early myoclonus (FPR 4%, 95% CI 1% to 19%), while bilaterally absent N20 peak on somatosensory evoked potentials (FPR 0%, 95% CI 0% to 13%) and unreactive electroencephalogram background (FPR 0%, 95% CI 0% to 13%) were the most reliable. A decision rule derived using that dataset demonstrated that the presence of 2 independent predictors of poor neurological outcome (incomplete recovery brainstem reflexes, early myoclonus, unreactive electroencephalogram, and bilaterally absent cortical somatosensory evoked potentials) predicted poor neurological outcome with a FPR of 0% (95% CI 0% to 14%).

Treatment Recommendation

There is inadequate evidence to recommend a specific approach to prognosticating poor outcome in post–cardiac arrest patients treated with therapeutic hypothermia. There are no clinical neurological signs, electrophysiological studies, biomarkers, or imaging modalities that can reliably predict neurological outcome in the first 24 hours after cardiac arrest. Beyond 24 hours, no single parameter for predicting poor neurological outcome in post–cardiac arrest patients treated with hypothermia is without reported false-positives. Based on limited available evidence, potentially reliable prognosticators of poor outcome in patients treated with therapeutic hypothermia after cardiac arrest include bilateral absence of N20 peak on somatosensory evoked potential ≥24 hours after cardiac arrest or unreactive electroencephalogram background at 36 to 72 hours; and the absence of both corneal and pupillary reflexes >72 hours after cardiac arrest. Limited available evidence also suggests that a Glasgow Coma Motor Score of 2 or less at 3 days after sustained ROSC and the presence of status epilepticus are potentially unreliable prognosticators of poor outcome in post–cardiac arrest patients treated with therapeutic hypothermia. Serum biomarkers such as NSE are potentially valuable as adjunctive studies in prognostication of poor outcome in patients treated with hypothermia, but their reliability is limited by the relatively few patients who have been studied and lack of assay standardization. Given the limited available evidence, decisions to limit care should not be made based on the results of a single prognostication tool.

Knowledge Gaps

Further research is needed to elucidate the impact of therapeutic hypothermia on the accuracy and timing of post–cardiac arrest prognostication tools. Prospective derivation and validation of a clinical decision rule for early prediction of poor outcome in post–cardiac arrest patients treated with or without hypothermia are urgently needed.

Organ Donation

In adult organ recipients, does the use of organs from donors brain dead after cardiac arrest (out-of-hospital or in-hospital), as opposed to the use of donors brain dead not due to cardiac arrest, improve outcome (eg, transplant success)?

Consensus on Science Statements

Three studies suggested no difference in functional outcomes of organs transplanted from patients who were determined to be brain dead as a consequence of cardiac arrest when compared with donors who were brain dead from other causes (LOE 2).

Treatment Recommendation

Adult patients who progress to brain death after resuscitation from out-of-hospital cardiac arrest should be considered for organ donation.

Knowledge Gaps

Further studies with larger populations and common definitions of outcomes are needed. There is no evidence regarding organ donation from children or adults who are brain dead after resuscitation from an in-hospital cardiac arrest.

Acknowledgments

We thank the following individuals (the Advanced Life Support Chapter Collaborators) for their collaborations; Walter Kloek for his contributions as the representative from South Africa and to the following for their work on the worksheets contained in this section: Christophe Adrie; Mohammed Alhelail; Pavan Battu; Wilhelm Behringer; Lauren Berkow; Richard A. Bernstein; Sadiq S. Bhayani; Blair Bigham; Jeff Boyd; Barry Brenner; Eric Bruder; Hermann Brugger; Ian L. Cash; Maaret Castrén; Michael Cocchi; Gregory Comadira; Kate Crewson; Michael S. Czekajlo; Suzanne R. Davies; Harinder Dhindsa; Deborah Diercks; C. Jessica Dine; Csaba Dioszeghy; Michael Donnino; Joel Dunning; Nabil El Sanadi; Heather Farley; Peter Fenici; V. Ramana Feesser; Jane A.H. Foster; Hans Friberg; Michael Fries; F. Javier Garcia-Vega; Romerygko G. Geocadin; Marios Georgiou; Jasipnder Ghuman; Melissa Givens; Colin Graham; David M. Greer; Henry R. Halperin; Amanda Hanson; Michael Holzer; Elizabeth A. Hunt; Masami Ishikawa; Marios Ioannides; Farida M. Jejeebboy; Paul A. Jennings; Hitoshi Kano; Karl B. Kern; Fulvio Kette; Peter J. Kudenchuk; Douglas Kupas; Giuseppe La Torre; Todd M. Larahee; Marion Leary; John Litell; Charles M. Little; David Lobel; Timothy J. Mader; James J. McCarthy; Michael C. McCrory; James J. Menegazzi; William J. Meurer; Paul M. Middleton; Allan R. Mottram; Eliano Pio Navarese; Thomas Nguyen; Marcus Ong; Andrew Padkin; Edison Ferreira de Paiva; Rod S. Passman; Tommaso Pelliis; John J. Picard; Rachel Prout; Morten Pytte; Renee D. Reid; Jon Rittenberger; Will Ross; Sten Rubertsson; Malin Rundgren; Sebastian G. Russo; Tetsuya Sakamoto; Claudio Sandroni; Tommaso Sanna; Tomoyuki Sato; Sudhakar Sattur; Andrea Scapigliati; Richard Schilling; Ian Seppelt; Fred A. Severyn; Greene Shepherd; Richard D. Shih; Markus Skrifvars; Jasmeet Soar; Keichi Tada; Sara Tararan; Michel Torbey; Jonathan Weinstock; Volker Wenzel; Christoph H. Wiebe; Daniel Wu; Carolyn M. Zelop; David Zideman; and Janice L. Zimmerman.
Disclosures

CoSTR Part 8: Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurie J. Morrison</td>
<td>St. Michaels Hospital clinician scientist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles D. Deakin</td>
<td>Southampton University Hospital NHS Trust—Doctor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bernd W. Bottiger</td>
<td>Uniklinik Köln—MD, DEAA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Clifton W. Callaway</td>
<td>University of Pittsburgh School of Medicine—Associate Professor; *AHA—Work Sheet Editor for 2010 Guidelines. My effort on this project is paid to University of Pittsburgh as a “contracted services agreement,” and not paid to me</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Saul Drojer</td>
<td>Clínica de la Esperanza: General Director of a 130 bed hosp. (Clínica de la Esperanza) located in Buenos Aires, Argentina—General Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard E. Kerber</td>
<td>University of Iowa Hospital—Professor of Medicine; Staff Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Steven L. Kronick</td>
<td>University of Michigan: Healthcare—Assistant Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric Lavonas</td>
<td>Denver Health Hospital Authority: A political division of the State of Colorado, DHHA operates a hospital and outpatient clinic system in Denver, CO. DHHA also operates the Rocky Mountain Poison and Drug Center (RMPDC), Denver Public Health, and Denver Emergency Medical Services.—Associate Director, RMPDC</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Grants to University of Pittsburgh: NHLBI—Resuscitation Outcomes Consortium HRSA—Development and Dissemination of Program Tools for Uncontrolled Donation After Cardiac Death (UDCD)

†Grants to University of Pittsburgh: NHLBI—Resuscitation Outcomes Consortium HRSA—Development and Dissemination of Program Tools for Uncontrolled Donation After Cardiac Death (UDCD)

‡Loan of an Arctic Sun cooling device (without disposables) to human physiology laboratory for experiments on hypothermia by Medivance, Inc.

Occasional (2–4 times/year) Grand Rounds speaker at other Universities. Usual honorarium is $1,000 for each talk plus expenses. Money to me. Occasional expert witness in legal proceedings; fee is $400/hour plus expenses. These do not involve cardiac drugs or devices. Money to me. I am presently serving on a DSMB for a clinical trial sponsored by Zoll Corp, which manufacture/sells defibrillators and resuscitation devices.

Stock owned in General Electric and Johnson & Johnson. GE makes echocardiographs, which are occasionally used as a diagnostic tool during resuscitation.

Performed a one-time consultation for Philips Defibrillator division earlier this year.

Occasional expert witness in legal cases, usually alleged malpractice. No cardiac drugs or devices at present; I consulted with a law firm defending a manufacturer of Phentermine about 10 years ago.

(Continued)
This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swee Han Lim</td>
<td>Singapore General Hospital: Public Tertiary Hospital—Senior Consultant, Emerg. Med.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark S. Link</td>
<td>Tufts Medical Center—Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter T. Morley</td>
<td>Royal Melbourne Hospital—Director of Medical Education; University of Melbourne—Clinical Dean, Royal Melbourne Hospital; AHA—Evidence Evaluation Expert</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert W. Neumar</td>
<td>University of Pennsylvania—Associate Professor of Emergency Medicine</td>
<td>†Funding Source: NIH/NINDS Grant Number: R21 NS054654 Funding Period 06/01/07 to 06/31/2010 Role on Project: PI Title: Optimizing Therapeutic Hypothermia After Cardiac Arrest Description: The goal is to evaluate the how the onset and duration of therapeutic hypothermia after cardiac arrest impacts survival and neuroprotection</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jerry P. Nolan</td>
<td>Royal United Hospital NHS Trust—Consultant in Anaesthesia and Intensive Care Medicine —Editor-in-Chief Resuscitation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles W. Otto</td>
<td>University of Arizona—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael Parr</td>
<td>Liverpool Hospital, University of New South Wales—Director of Intensive Care —Editor: Resuscitation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Ann Peberdy</td>
<td>Virginia Commonwealth University—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael Shuster</td>
<td>Self-employed—emergency physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kjetil Sunde</td>
<td>Oslo University HospitalUlleval—Senior Consultant and post doctoral researcher</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Wanchun Tang</td>
<td>Weil Institute of Critical Care Medicine: Non profit research institution—Professor and President</td>
<td>NIH</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Terry L. Vanden Hoek</td>
<td>The University of Chicago—Associate Professor "Vanden Hoek, Principal Investigator Department of Defense, Office of Naval Research “Proteomic Development of Molecular Vital Signs: Mapping a Mitochondrial Injury Severity Score to Triage and Guide Resuscitation of Hemorrhagic Shock” 9/6/04 to 4/30/10 $885,639 (this year) research grant awarded to University of Chicago</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
CoSTR Part 8: Worksheet Collaborator Disclosures

<table>
<thead>
<tr>
<th>Worksheet Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christophe Adrie</td>
<td>Cochin Hosp. Assistance Publique des Hopitaux de Paris—Assist. Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mohammed Alhalei</td>
<td>King Abdulaziz Medical City—Emergency Medicine Consultant</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pavan Battu</td>
<td>Heart of England NHS Foundation Trust Research Fellow</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Wilhelm Behringer</td>
<td>Medical University of Vienna—Assoc. Prof.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lauren Berkow</td>
<td>Johns Hopkins School of Medicine Associate Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard A. Bernstein</td>
<td>Northwestern University—Associate Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sadiq Bhayani</td>
<td>Queen Medical Centre, Nottingham Specialist Trainee in anaesthesia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Blair Bigham</td>
<td>York Region EMS Paramedic Paramedic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jeff Boyd</td>
<td>Self—Emergency Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barry Brenner</td>
<td>University Hospitals Case Medical Center—Professor of Emergency Med., Program Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric Bruder</td>
<td>Kingston General Hospital/Queen’s University—Asst. Prof. Dept of Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hermann Brugger</td>
<td>National Health Service (Bolzano, Italy)—General Practitioner, Emergency Physician, MD, Medical Univ. Innsbruck (Austria)—Assoc. Prof. of Emergency Med</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ian Cash</td>
<td>Knox Private Hospital Intensive Care Unit Associate Nurse Unit Manager Australasian SOS Oxygen & First Responder Training P/L Resuscitation training & Oxygen Equipment General Manager</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Maaret Castren</td>
<td>Karolinska Inst. Prof. in Emergency Med</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

†Bristol Myers/Sanofi Partnership (Plavix) Boehringer Ingelheim Pharmaceuticals (Aggrenox) *Medtronic (Loop recorder) †have served as an expert witness/medicolegal consultant in cases related to cardiac arrest; none have gone to trial. *Medtronic-Steering Committee for CRYSTAL-AF study

(Continued)
<table>
<thead>
<tr>
<th>Worksheet Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Cocchi</td>
<td>Beth Israel Deaconess Medical Center</td>
<td>Emergency Medicine</td>
<td>Physician/Critical Care Fellow</td>
<td>†I have recently been awarded a grant from the American Heart Association’s Clinical Research Program in the area of cardiac arrest research. I am the Principal Investigator for this project, which is funded for $110,000 over two years</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gregory Comadira</td>
<td>Queensland Health Department of IC, Gold Coast Hosp; Senior Staff specialist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kate Crewdson</td>
<td>Royal United Hospital Hospital Doctor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael Czekajo</td>
<td>VCU Medical Center—Asst Professor of Critical Care Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Suzanne Davies</td>
<td>Ambulance Service of New South Wales Paramedic Research Fellow</td>
<td>Australian Resuscitation Council Research Officer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Harinder Dhindsa</td>
<td>Virginia Commonwealth Univ, Emergency physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Deborah Diercks</td>
<td>University of California, Davis Medical Center—Professor of Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>*Sanofi Aventis *Bristol Myers Squibb</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>C. Jessica Dine</td>
<td>University of Penn; Assist Prof.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Csaba Dicszeghy</td>
<td>Yeovil District Hospital HNS Foundation Trust: District General Hospital (NHS)—Consultant in Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael Domino</td>
<td>Harvard Medical School faculty</td>
<td>†NIH thiamine as metabolic resusculation in septic shock</td>
<td>*Astellas *Beckman Coulter</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Worksheet Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joel Dunning</td>
<td>James Cook University Hospital NHS Trust; NHS foundation Trust—Cardiothoracic surgical Registrar</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>"Set up and run a course called the Cardiac Surgery Advanced Life Support course (www.csu-als.com) which is a not-for-profit course designed to teach and promote the teaching of resuscitation after cardiac surgery; also published several papers in this area and I was the first author of the EACTS guidelines for resuscitation for patients who suffer cardiac arrest after cardiac surgery. I receive money for recovery of expenses incurred."</td>
</tr>
<tr>
<td>Nabil El Sanadi</td>
<td>Self employed, Chief of Emergency Medicine for Broward Health</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Heather Farley</td>
<td>Doctors for Emergency Services (DEES)—Attending Emergency Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>V. Ramana Feeseer</td>
<td>Virginia Commonwealth Univ—Emergency Medicine Assist Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter Fenici</td>
<td>Bristol Myers Squibb Italy Pharma Company CV & Metabolics medical director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jane Foster</td>
<td>Royal Devon & Exeter NHS Foundation Trust—Core Med. Trainee Doctor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hans Friberg</td>
<td>Region Skane Govt.agency Sweden, Emergency Med. Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael Fries</td>
<td>University Hospital RWTH Aachen—Academic University Hospital; Senior Consultant in Intensive Care</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Francisco Javier</td>
<td>Galician Health Service (SERGAS) Internal Medicine Service University Hospital of Vigo (CHUVI) MD, Internal Medicine specialist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Romergyko G. Geocadin</td>
<td>Johns Hopkins, Assoc. Prof., Crit Care Med & Neurosurg</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
CoSTR Part 8: Worksheet Collaborator Disclosures, Continued

<table>
<thead>
<tr>
<th>Worksheet Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Consultant/Advisory Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marios Georgiou</td>
<td>Nicosia Gen Hosp—ministry of Health: Govt. Hosp.Republic of Cyprus—Resus officer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jaspinder Ghuman</td>
<td>Hamilton Health Sciences—Emergency Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Melissa Givens</td>
<td>US Army—Emergency Med physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Colin Graham</td>
<td>Chinese University of Hong Kong—Professor of Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David M. Greer</td>
<td>Massachusetts General Hospital—Assistant in Neurology</td>
<td>†Boehringer Ingelheim Pharmaceuticals, Inc., sponsored an investigator initiated study of extended-release dipyridamole as administered via gastrostomy tubes, a pharmacokinetic study. The money went to my institution, †Boehringer Ingelheim Pharmaceuticals, Inc., manufacture the antiplatelet medication, Aggrenox, which contains extended-release dipyridamole</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>*Expert witness in a medical malpractice suit, the money came to me directly</td>
</tr>
<tr>
<td>Henry R. Halperin</td>
<td>Johns Hopkins Prof.</td>
<td>†Zoll Circulation</td>
<td>None</td>
<td>None</td>
<td>†Zoll Circulation</td>
<td>†Lexmedone</td>
<td>†Cardiac Concepts</td>
</tr>
<tr>
<td>Amanda Hanson</td>
<td>Alberta Health and Wellness Emergency Physician Emergency Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>*Cardiac Concepts</td>
</tr>
<tr>
<td>Michael Holzer</td>
<td>Med Univ. of Vienna—Spec for Int. Med</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Elizabeth A. Hunt</td>
<td>Johns Hopkins University School Med. Pediatric intensivist, researcher & Dir of Johns Hopkins Med Simulation Center—director, assist. Prof.</td>
<td>Co PI on AHA grant to study relationship between scripted debriefing & high fidelity simulation on learning during PALS course</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Marios Ioannides</td>
<td>Nicosia Gen Hosp—Cyprus—Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Masami Ishikawa</td>
<td>Kure Kyosai Hosp—MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Farida Jejeebhoy</td>
<td>Self employed cardiologist, have affiliation with Univ. HealthNetwork/Mt Sinai Hosp, and University of Toronto. I am paid fee for service</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul Jennings</td>
<td>Ambulance Victoria—Intensive Care Paramedic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Worksheet Collaborator</td>
<td>Employment</td>
<td>Research Grant</td>
<td>Other Support</td>
<td>Speakers’ Bureau/Honoraria</td>
<td>Ownership Interest</td>
<td>Consultant/Advisory Board</td>
<td>Other</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Hitoshi Kano</td>
<td>Physician, Sapporo Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Karl B. Kern</td>
<td>Univ of Arizona Prof. of Medicine</td>
<td>Laerdal Foundation’08–10</td>
<td>None</td>
<td>Medivance Inc (hypothermia device manuf)</td>
<td>None</td>
<td>Zoll</td>
<td>State of Ariz attorney General</td>
</tr>
<tr>
<td>Fulvio Kette</td>
<td>Azienda per i Servizi Sanitari n. 6 “Fiumi Occidentale”—Dir Emergency department</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Walter Kloeck</td>
<td>Academy of Advanced Life Support Basic and advanced life support training Medical Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter J. Kudenchuk</td>
<td>University of Washington; Professor of Medicine</td>
<td>NIH Resuscitation Outcomes Consortium</td>
<td>None</td>
<td>*Sanofi Aventis *Bristol Myers Squibb</td>
<td>*Sanofi Aventis (modest stock holding)</td>
<td>None</td>
<td>*Expert Witness: Levin Riback Dewsnup, King, Olson Treon, Aquirre, Newman, Norris</td>
</tr>
<tr>
<td>Douglas Kupas</td>
<td>Geisinger Health System, Geisinger Clinic Employed as Associate Chief Academic Officer and emergency physician Associate Chief Academic Officer Commonwealth of Pennsylvania, Department of Health Serve as state EMS medical director for the Bureau of EMS Commonwealth EMS Medical Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Giuseppe La Torre</td>
<td>Self employed</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Todd Larabee</td>
<td>Univ Col, Denver School of Med. Assist Prof.</td>
<td>NIH cardiac synch technique for pulseless elect. Activity grant held by Quest PO</td>
<td>None</td>
<td>Sanofi Aventis *Bristol Myers Squibb</td>
<td>*Stock–Sanofi Aventis</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Marion Leary</td>
<td>Hospital of the University of Pennsylvania Center for Resuscitation Science. Nurse Researcher; Medical ICU Critical Care Nurse</td>
<td>Philips Healthcare grant</td>
<td>None</td>
<td>Philips Healthcare in 2008 to speak at NTI</td>
<td>*Velomedex in 2008 one time minor consultant fee</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John Litell</td>
<td>Mayo Clinic Critical Care Fellow</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles Little</td>
<td>Univ of Colorado, Denver, Assoc Prof Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David Lobel</td>
<td>Maimonides Med. Center, Emergency Dept attending, Med. Director Prehospital (EMS)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Timothy Mader</td>
<td>Baystate Health; nonprofit healthcare system, Emergency physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James McCarthy</td>
<td>UTHC Houston Assist. Prof.</td>
<td>None</td>
<td>None</td>
<td>Intercool 2007</td>
<td>None</td>
<td>None</td>
<td>Expert Brin and Brin</td>
</tr>
<tr>
<td>Michael McCrory</td>
<td>Johns Hopkins, Pediatric Intensive Care fellow</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Worksheet Collaborator</td>
<td>Employment</td>
<td>Research Grant</td>
<td>Other Research Support</td>
<td>Speakers’ Bureau/Honoraria</td>
<td>Ownership Interest</td>
<td>Consultant/Advisory Board</td>
<td>Other</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>James Menegazzi</td>
<td>University of Pittsburgh</td>
<td>†Received significant research grant support from the National Heart, Lung, and Blood Institute</td>
<td>None</td>
<td>None</td>
<td>†Co-inventor of a patented method for analyzing the electrocardiographic waveform during ventricular fibrillation. This method has been licensed by my University to Medtronic. I receive a significant payment from Medtronic, in the form of royalties, via this licensing agreement</td>
<td>None</td>
<td>*In 2009, and in 2010, I lectured at a medical conference in Anchorage, Alaska. While I did not receive an honorarium, my airfare, hotel, and per diem food costs were paid by the Loren Marshall Foundation.</td>
</tr>
<tr>
<td>William Meurer</td>
<td>University of Michigan, Assistant Professor, Emergency Medicine and Neurology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul Middleton</td>
<td>Ambulance Service of NSW—Medical Director/Director of Research</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Allan Mottram</td>
<td>Univ of Wisc. Emergency Med Division; Assistant Prof</td>
<td>NH potential antidotal therapy for Ca Channel blocker 026</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eliana P. Navarese</td>
<td>Catholic University of Sacred Heart Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thomas Nguyen</td>
<td>Beth Israel medical center—Attending MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Marcus Org</td>
<td>Singapore General Hospital—Consultant</td>
<td>†Research grant from Zoll Medical Corporation for mechanical CPR trial</td>
<td>*Research support (in kind) from Medtronic and Alfasys for a hypothermia trial</td>
<td>*Honoraria for a lecture on Intraosseous Vascular Access from Vidacare Corp at the Asian Conference on Emergency Medicine 2009 Busan Korea</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrew Padkin</td>
<td>Royal United Hosp. NHS Trust Bath UK Healthcare Provider Consultant</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Unpaid editorial board member Resuscitation J</td>
</tr>
<tr>
<td>Edison Paiva</td>
<td>University of Sao Paulo School of Medicine—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rod S. Passman</td>
<td>NW Uni Assoc. Prof.</td>
<td>None</td>
<td>None</td>
<td>†GSK *Medtronic</td>
<td>None</td>
<td>Medtronic Steering for CRYSTAL AF</td>
<td>Expert witness</td>
</tr>
<tr>
<td>Tommaso Pellis</td>
<td>Santa Maria degli Angeli Hospital—Medical doctor, consultant in Anesthesia, Intensive Care & Emergency Med. Service</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rachel Proud</td>
<td>University Hospitals Bristol NHS Foundation Trust—SpR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Morten Pytte</td>
<td>Oslo University Hospital, Ullevål—MD Attending anaesthesiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Renee Reid</td>
<td>Virginia Commonwealth University—Emergency Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jon Rittenberger</td>
<td>UPMC, Assist. Prof.</td>
<td>†Zoll Med Fellowship; NH Road map for Medical Research</td>
<td>None</td>
<td>None</td>
<td>Sacramento Fire no honorarium; Christopher Fanning Mem. Community Ed. “The Big Chill”</td>
<td>None</td>
<td>Advisor for Zoll Cool arrest study</td>
</tr>
<tr>
<td>Will Ross</td>
<td>Royal Melbourne Hosp. Medical intern</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Worksheet Collaborator</td>
<td>Employment</td>
<td>Research Grant</td>
<td>Other Research Support</td>
<td>Speakers’ Bureau/Honoraria</td>
<td>Ownership Interest</td>
<td>Consultant/Advisory Board</td>
<td>Other</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Sten Rubertsson</td>
<td>Uppsala University/Dept of Surgical Sciences/Anesthesiology and Intensive Care—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Jolife AB, Lund, Sweden Manufacturer of LUCAS device—mechanical chest compressions Consult fees received not annually exceeding USD 10,000 I am also a PI for the ongoing LINC trial—a multicenter trial with 2500pts comparing LUCAS concept with manual chest compressions in out of hospital CA. For this I receive no money</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malin Rundgren</td>
<td>Region Skane, Lund University Hospital, Department of intensive and perioperative care—Consultant</td>
<td>*8 weeks per year in time from Region Skanes research and development foundation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Ministry of Health, Labor & Welfare, Jap.</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sebastian Russo</td>
<td>University of Goettingen, Germany: Dept. of Anesthesiology, Emergency and Intensive Care Medicine—Specialist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tetsuya Sakamoto</td>
<td>Tokyo University—Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claudio Sandroni</td>
<td>Catholic University School of Medicine-Rome: Assistant Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tommaso Sanna</td>
<td>Catholic University of the Sacred Heart—Researcher & Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tomoyuki Sato</td>
<td>Physician, Sapporo Municipal General Hospital Department of Emergency Medicine and Critical Care</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sudhakar Sattur</td>
<td>University of Arizona—Assist. Prof.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrea Scapigliati</td>
<td>Catholic University of the Sacred Heart—Assistant Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard Schilling</td>
<td>Physician, Barst and the London NHS Trust</td>
<td>*Medtronic Medical Devices Company, Recipient of research grant</td>
<td>None</td>
<td>*St Jude Medical, medical devices company; *Biosense Webster, medical devices company;</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ian Seppelt</td>
<td>Sydney West Area Health Service: Clinical Intensive Care Medicine—Senior Staff Specialist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Sedation Advisory Board in Intensive Care for Hospira Pharmaceuticals (manufacturers of dexmedetomidine)</td>
<td>None</td>
</tr>
<tr>
<td>Fred Severyn</td>
<td>University of Colorado—Emergency Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>*I have been subpoenaed several times from Adams county Colorado to testify as expert witness in felony cases in which I provided medical care to a victim of injury/illness—not on my terms, but served as expert witness (or else get hit for contempt of court and go to jail)</td>
<td>None</td>
</tr>
<tr>
<td>Greene Shepherd</td>
<td>University of Georgia, College of Pharmacy—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>*CE talks about calcium channel blocker poisoning (one of my assigned topics) for professional societies. Amounts of honoraria never exceeded $500</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
This table represents the relationships of worksheet collaborators that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all worksheet collaborators are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.
Appendix

CoSTR Part 8: Worksheet Appendix

<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS/BLS</td>
<td>ALS/BLS-CPR&A-079A</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of a supraglottic airway device (I) vs an endotracheal tube (C), improve any outcomes (O)?</td>
<td>Supraglottic devices vs intubation</td>
<td>Lauren Berkow</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-BLS-CPR-A-079A.pdf</td>
</tr>
<tr>
<td>ALS/BLS</td>
<td>ALS/BLS-CPR&A-079B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of a supraglottic airway device (I) vs an endotracheal tube (C), improve any outcomes (O)?</td>
<td>Supraglottic devices vs intubation</td>
<td>Michael Shuster</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-BLS-CPR-A-079B.pdf</td>
</tr>
<tr>
<td>ALS/BLS</td>
<td>ALS/BLS-CPR&A-080B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of supraglottic airway devices (I) compared with no airway adjuncts (C), improve any outcomes (eg, ventilation, oxygenation) (O)?</td>
<td>Oropharyngeal and nasopharyngeal adjuncts</td>
<td>Haider Dhindsa, V. Ramana, Fester, Renee D. Reid</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-BLS-CPR-A-080B.pdf</td>
</tr>
<tr>
<td>ALS/BLS</td>
<td>ALS/BLS-CPR&A-088B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of oropharyngeal airway or nasopharyngeal airway devices (I) compared with no airway adjuncts (C), improve any outcomes (eg, ventilation, oxygenation, reduce hands-off time, allow for continuous compressions and/or improves survival) (O)?</td>
<td>Supraglottic devices vs BVM</td>
<td>Suzanne R. Davies, Paul M. Middleton</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-BLS-CPR-A-088B.pdf</td>
</tr>
<tr>
<td>ALS/BLS</td>
<td>ALS/BLS-CPR&A-001B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of supraglottic devices (I) compared with bag-valve-mask alone for airway management (C), improve any outcomes (eg, ventilation, oxygenation, reduce hands-off time, allow for continuous compressions and/or improves survival) (O)?</td>
<td>Does the use of a supraglottic airway device (I) compared with no airway adjuncts (C), improve any outcomes (eg, ventilation, oxygenation, reduce hands-off time, allow for continuous compressions and/or improves survival) (O)?</td>
<td>Lauren Berkow, Henry R. Halperin</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-BLS-CPR-A-001B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-001A</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of physiological feedback regarding CPR quality (eg, End-tidal CO2 monitoring) (I) compared with no feedback (C), improve any outcomes (eg, ROSC, survival) (O)?</td>
<td>Physiologic feedback (eg, end tidal CO2) for CPR quality</td>
<td>Blair Bigham</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-001A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-001B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of physiological feedback regarding CPR quality (eg, End-tidal CO2 monitoring) (I) compared with no feedback (C), improve any outcomes (eg, ROSC, survival) (O)?</td>
<td>Physiologic feedback (eg, end tidal CO2) for CPR quality</td>
<td>Marion Leany</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-001B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-002A</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of rapid deployment ECMO, Aortic Balloon Pump or emergency cardipulmonary bypass (I), compared with standard treatment (C), increase survival to hospital discharge with favorable neurologic outcomes (O)?</td>
<td>ECMO, balloon pump etc for CPR</td>
<td>Tetsuya Sakamoto</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-002A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-002B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of rapid deployment ECMO, Aortic Balloon Pump or emergency cardipulmonary bypass (I), compared with standard treatment (C), increase survival to hospital discharge with favorable neurologic outcomes (O)?</td>
<td>ECMO, balloon pump etc for CPR</td>
<td>Michael S. Czekajlo</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-002B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-003B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of ultrasound (including transthoracic and transesophageal echocardiography) during cardiac arrest (I) compared with standard CPR (C), improve any outcomes (eg, ROSC, survival) (O)?</td>
<td>Ultrasound during cardiac arrest</td>
<td>Amanda Hanson</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-003B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-005C</td>
<td>In adult cardiac arrest out-of-hospital and in-hospital (P), whether a protected and unprotected airway (P), does the monitoring and control of ventilatory parameters (eg, minute ventilation and/or peak pressures) (I) as opposed to standard care (without ventilatory monitoring) (C), improve outcome (O) (eg, ROSC, survival)?</td>
<td>Monitoring ventilatory parameters during CPR</td>
<td>Kate Crowston</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-005C.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-006A</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of thoracic impedance (I) compared with usual management (C), improve the accuracy of diagnosis of airway placement and adequacy of ventilation (O)?</td>
<td>Thoracic impedance to confirm airway placement</td>
<td>F. Javier Garcia-Vega</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-006A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-006B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of thoracic impedance (I) compared with usual management (C), improve the accuracy of diagnosis of airway placement and adequacy of ventilation (O)?</td>
<td>Thoracic impedance to confirm airway placement</td>
<td>Heather Farley</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-006B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-007B</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of thoracic impedance (I) compared with usual management (C), improve the accuracy of diagnosis of airway placement and adequacy of ventilation (O)?</td>
<td>Cricoid pressure</td>
<td>Michael Shuster</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-007B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-008A</td>
<td>In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of devices (eg, CO2 detection device, CO2 analyzer or esophageal detector device) (I) compared with usual management (C), improve the accuracy of diagnosis of airway placement (O)?</td>
<td>Devices to confirm airway placement</td>
<td>Douglas Kupas</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-008A.pdf</td>
</tr>
</tbody>
</table>

(Continued)
CoSTR Part 8: Worksheet Appendix, Continued

<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-008B</td>
<td>In adult cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), does the use of devices (eg. CO₂ detection device, CO₂ analyzer or esophageal detector device) (I) compared with usual management (C), improve the accuracy of diagnosis of airway placement (O)?</td>
<td>Devices to confirm airway placement</td>
<td>Ian L. Cash</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-008B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-009A</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), does the use of passive oxygen delivery during CPR (I) compared with oxygen delivery by positive pressure ventilation (C), improve outcome (eg. ROSC, survival) (O)?</td>
<td>Passive oxygen vs positive pressure oxygen during CPR</td>
<td>Csaba Dissinghgy</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-009A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-009B</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), does the use of passive oxygen delivery during CPR (I) compared with oxygen delivery by positive pressure ventilation (C), improve outcome (eg. ROSC, survival) (O)?</td>
<td>Passive oxygen vs positive pressure oxygen during CPR</td>
<td>Peter Ferrici, Andrea Scapigliati</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-009B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-010A</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), and who have advanced airways in place (P), does the use of automatic ventilators (I) compared with manual ventilation (C), improve outcome (eg. ventilation, oxygenation, reduce hands-off time, allow for continuous compressions and/or improves survival) (O)?</td>
<td>Automatic ventilators vs manual ventilation during CPR</td>
<td>Charles Otto</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-010A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-CPR&A-011A</td>
<td>In adult cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), does the use of an FIO₂ titrated to oxygenation during cardiac arrest (I) compared with the use of 100% oxygen (C), improve outcome (eg. ROSC, survival) (O)?</td>
<td>Supplemental oxygen: 100% versus titration</td>
<td>Colin A. Graham</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-CPR-A-011A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D&P-014A</td>
<td>In adult cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), does the use of end-tidal CO₂ (eg. absolute CO₂ values or changes in waveform) (I) compared with not using ETCO₂ (C), accurately predict outcomes (eg. ROSC, survival) (O)?</td>
<td>End-tidal CO₂ to predict outcome of cardiac arrest</td>
<td>Sadiq S. Bhayani</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-P-014A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-016A</td>
<td>In adult cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), does the use intravenous fluids (I) compared with not using fluids (or standard resuscitation) (C), improve outcomes (eg. ROSC, survival) (O)?</td>
<td>IV fluids during cardiac arrest</td>
<td>Jane A.H. Foster, Jasmeet Soar</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-016A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-016B</td>
<td>In adult cardiac arrest (prehospital) (HCA), in-hospital (HCA) (P), does the use intravenous fluids (I) compared with not using fluids (or standard resuscitation) (C), improve outcomes (eg. ROSC, survival) (O)?</td>
<td>IV fluids during cardiac arrest</td>
<td>Paul A. Jennings</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-016B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-017</td>
<td>In adult patients in atrial fibrillation (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. reversion rates) (O)?</td>
<td>Drugs for atrial fibrillation</td>
<td>Steven Kronick, Mark S. Link, Rod S. Passman, Richard Schilbing</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-017.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-018</td>
<td>In adult patients in narrow complex tachycardia (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. reversion rates) (O)?</td>
<td>Drugs for narrow complex tachycardia</td>
<td>Steven Kronick, Rod S. Passman, Volker Wenzel</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-018.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-019–01A</td>
<td>In adult patients in monomorphic wide complex tachycardia (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. reversion rates) (O)?</td>
<td>Drugs for monomorphic wide complex tachycardia</td>
<td>Tommaso Pellis</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-019–01A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-019–01B</td>
<td>In adult patients in monomorphic wide complex tachycardia (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. reversion rates) (O)?</td>
<td>Drugs for monomorphic wide complex tachycardia</td>
<td>Markus Siehrs</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-019–01B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-019–02</td>
<td>In adult patients with undifferentiated stable wide complex tachycardia (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. reversion rates) (O)?</td>
<td>Drugs for undifferentiated stable wide complex tachycardia</td>
<td>Steven Kronick</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-019–02.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-020B</td>
<td>In adult patients in polymorphic wide complex tachycardia (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. reversion rates) (O)?</td>
<td>Drugs for polymorphic wide complex tachycardia</td>
<td>Peter J. Kudenchuk</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-020B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-021A</td>
<td>In adult patients in torsades de pointes (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. reversion rates) (O)?</td>
<td>Drugs for torsades de pointes</td>
<td>Eliano Pio, Navarrese, Andrea Scapigliati</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-021A.pdf</td>
</tr>
</tbody>
</table>

Downloaded from http://circ.ahajournals.org by guest on April 24, 2017
<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>ALS-D-022A</td>
<td>In adult patients in significant bradycardia (prehospital and in-hospital) (P), does the use of any drug or combination of drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. return of spontaneous circulation) (O).</td>
<td>Drugs for bradycardia</td>
<td>Thomas Nguyen</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-022A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-023B</td>
<td>In adult patients in cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of vasopressors (epinephrine, norepinephrine, others) or combination of vasopressors (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Vasopressors for cardiac arrest</td>
<td>Todd M. Larabee, Charles M. Little</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-023B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-024B</td>
<td>In adult patients in cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of atropine or atropine in combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Atropine for cardiac arrest</td>
<td>Swee-Han Lim</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-024B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-025A</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of antiarrhythmic drugs (lidocaine, procainamide, amiodarone, bretylium, magnesium) or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Antiarrhythmic drugs for cardiac arrest</td>
<td>Marcus Bing</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-025A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-025B</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of antiarrhythmic drugs (lidocaine, procainamide, amiodarone, bretylium, magnesium) or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Antiarrhythmic drugs for cardiac arrest</td>
<td>Mark S. Levin, Tommaso Pellis</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-025B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-026A</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of calcium alone or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Calcium for cardiac arrest</td>
<td>Fuhko Kettle, Sara Taranan</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-026A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-026B</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of calcium alone or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Calcium for cardiac arrest</td>
<td>Jaspinder Ghuman</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-026B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-027</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of steroids or hormonal therapy (glucocorticoids, progestagens, hydrocortisone, insulin, growth factors etc) alone or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Steroids and hormones for cardiac arrest</td>
<td>Michael Cocchi, Michael Donnino, Ian Seppelt</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-027.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-028A</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of fibrinolytics alone or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Fibrinolytics for cardiac arrest</td>
<td>Michael Farr</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-028A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-028B</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of fibrinolytics alone or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Fibrinolytics for cardiac arrest</td>
<td>Steven Kronick</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-028B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-029A</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of buffering agents alone or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Buffering agents for cardiac arrest</td>
<td>James J. McCarthy</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-029A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-D-029B</td>
<td>In adult cardiac arrest (asystole, pulseless electrical activity, pulseless VT and VF) (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of buffering agents alone or combination with other drugs (I) compared with not using drugs (or a standard drug regimen) (C), improve outcomes (eg. ROSC, survival) (O).</td>
<td>Buffering agents for cardiac arrest</td>
<td>Edison Ferreira de Paiva</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-D-029B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-040A</td>
<td>In post-cardiac arrest patients treated with hypothermia (P), can the same progностication tools that are used in normothermic patients (I) reliably predict outcome (O)?</td>
<td>Hypothermia and prognostication</td>
<td>Hans Fritberg, Robert Neumar, Malin Rundgren</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-040A.pdf</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>ALS-PA-041</td>
<td>In adult and pediatric patients who are comatose after cardiac arrest (prehospital or in-hospital) (P), does the use of the bedside neurological exam (I) as opposed to standard care (C), allow accurate prediction of outcome (O) (eg. survival)?</td>
<td>Bedside neurological exam for prognostication</td>
<td>Remenarjes G, Gexodri, Giuseppe La Torre, Claudio Sandroni</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-041.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-042A</td>
<td>In adult and pediatric organ recipients (P), does the use of organs from donors brain dead after cardiac arrest (prehospital or in-hospital) (I) as opposed to the use of donors brain dead not due to cardiac arrest (O), improve outcome (C) (eg. transplant success)?</td>
<td>Organ donation</td>
<td>Claudio Sandroni</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-042A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-042B</td>
<td>In adult and pediatric organ recipients (P), does the use of organs from donors brain dead after cardiac arrest (prehospital or in-hospital) (I) as opposed to the use of donors brain dead not due to cardiac arrest (C), improve outcome (O) (eg. transplant success)?</td>
<td>Organ donation</td>
<td>Christophe Adrie</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-042B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-043A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) who have cardiovascular dysfunction (I), does the use of intravenous fluids (C) as opposed to standard care (or other intravenous fluids) (O), improve outcome (I) (eg. survival)?</td>
<td>IV fluids following cardiac arrest</td>
<td>Jane A.H. Foster, Jasmeet Soar</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-043A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-043B</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) who have cardiovascular dysfunction (I), does the use of intravenous fluids (C) as opposed to standard care (or other intravenous fluids) (O), improve outcome (I) (eg. survival)?</td>
<td>IV fluids following cardiac arrest</td>
<td>Hitoshi Kano, Tomoyuki Sato</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-043B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-044</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does use of usual care (C) as compared with usual care (I), improve morbidity or mortality (O)?</td>
<td>Hypothermia following resuscitation</td>
<td>Jerry Nolan, Peter T. Morley</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-044.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-045A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does the use of a specific strategy to manage blood glucose (eg. target range) (C) as opposed to standard care (O), improve outcome (I) (eg. survival)?</td>
<td>Glucose control following resuscitation</td>
<td>Jon Ritterberger</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-045A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-046A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does use of a specific strategy to manage blood glucose (eg. target range) (C) as opposed to standard care (O), improve outcome (I) (eg. survival)?</td>
<td>Glucose control following resuscitation</td>
<td>Janice L. Zimmerman</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-046B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-046B</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does use of a specific strategy to manage blood glucose (eg. target range) (C) as opposed to standard care (O), improve outcome (I) (eg. survival)?</td>
<td>Glucose control following resuscitation</td>
<td>Markus Sleinhaus</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-046A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-047A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does the use of comprehensive treatment protocol (O) as opposed to standard care (I), improve outcome (C) (eg. survival)?</td>
<td>Treatment protocol following resuscitation</td>
<td>Maren Cudrin</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-047A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-047B</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does the use of comprehensive treatment protocol (O) as opposed to standard care (I), improve outcome (C) (eg. survival)?</td>
<td>Treatment protocol following resuscitation</td>
<td>Mary Ann Peberdy</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-047B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-048A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does treatment with corticosteroids (C) as opposed to standard care (O), improve outcome (I) (eg. survival)?</td>
<td>Steroids post resuscitation</td>
<td>Andrew Padkin, Ketil Sundt</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-048A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-049A</td>
<td>In adult patients (prehospital or in-hospital) who are comatose after cardiac arrest (P) does treatment of pyrexia (I) compared to no temperature intervention (C) improve outcome (O) (eg. survival)?</td>
<td>Fever post resuscitation</td>
<td>Marinus Ioannes</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-049A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-050A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does the use of seizure prophylaxis or effective seizure control (O) as opposed to standard care (I), improve outcome (C) (eg. survival)?</td>
<td>Seizure prophylaxis post resuscination</td>
<td>Nabil El Samadi</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-050A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-050B</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (I), does the use of seizure prophylaxis or effective seizure control (O) as opposed to standard care (I), improve outcome (C) (eg. survival)?</td>
<td>Seizure prophylaxis post resuscination</td>
<td>Maarten Cudrin</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-050B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-051A</td>
<td>In adult patients who are comatose after cardiac arrest (prehospital or in-hospital) (P), does the use of neurological electrophysiological studies (I) as opposed to standard care (C), allow accurate prediction of outcome (O) (eg. survival)?</td>
<td>EEG post resuscitation</td>
<td>Tommaso Sanna</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-051A.pdf</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>ALS-PA-052A</td>
<td>In adult patients who are comatose after cardiac arrest (prehospital or in-hospital) (P), does the use of biochemical markers (I) as opposed to standard care (C), allow accurate prediction of outcome (O) (eg. survival)?</td>
<td>Biomarkers</td>
<td>Tommaso Sanna</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-052A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-052B</td>
<td>In adult patients who are comatose after cardiac arrest (prehospital or in-hospital) (P), does the use of biochemical markers (I) as opposed to standard care (C), allow accurate prediction of outcome (O) (eg. survival)?</td>
<td>Biomarkers</td>
<td>Michel Torbey</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-052B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-053B</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of a specific ventilation strategy (including specific CO₂ goal (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Ventilation strategy post resuscitation</td>
<td>Clifton Callaway</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-053B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-054A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of a hemofiltration (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Hemofiltration post resuscitation</td>
<td>Wilhelm Behringer</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-054A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-055A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of neuroprotective drugs (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Neuroprotective drugs</td>
<td>Michael Holzer</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-055A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-055C</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of neuroprotective drugs (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Neuroprotective drugs</td>
<td>Richard A. Bernstein</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-055C.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-056B</td>
<td>In adult patients (prehospital and in-hospital) with ROSC after cardiac arrest (P), does early hemodynamic optimization (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Hemodynamic support post resuscitation</td>
<td>Michael Fries</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-056B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-057A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) who have cardiovascular dysfunction (P), does the use of any specific cardioactive drugs (I) as opposed to standard care (C) or different cardioactive drugs (C), improve outcome (O) (eg. survival)?</td>
<td>Cardioactive drugs post resuscitation</td>
<td>Karl B. Kern, Sudhakar Sattur</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-057A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-058A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of prophylactic antiarrhythmic drugs (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Antiarrhythmic drugs post resuscitation</td>
<td>Tammasso Pellis</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-058A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-058B</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of prophylactic antiarrhythmic drugs (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Antiarrhythmic drugs post resuscitation</td>
<td>Mark S. Link</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-058B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-059</td>
<td>In adult patients who are comatose after cardiac arrest (prehospital or in-hospital) (P), does the use of imaging studies (I) as opposed to standard care (C), allow accurate prediction of outcome (O) (eg. survival)?</td>
<td>Imaging studies post resuscitation</td>
<td>Romengyko G. Georgiadis, David M. Greer</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-059.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-060</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) who have cardiovascular dysfunction (P), does the use of mechanical circulatory support (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Mechanical circulatory support post resuscitation</td>
<td>Hitoshi Kano, Sten Robertsson, Tomoyuki Sato</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-060.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-061A</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of a controlled oxygenation strategy (including specific oxygenation goal (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Supplemental oxygen: 100% versus titration</td>
<td>Robert Neumar</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-061A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-PA-061B</td>
<td>In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of a controlled oxygenation strategy (including specific oxygenation goal (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?</td>
<td>Supplemental oxygen: 100% versus titration (duplicate with 11a?)</td>
<td>Gregory P. Comadira</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-PA-061B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-062A</td>
<td>In adult cardiac arrest (prehospital or in-hospital) (P), does an alternate timing for advanced airway insertion (eg. early or delayed (I) as opposed to standard care (standard position in algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Advanced airway placement (timing)</td>
<td>Sebastian G. Russo, Christoph H. Wiese, Daniel Wu</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-062A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-063A</td>
<td>In adult cardiac arrest (prehospital or in-hospital) (P), does an alternate timing for drug delivery (eg. early or delayed) (I) as opposed to standard care (standard position in algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Drug delivery (timing)</td>
<td>James J. Menegazzi, Morten Pytte</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-063A.pdf</td>
</tr>
<tr>
<td>Task Force</td>
<td>WS ID</td>
<td>PICO Title</td>
<td>Short Title</td>
<td>Authors</td>
<td>URL</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-063B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) (P), does an alternate timing for drug delivery (eg. early or delayed) (I) as opposed to standard care (standard position in algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Drug delivery (timing)</td>
<td>Elizabeth A. Hunt, Michael C. McCoy</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-063B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-064B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) (P), initially with a non-shockable rhythm but who develop a shockable rhythm (prehospital or in-hospital) (P), does any specific alteration in treatment algorithm (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Algorithm for transition from non-shockable to shockable rhythm (prehospital or in-hospital) (P)</td>
<td>Masami Ishikawa, Keiichi Tada, Wanchun Tang</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-064B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-064C</td>
<td>In adult cardiac arrest (prehospital or in-hospital) (P), initially with a non-shockable rhythm but who develop a shockable rhythm (prehospital or in-hospital) (P), does any specific alteration in treatment algorithm (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Algorithm for transition from non-shockable to shockable rhythm (prehospital or in-hospital) (P)</td>
<td>Timothy J. Mather</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-064C.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-066B</td>
<td>In adult cardiac arrest due to asthma (P), does any modification of treatment (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Anaphylaxis and cardiac arrest</td>
<td>Eric Bruder</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-066A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-067B</td>
<td>In adult cardiac arrest due to asthma (P), does any modification of treatment (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Asthma and cardiac arrest</td>
<td>John Littell</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-066B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-068B</td>
<td>In adult cardiac arrest during PCI (P), does use of any specific intervention (I) as opposed to standard care (acc to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Cardiac arrest during PCI</td>
<td>Barry Brenner, Fred A. Severyn</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-068B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-069A</td>
<td>In adult cardiac arrest following open (including heart and lung transplantations) and closed heart surgery (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Post op cardiothoracic surgery cardiac arrest</td>
<td>Joel Dunning</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-069A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-069B</td>
<td>In adult cardiac arrest following open (including heart and lung transplantations) and closed heart surgery (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Post op cardiothoracic surgery cardiac arrest</td>
<td>David Zideman</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-069B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-069C</td>
<td>In adult cardiac arrest following open (including heart and lung transplantations) and closed heart surgery (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Post op cardiothoracic surgery cardiac arrest</td>
<td>Peter T. Morley, Will Ross</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-069C.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-070B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to a cardiac tamponade (P), does use of specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Cardiac tamponade</td>
<td>Henry P. Kelperin</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-070B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-071B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to pulmonary embolus (P), does use of etiology specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Pulmonary embolism cardiac arrest</td>
<td>C. Jessica Dine</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-071B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-072A</td>
<td>In adult cardiac arrest (prehospital or in-hospital) (P) due to non-cardiac etiology (eg. hemorrhagic shock, hypovolemic shock, septic shock, neurogenic shock) (P), does use of etiology specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Non-cardiac etiology cardiac arrest</td>
<td>Harinder Dhindsa, V. Ramana, Feuster, Renee D. Reid</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-072A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SAM-073–01A</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to local anesthetic toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Local anesthetic toxicity</td>
<td>Eric J. Levenas, John J. Picard, Richard D. Shih</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SAM-073–01A.pdf</td>
</tr>
</tbody>
</table>

(Continued)
CoSTR Part 8: Worksheet Appendix, Continued

<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICOT Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>ALS-SC-073–02A</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Benzodiazepine toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Benzodiazepine toxicity</td>
<td>Mohamed Alhelaï, Greene Shepherd</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–02A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–03B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Beta blockers toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Beta blocker toxicity</td>
<td>Melissa Givens, Greene Shepherd</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–03B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–04B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Calcium channel blockers toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Calcium channel blocker toxicity</td>
<td>Melissa Givens, Greene Shepherd</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–04B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–05</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Carbon monoxide toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Carbon monoxide toxicity</td>
<td>Eric J. Lavonas, David Lobel</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–05.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–06B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Cocaine toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Cocaine toxicity</td>
<td>Eric J. Lavonas</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–06B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–07</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Cyanide toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Cyanide toxicity</td>
<td>Eric J. Lavonas, David Lobel</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–07.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–08B</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Cycloplegia toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Tricyclic antidepressant toxicity</td>
<td>Allan R. Mottram</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–08B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–09A</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Dicloxacil toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Dicloxacil toxicity</td>
<td>Richard D. Shih</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–09A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-073–10</td>
<td>In adult cardiac arrest (prehospital or in-hospital) due to Opioid toxicity (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Opioid toxicity</td>
<td>Mohammed Alhelaï, Allan R. Mottram</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-073–10.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-074–04A</td>
<td>In mortally obese adult patients with cardiac arrest (prehospital or in-hospital) (P), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Mortal obesity</td>
<td>Pavan Battu</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-074–04A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-076A</td>
<td>In adult cardiac arrest (out-of-hospital and in-hospital) (P), does the treatment of electrolyte disturbances (eg. hypo or hyperkalemia, hypo or hyper magnesium, hypo or hyper calcium) (I), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm, but without treatment of electrolyte disturbances) (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Electrolyte disturbances</td>
<td>William J. Meurer</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-076A.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-076B</td>
<td>In adult cardiac arrest (out-of-hospital and in-hospital) (P), does the treatment of electrolyte disturbances (eg. hypo or hyperkalemia, hypo or hyper magnesium, hypo or hyper calcium) (I), does use of any specific interventions (I) as opposed to standard care (according to treatment algorithm, but without treatment of electrolyte disturbances) (C), improve outcome (O)) (eg. ROSC, survival)?</td>
<td>Electrolyte disturbances</td>
<td>Deborah Direcics</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-076B.pdf</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS-SC-078B</td>
<td>For avalanche victims in out of hospital cardiac arrest (P), what factors when present (I), compared with when absent (C), are associated with/predict an increased survival to hospital discharge (O)?</td>
<td>Avalanche victims</td>
<td>Jeff Boyd, Hermann Brugger</td>
<td>http://circ.ahajournals.org/site/C2010/ALS-SC-078B.pdf</td>
</tr>
</tbody>
</table>

References

182. Morrison et al Part 8: Advanced Life Support S401

Rankin AC, Oldroyd KG, Cheng E, Dow JW, Rae AP, Cobbe SM. Adenosine or adenosine triphosphate for supraventricular tachycardias?

358. Rankin AC, Cunningham MA. Calcium channel blockers as first line treatment for broad complex tachycardia with right bundle branch block: ingenuity or folly? Resuscitation. 2002;52:175–182.

Morrison et al. Part 8: Advanced Life Support

840. Larsson IM, Wallin E, Rubertsson S. Cold saline infusion and ice packs alone are effective in inducing and maintaining therapeutic hypo-

841. Hoedemaker CW, Ezzathi M, Gerritsen A, van der Hoeven JG. Comparison of cooling methods to induce and maintain normo-

842. Scott BD, Hoge T, Fixley MS, Adamson PB. Induced hypothermia following out-of-hospital cardiac arrest; initial experience in a com-

843. Skuile R, Kovarim T, Dostalova G, Kolar J, Linhart A. Induction of mild hypothermia in cardiac arrest survivors presenting with car-

861. Grafton ST, Longstreth WT Jr. Steroids after cardiac arrest: a retro-

862. Jastremski M, Sutton-Tyrell K, Vaagesen P, Abramson N, Heiselman DJ, Safar P; Brain Resuscitation Clinical Trial I Study Group. Glucocor-

863. Ebmeyer U, Safar P, Radovsky A, Xiao F, Capone A, Tanigawa K, Stezoski SW. Thiopental combination treatments for cerebral resusci-

KEY WORDS: arrhythmia • cardiac arrest • cardiopulmonary resuscitation • emergency department • resuscitation
Part 8: Advanced Life Support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations
Laurie J. Morrison, Charles D. Deakin, Peter T. Morley, Clifton W. Callaway, Richard E. Kerber, Steven L. Kronick, Eric J. Lavonas, Mark S. Link, Robert W. Neumar, Charles W. Otto, Michael Parr, Michael Shuster, Kjetil Sunde, Mary Ann Peberdy, Wanchun Tang, Terry L. Vanden Hoek, Bernd W. Böttiger, Saul Drajer, Swee Han Lim and Jerry P. Nolan

Circulation. 2010;122:S345-S421
doi: 10.1161/CIRCULATIONAHA.110.971051
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/122/16_suppl_2/S345

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/