Part 5: Adult Basic Life Support

2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

Michael R. Sayre, Co-Chair*; Rudolph W. Koster, Co-Chair*; Martin Botha; Diana M. Cave; Michael T. Cudnik; Anthony J. Handley; Tetsuo Hatanaka; Mary Fran Hazinski; Ian Jacobs; Koen Monsieurs; Peter T. Morley; Jerry P. Nolan; Andrew H. Travers; on behalf of the Adult Basic Life Support Chapter Collaborators

Note From the Writing Group: Throughout this article, the reader will notice combinations of superscripted letters and numbers (e.g., “Initial Recognition BLS-003A, BLS-003B”). These callouts are hyperlinked to evidence-based worksheets, which were used in the development of this article. An appendix of worksheets, applicable to this article, is located at the end of the text. The worksheets are available in PDF format and are open access.

The 2010 international evidence evaluation process addressed many questions related to the performance of basic life support. These have been grouped into the following categories: (1) epidemiology and recognition of cardiac arrest, (2) chest compressions, (3) airway and ventilation, (4) compression-ventilation sequence, (5) special circumstances, (6) emergency medical services (EMS) system, and (7) risks to the victim. Defibrillation is discussed separately in Part 6 because it is both a basic and an advanced life support skill. In the following summary, each question specific to the population, intervention, control group, and outcome (PICO Question) is listed with the consensus on science and treatment recommendation.

There have been several important advances in the science of resuscitation since the last ILCOR review in 2005. Not all topics reviewed in 2005 were reviewed in 2010. When evaluating the published science, evidence reviewers considered studies with adult and pediatric victims of cardiac arrest published or accepted for publication in peer-reviewed journals. However, the treatment recommendations in this chapter generally are limited to treatment of adult victims of cardiac arrest. Please see Part 10: “Pediatric Basic and Advanced Life Support” for information on basic life support for pediatric cardiac arrest victims. The following is a summary of the most important evidence-based recommendations for the performance of basic life support in adults:

- Rescuers should begin CPR if the victim is unresponsive and not breathing (ignoring occasional gasps). Gasping should not prevent initiation of CPR because gasping is not normal breathing, and gasping is a sign of cardiac arrest.
- Following initial assessment, rescuers may begin CPR with chest compressions rather than opening the airway and delivering rescue breathing.
- All rescuers, trained or not, should provide chest compressions to victims of cardiac arrest.
- A strong emphasis on delivering high-quality chest compressions remains essential: rescuers should push hard to a depth of at least 2 inches (or 5 cm) at a rate of at least 100 compressions per minute, allow full chest recoil, and minimize interruptions in chest compressions.
- Rescuers trained to provide ventilations use a compression-ventilation ratio of 30:2.
- For untrained rescuers, EMS dispatchers should provide telephone instruction in chest compression–only CPR.

Epidemiology and Recognition of Cardiac Arrest

Millions of people die prematurely every year from sudden cardiac arrest (SCA) worldwide, often associated with coronary heart disease. The following section summarizes the burden, risk factors, and potential interventions to reduce the risk.

Epidemiology

Incidence $^{BLS-004B}$

What is the incidence, prevalence, and etiology of cardiopulmonary arrest in-hospital and out-of-hospital?

Consensus on Science

Measuring the global incidence of cardiac arrest is challenging, because there are many different definitions of patient...
populations. The Table lists the average crude incidence per 100,000 population reported for adult cases of cardiac arrest and cases of all ages (children and adults). The number of studies included is shown for each category.1-22

There are no significant differences in the incidence of out-of-hospital cardiac arrest (OHCA) or the incidence of patients in whom resuscitation was attempted with all causes of arrest when comparing Europe, North America, Asia, and Australia. The incidence of patients with OHCA considered for resuscitation is lower in Asia (55 per year per 100,000 population) than in Europe (86), North America (94), and Australia (113). The incidence of patients in OHCA with presumed cardiac cause in whom resuscitation was attempted is higher in North America (58 per year per 100,000 population) than in the other three continents (35 in Europe, 32 in Asia, and 44 in Australia).

For in-hospital cardiac arrest, there are more limited incidence data.23

Recognition of Cardiac Arrest
Early recognition is a key step in the initiation of early treatment of cardiac arrest and relies on using the most accurate method of determining cardiac arrest.

Initial Recognition

In adults and children who are unresponsive (out-of-hospital and in-hospital), are there any specific factors (or clinical decision rules) as opposed to standard assessment that increase the likelihood of diagnosing cardiac arrest (as opposed to nonarrest conditions, such as postseizure, hypoglycemia or intoxication)?

Consensus on Science

Pulse Check

There are no studies assessing the accuracy of checking the pulse to detect human cardiac arrest. There have been 9 LOE D5 studies demonstrating that both lay rescuers24-26 and healthcare providers27-32 have difficulty mastering the pulse check and remembering how to perform it. Three LOE D5 studies support the ability of healthcare providers to perform the pulse check; 2 evaluated the direct ear-to-chest method in infants,33,34 and the third supported an alternative technique for the carotid pulse check when tested by dental students on healthy volunteers.35 In 1 LOE D5 study,36 the technique of simultaneous pulse check and breathing check by professional rescuers increased the diagnostic accuracy.

Two LOE D5 studies32,37 conducted in infants and children with nonpulsatile circulation during extracorporeal membrane oxygenation (ECMO) demonstrated that doctors and nurses in a pediatric tertiary care institution, when blinded to whether the child was receiving ECMO support or not, commonly assessed pulse status inaccurately and often took longer than 10 seconds. In these pediatric studies, healthcare professionals were able to accurately detect a pulse by palpation only 80% of the time. They mistakenly perceived a pulse when it was nonexistent 14% to 24% of the time and failed to detect a pulse when present in 21% to 36% of the assessments. Although some of the children in this study were pulseless, all children had circulation (ie, none were in cardiac arrest), so other signs typically associated with pulseless arrest (delayed capillary refill, poor color) were absent in this population.

Breathing Assessment

Several studies have shown that lay rescuers do not easily master the techniques of breathing assessment, and they are often unable to recognize agonal gasps (LOE D5).25,26,38,39 There is a high incidence of agonal gasps after cardiac arrest (LOE D4), and EMS dispatchers have difficulty in diagnosing agonal gasping.40

Several strategies for teaching students how to differentiate agonal gasps from normal breathing have been evaluated. In 1 LOE D5 study,44 teaching recognition of agonal gasps using a video clip improved the accuracy of lay rescuers in recognizing cardiac arrest. Another study (LOE D5) demonstrated that detection of true cardiac arrest cases improved after introduction of the question “Is he breathing regularly?” in a seizure complaint question sequence used by EMS dispatchers.

Signs of Circulation

In the past, students were taught to recognize cardiac arrest by looking for the absence of signs of circulation, such as movement. No studies were found that measured the sensitivity and specificity of that approach for diagnosing cardiac

<table>
<thead>
<tr>
<th>Table. Global Incidence of Cardiac Arrest per 100,000 Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence Definition (No. of Studies)</td>
</tr>
<tr>
<td>Incidence of out-of-hospital cardiac arrest (n=5)</td>
</tr>
<tr>
<td>Incidence of patients considered for CPR (n=34)</td>
</tr>
<tr>
<td>Incidence of arrest with CPR initiated (n=55)</td>
</tr>
<tr>
<td>Incidence of arrest with CPR initiated, cardiac cause (n=87)</td>
</tr>
<tr>
<td>Adjusted incidence of arrest with CPR initiated, cardiac cause (n=14)</td>
</tr>
<tr>
<td>Percentage of cases with CPR initiated (n=43)</td>
</tr>
<tr>
<td>Percentage of cases with cardiac etiology (n=48)</td>
</tr>
</tbody>
</table>

Downloaded from http://circ.ahajournals.org/ by guest on April 14, 2017
arrest. An LOE D4 study showed that CPR guidance by EMS dispatchers was impeded by callers mentioning “signs of life.”

Treatment Recommendation
It is reasonable that lay rescuers and healthcare professionals use the combination of unresponsiveness and absent or abnormal breathing to identify cardiac arrest. Palpation of the pulse as the sole indicator of the presence or absence of cardiac arrest is unreliable. Agonal gasps are common during cardiac arrest and should not be considered normal breathing. The general public and EMS dispatchers should be taught how to recognize agonal gasps as a sign of cardiac arrest.

Etiology of Cardiac Arrest
In adults and children with presumed cardiac arrest (out-of-hospital and in-hospital), are there any factors/characteristics that increase the likelihood of differentiating between an SCA (ie, VF or pulseless ventricular tachycardia [VT]) and other etiologies (eg, drowning, acute airway obstruction)?

Consensus on Science
In 1 registry study (LOE 2), cardiac arrest was more likely to be due to a cardiac cause in victims above the age of 35 years and to a noncardiac cause up to the age of 35 years. Two other registry studies (LOE 3) do not demonstrate diagnostically useful cutoff ages. An additional registry study (LOE 2) demonstrated that 83% of cardiac arrests under the age of 19 years are of noncardiac origin. One prospective study (LOE 2) and 1 retrospective study (LOE 3) showed that identification of the cause of cardiac arrest by healthcare providers can be inaccurate, leading to an underestimation of noncardiac etiology cardiac arrest, in particular, failure to diagnose exsanguination. Additional studies in children are summarized in Part 10: “Pediatric Basic and Advanced Life Support.”

Treatment Recommendation
For lay rescuers there is insufficient evidence to recommend any diagnostically reliable method to differentiate SCA of cardiac origin from one of noncardiac origin. Except in cases of obvious external causes of cardiac arrest (eg, gunshot wound, drowning), professional rescuers should rely on rhythm analysis from cardiac monitors or AEDs and other diagnostic tests to determine the cause of cardiac arrest.

Check for Circulation During BLS
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does the interruption of CPR to check circulation, as opposed to no interruption of CPR, improve outcome (eg, ROSC, survival)?

Consensus on Science
A study in manikins (LOE D) confirmed a low ability (<50%) of EMS providers to correctly identify the presence of a carotid pulse as an indication to stop further chest compressions. A palpable pulse is usually absent immediately after defibrillation during OHCA (LOE 5). AED algorithms that recommend that rescuers check for a pulse immediately after a shock delivery are not useful and will lead to delay in resumption of chest compressions following shock delivery (LOE 5). Three LOE D5 studies show that measurement of thoracic impedance through the AED electrode pads may be an indicator of return of circulation.

One LOE D5 study in adults and 2 LOE D5 studies in children with nonpulsatile circulation showed that blinded healthcare providers commonly made inaccurate assessments of the presence or absence of a pulse and often took much longer than 10 seconds. Another study (LOE D) showed that accurately determining the presence of a pulse took more than 10 seconds in 95% of cases.

Treatment Recommendation
For lay rescuers, interrupting chest compressions to perform a pulse check is not recommended. For healthcare professionals, it is reasonable to check a pulse if an organized rhythm is visible on the monitor at the next rhythm check.

Epidemiology and Recognition Knowledge Gaps
How accurately do rescuers identify cardiac arrest outside of the hospital? Is advanced technology useful to assist with diagnosing cardiac arrest? Which specific factors improve diagnostic accuracy? What is the accuracy of the pulse check performed by healthcare professionals in cardiac arrest patients? Is there an association between the time required to successfully detect a suspected cardiac arrest victim’s pulse and resuscitation outcome? Is there a difference in outcome when the decision to start CPR is based on the absence of consciousness and normal breathing as opposed to absence of a pulse?

Chest Compressions
Several components of chest compressions can alter effectiveness: hand position, position of the rescuer, position of the victim, and depth and rate of compression and decompression. Evidence for these techniques was reviewed in an attempt to define the optimal compression method.

Chest Compression Technique
Actual Hand Position During Compressions
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does the use of any specific placement of hands for external chest compressions compared with standard care (eg, “lower half of the victim’s sternum”) improve outcome (eg, ROSC, survival)?

Method to Locate Hand Position
In rescuers performing CPR on adults or children with cardiac arrest (out-of-hospital and in-hospital), does the use of any specific method for locating the recommended hand position compared with standard care (eg, “placement of the rescuer’s hands in the middle of the chest”) improve outcome (eg, time to commence CPR, decreased hands-off time, ROSC, survival)?
Consensus on Science
No randomized controlled human trials support use of an alternative to the hand position recommended in 2005 (“The rescuer should compress the lower half of the victim’s sternum”) when performing external chest compressions for adults or children in cardiac arrest.

In 1 study of CT scans, the internipple line was 3 cm superior to the lower third of the sternum (LOE 5). One LOE 5 study of adult surgical patients demonstrated that if the rescuer’s hands are placed on the internipple line, hand deviation to or beyond the xiphisternum occurs in nearly half the cases, sometimes into the epigastrium.

During transesophageal echocardiography of humans receiving chest compressions with placement of the hands on the lower half of the sternum, the area of maximal compression was most often over the base of the left ventricle and the aortic root, a location that potentially impedes forward flow of blood (LOE 4).

In 4 LOE 5 adult manikin studies locating the recommended hand position for chest compression using the instruction “place hands in center of the chest” resulted in a significant reduction in hands-off time and no significant reduction in accuracy compared with locating the rib margins and xiphisternum. One LOE 5 adult manikin study showed a similar reduction in hands-off time but also loss of hand-placement accuracy. In a single LOE 5 study using a template of an infant, placing the fingers in the recommended position on the chest (below the internipple line) resulted in placement of fingers over the xiphisternum and abdomen.

Treatment Recommendation
For adults receiving chest compressions, it is reasonable for rescuers to place their hands on the lower half of the sternum. It is reasonable to teach this location in a simplified way, such as, “Place the heel of your hand in the center of the chest with the other hand on top.” This instruction should be accompanied by a demonstration of placing the hands on the lower half of the sternum. Use of the internipple line as a landmark for hand placement is not reliable.

Chest Compression Rate
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does the use of any specific rate for external chest compressions compared with standard care (ie, approximately 100/min) improve outcome (eg, ROSC, survival)?

Consensus on Science
The number of chest compressions during a certain period (eg, 1 minute) given to cardiac arrest patients is determined by 2 factors: the time interval between compressions (ie, the compression rate) and the duration of any interruptions in compressions. One LOE 4 study of in-hospital cardiac arrest patients showed that chest compression rates >80/min were associated with ROSC. An observational study of 506 patients with out-of-hospital cardiac arrest showed improved survival to hospital discharge with increasing chest compression fraction (CCF, ie, proportion of total resuscitation time during which compressions are delivered), and best results when a CCF >0.60 was achieved. With compression rates between 100 and 127 per minute, this CCF corresponded with >60 chest compressions delivered in each minute. However, there was not an association between compression rate and survival (LOE 470).

Treatment Recommendation
It is reasonable for lay rescuers and healthcare providers to perform chest compressions for adults at a rate of at least 100 compressions per minute. There is insufficient evidence to recommend a specific upper limit for compression rate. Pauses should be minimized to maximize the number of compressions delivered per minute.

Chest Compression Depth
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does any specific compression depth, as opposed to standard care (ie, depth specified in treatment algorithm), improve outcome (eg, ROSC, survival)?

Consensus on Science
Three adult human LOE 4 studies showed that the measured compression depth during adult human resuscitation is often less than 4 cm (1.5 inches). No human studies directly compared the effectiveness of a compression depth of 4 to 5 cm (1.5 to 2 inches) with alternative compression depths.

One adult human LOE 4 case series, 2 adult human studies with retrospective control groups (LOE 3/75,76), and 1 LOE 5 study suggest that compressions of 5 cm (2 inches) or more may improve the success of defibrillation and ROSC. These findings are supported by 3 swine studies (LOE 5) showing improved survival with deeper compression depths and 1 adult human study (LOE 4) showing that improved force on the chest produced a linear increase in systolic blood pressure. However, 1 swine study (LOE 5) reported no improvement of myocardial blood flow with increased compression depth from 4 cm to 5 cm, although coronary perfusion pressure (CPP) improved from 7 to 14 mm Hg.

Treatment Recommendation
It is reasonable to compress the sternum at least 2 inches/5 cm for all adult cardiac arrest victims. There is insufficient evidence to recommend a specific upper limit for chest compression depth.

Chest Decompression
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does optimizing chest wall recoil during CPR, compared with standard care, improve outcome (eg, ROSC, survival)?

Consensus on Science
There are no human studies specifically evaluating ROSC or survival to hospital discharge with or without complete chest wall recoil during CPR. One LOE 4 out-of-hospital case series documented a 46% incidence of incomplete chest recoil by professional rescuers using the CPR technique.
recommended in 2000, and 2 in-hospital pediatric case series demonstrated a 23% incidence of incomplete recoil that was more common just after switching providers of chest compressions (LOE 493,95). Another LOE 4 study86 electronically recorded chest recoil during in-hospital pediatric cardiac arrests and found that leaning on the chest occurred in half of all chest compressions. Animal studies (LOE 587,88) demonstrate significant reductions in mean arterial pressure, coronary perfusion pressure, cardiac output, and myocardial blood flow with only small amounts of incomplete chest recoil. Chest recoil can be increased significantly with simple techniques; for example, lifting the heel of the hand slightly but completely off the chest during CPR improved chest recoil in a manikin model. However, these alternative techniques may also reduce compression depth (LOE 593,95).

Treatment Recommendation

While allowing complete recoil of the chest after each compression may improve circulation, there is insufficient evidence to determine the optimal method to achieve the goal without compromising other aspects of chest compression technique.

Firm Surface for Chest CompressionsBLS-035A, BLS-035B

For adults or children in cardiac arrest on a bed (out-of-hospital and in-hospital), does the performance of CPR on a hard surface like a backboard or deflatable mattress, compared with performance of CPR on a regular mattress, improve outcome (eg, ROSC, survival)?

Consensus on Science

One case series (LOE 490) and 4 manikin studies (LOE 591–94) demonstrated that chest compressions performed on a bed are often too shallow. However, the case series (LOE 490) and 1 of the manikin studies (LOE 594) found that accelerometer-based CPR feedback devices failed to correct for compression of the underlying mattress, so it overestimated actual compression depth and may have contributed to delivery of shallow chest compressions. Two studies using manikins weighted to 70 kg (LOE 594,95) suggested that adequate compressions can be performed on a bed if the immediate feedback mechanism measures actual chest compression, regardless of the presence or absence of a backboard. No studies have examined the risks or benefits of moving the patient from a bed to the floor to perform CPR.

No studies in humans have evaluated the risks or benefits of placing a backboard beneath a patient during CPR. Manikin studies (LOE 594,96,97) suggested that placing a backboard may improve compression depth by a few millimeters. One manikin study (LOE 598) showed that deflating a special mattress improved compression efficiency, but another manikin study (LOE 599) failed to demonstrate any benefit from deflating an air-filled mattress.

Treatment Recommendation

CPR should be performed on a firm surface when possible. Air-filled mattresses should be routinely deflated during CPR. There is insufficient evidence for or against the use of backboards during CPR. If a backboard is used, rescuers should minimize delay in initiation of chest compressions, minimize interruption in chest compressions, and take care to avoid dislodging catheters and tubes during backboard placement.

Feedback for Chest Compression QualityBLS-020A, BLS-020B

In adults and children in cardiac arrest (out-of-hospital and in-hospital), does the use of feedback regarding the mechanics of CPR quality (eg, rate and depth of compressions and/or ventilations), compared with no feedback, improve any outcomes (eg, ROSC, survival)?

Consensus on Science

Chest compression frequency, rate, and depth provided by lay responders (LOE 490), hospital teams (LOE 491), and EMS personnel (LOE 473,100) were insufficient when compared with recommended methods. Ventilation rates higher than recommended during CPR will impede venous return (LOE 5101).

CPR feedback/prompt devices may improve several discrete measures (ventilation rate, end-tidal CO\textsubscript{2}, and compression rate, depth, and chest recoil) that have been linked with CPR quality. Eleven studies investigated the effect of giving real-time CPR performance feedback to rescuers during actual cardiac arrest events in both in-hospital and out-of-hospital settings. Two studies in adults (LOE 2102,103) and 1 study in children (LOE 2104) showed improved end-tidal CO\textsubscript{2} measurements and consistent chest compression rates when feedback was provided from audio prompts (metronomes or sirens).

In 4 LOE 3 studies75,86,105,106 and 2 LOE 4 studies,76,107 real-time feedback from force transducers and accelerometer devices was useful in improving CPR quality metrics, including compression depth, rate, and complete chest recoil. Two manikin studies (LOE 590,94) demonstrated the potential for overestimating compression depth when using an accelerometer chest compression feedback device if compressions are performed (with or without a backboard) on a soft surface. No studies to date have demonstrated a significant improvement in long-term survival related to the use of CPR feedback/prompt devices during actual cardiac arrest events (LOE 373).

In 1 retrospective analysis of cardiac arrest records and 1 report of 2 cases (LOE 4108,109), changes in transthoracic impedance were potentially useful to measure ventilation rate and detect esophageal intubation. In a case series (LOE 4110), capnography and chest-wall impedance algorithms were inaccurate for determining ventilation rate.

Treatment Recommendation

It is reasonable for providers and EMS agencies to monitor and improve CPR quality, ensuring adherence to recommended compression rate and depth and ventilation rates. Real-time chest compression–sensing and feedback/prompt technology (ie, visual and auditory prompting devices) may be useful adjuncts during resuscitation efforts. However, rescuers should be aware of the potential overestimation of compression depth when the victim is on a soft surface.
Altrenative Compression Techniques

"Cough" CPRBLS-017A, BLS-017B, BLS-017C
In adult cardiac arrest (out-of-hospital and in-hospital), does the use of alternative methods of manual CPR (eg, cough CPR, precordial thump, fist pacing), compared with standard CPR, improve any outcomes (eg, ROSC, survival)?

Consensus on Science
A few case reports (LOE 4111–118) documented limited benefit of cough CPR during the initial seconds to minutes of cardiac arrest in patients who remained conscious in a controlled, monitored setting of electrophysiology testing with patient instruction prior to the onset of anticipated cardiac arrest.

Treatment Recommendation
Use of cough CPR may be considered only for patients maintaining consciousness during the initial seconds to minutes of VF or pulseless VT cardiac arrest in a witnessed, monitored, hospital setting (such as a cardiac catheterization laboratory).

Precordial ThumpBLS-017A, BLS-017B, BLS-017C
In adult cardiac arrest (out-of-hospital and in-hospital), does the use of alternative methods of manual CPR (eg, cough CPR, precordial thump, fist pacing), compared with standard CPR, improve any outcomes (eg, ROSC, survival)?

Consensus on Science
In 5 prospective case series of out-of-hospital (LOE 4119–123) and 2 series (LOE 4120,121) of in-hospital VF cardiac arrest, healthcare provider administration of the precordial thump did not result in ROSC.

In 3 prospective case series of VT in the electrophysiology laboratory (LOE 4120,124,125), administration of the precordial thump by experienced cardiologists was of limited use (1.3% ROSC). When events occurred outside of the electrophysiology laboratory, in 6 case series of in- and out-of-hospital VT (LOE 4121–123,126–128), the precordial thump was followed by ROSC in 19% of patients. Rhythm deterioration following precordial thump occurred in 3% of patients and was observed predominantly in patients with prolonged ischemia or digitalis-induced toxicity.

In 3 case series of asystolic arrest (LOE 4119,122,129), the precordial thump, but not fist pacing, was sometimes successful in promoting ROSC when administered by healthcare providers to patients with witnessed asystole (some clearly p-wave asystolic arrest) for OHCA and in-hospital cardiac arrest.

Two case series (LOE 4123,130) and a case report(LOE 5131) documented the potential for complications from use of the precordial thump, including sternal fracture, osteomyelitis, stroke, and rhythm deterioration in adults and children.

Fist PacingBLS-017A, BLS-017B, BLS-017C
In adult cardiac arrest (out-of-hospital and in-hospital), does the use of alternative methods of manual CPR (eg, cough CPR, precordial thump, fist pacing), compared with standard CPR, improve any outcomes (eg, ROSC, survival)?

Consensus on Science
There is little evidence supporting fist or percussion pacing in cardiac arrest, particularly when the effect of the maneuver cannot be confirmed by continuous electrocardiographic (ECG) monitoring and assessment of a pulse. Evidence consists of 6 single-patient case reports (LOE 4132–137) and a moderate-sized case series (LOE 4138) with mixed asystole and bradycardia.

Treatment Recommendation
For patients in cardiac arrest, percussion (fist) pacing is not recommended.

Chest Compression Technique Knowledge Gaps
What is the optimal hand position for maximizing cardiac output? How well is the simple method of teaching hand placement retained? Does a chest compression rate faster than 100/min increase long-term survival from cardiac arrest? What is the minimum number or count of chest compressions to be delivered each minute to enhance survival? What is the relationship between chest compression rate and depth? Does a chest compression depth greater than 5 cm improve survival? What is the chest compression depth beyond which complications increase? What is the optimal technique to facilitate complete chest recoil and maximize survival? When does use of CPR feedback/prompt devices translate to improvements in survival?

Airway and Ventilation
The best method of obtaining an open airway and the optimum frequency and volume of artificial ventilation were reviewed.

Airway
Opening the AirwayBLS-011A, BLS-011B
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does the provision of airway maneuvers by bystanders, as opposed to no such maneuvers, improve outcome (eg, ROSC, survival)?

Consensus on Science
Evidence from a case series of drowning victims (LOE 4139) and 6 prospective clinical studies in patients under anesthesia that evaluated clinical (LOE 5140–142) or radiological (LOE
measures of airway patency indicates that the head tilt–chin lift maneuver is feasible, safe, and effective. Two prospective clinical studies evaluating clinical (LOE 5146) or radiological (LOE 5147) measures supported the chin lift maneuver in children under anesthesia, while 3 other prospective clinical studies failed to prove the effect compared to neutral position (LOE 5148–150). Of 5 studies of the effectiveness of the jaw thrust maneuver to open the airway of patients who received general anesthesia, 3 were supportive (LOE 5148,151,152), 1 was neutral (LOE 5150), and 1 opposed it (LOE 5153).

One LOE 5 study in anesthetized children154 recommended the jaw lift with the thumb in the mouth. However, 3 studies have reported harm to the victim (LOE 5155,156) or rescuer (LOE 4139) from inserting digits into the mouth in attempts to clear the airway.

Treatment Recommendation

For unresponsive adults and children, it is reasonable to open the airway using the head tilt–chin lift maneuver when assessing breathing or giving ventilations.

Passive Ventilation

In adults and children with cardiac arrest (out-of-hospital and in-hospital) and receiving chest compression–only CPR, does the addition of any passive ventilation technique (eg, positioning the body, opening the airway, passive oxygen administration) as opposed to no addition improve outcome (eg, ROSC, survival)?

Consensus on Science

No study was identified that reported outcomes from lay rescuer techniques for airway maintenance and oxygen insufflation during chest compression–only CPR. Furthermore, no study was identified that compared outcomes of any passive airway or ventilation technique with no airway or ventilation technique during chest compression–only CPR. One LOE 2 study157 failed to show a difference in neurologically intact survival when comparing EMS use of high-flow passive insufflation of oxygen through an oropharyngeal airway with bag-mask ventilation interposed during minimally interrupted chest compressions. Two other studies (LOE 5158,159) reported improved survival for OHCA patients receiving minimally interrupted chest compressions by EMS personnel. These studies evaluated variable, nonrandomized use of passive oxygen insufflation by nonrebreather mask or interposed bag-mask ventilation and did not include a control group (ie, without any airway/ventilation intervention).

Treatment Recommendation

For lay rescuers performing chest compression–only CPR, there is insufficient evidence to recommend the use of any specific passive airway maneuver or adjunct ventilation device.

Foreign-Body Airway Obstruction

Like CPR, relief of foreign-body airway obstruction (FBAO) is an urgent procedure that should be taught to laypersons.160 Evidence for the safest, most effective, and simplest methods was sought.

In adults and children with FBAO (out-of-hospital and in-hospital), does the provision of abdominal thrusts, and/or back slaps, and/or chest thrusts, compared with no action, improve outcome (eg, clearance of obstruction, ROSC, survival)?

Consensus on Science

Case series and case reports have documented successful relief of FBAO in conscious victims with the use of back blows (LOE 4161,162), abdominal thrusts (LOE 4161–165), and chest thrusts (LOE 4161; LOE 5166). More than 1 technique was occasionally required to relieve the obstruction.

Thirty-two case reports have documented life-threatening complications associated with the use of abdominal thrusts.160,167 One randomized trial of maneuvers to clear the airway in cadavers (LOE 5168) and 2 prospective studies in anesthetized volunteers (LOE 5166,169) showed that higher airway pressures could be generated by using the chest thrust rather than the abdominal thrust. In a few case reports, a finger sweep was effective for relieving FBAO in unconscious adults and children aged >1 year (LOE 4161,162,170). Case reports documented harm to the victims or biting of the rescuer’s finger with finger sweeps (LOE 4145,171 and LOE 5155,156,173).

Treatment Recommendation

Chest thrusts, back blows, or abdominal thrusts are effective for relieving FBAO in conscious adults and children >1 year of age. These techniques should be applied in rapid sequence until the obstruction is relieved. More than 1 technique may be needed; there is insufficient evidence to determine which should be used first. The finger sweep may be used in the unconscious patient with an obstructed airway if solid material is visible in the airway. At this time, there is insufficient evidence for a treatment recommendation specific for an obese or pregnant patient with FBAO.

Ventilation

Tidal Volumes and Ventilation Rates

In adults in cardiac arrest (out-of-hospital and in-hospital) who are NOT intubated, does providing ventilation with a 1-second inspiratory time and tidal volume of about 600 mL compared with other inspiratory times and tidal volumes improve any outcomes (including ventilation, oxygenation)?

Consensus on Science

In 3 human studies (LOE 5174–176), tidal volumes of 600 mL using room air were sufficient to maintain oxygenation and normocarbia in apneic patients. When tidal volumes less than 500 mL were used, supplementary oxygen was needed to achieve satisfactory oxygenation. Three studies of mechanical models (LOE 5177–179) found no clinically important difference in tidal volumes when a 1- or 2-second inspiratory time was used. In 1 human study with 8 subjects (LOE 4180), expired air resuscitation using tidal volumes of 500 to 600 mL led to hypoxia and hypercarbia.
Treatment Recommendation
For mouth-to-mouth ventilation for adult victims using exhaled air or bag-mask ventilation with room air or oxygen, it is reasonable to give each breath within a 1-second inspiratory time and with an approximate volume of 600 mL to achieve chest rise. It is reasonable to use the same initial tidal volume and rate in patients regardless of the cause of the cardiac arrest.

Airway and Ventilation Knowledge Gaps
What is the effectiveness of airway maneuvers by bystanders during standard and chest compression–only CPR? What is the optimal ventilation tidal volume in cardiac arrest patients?

Compression-Ventilation Sequence
In the basic life support/CPR sequence for the lone rescuer, the choice is between starting with airway and breathing (ventilation) or starting with chest compressions. Because of the importance of initiating chest compressions as soon as possible, the need for initial breaths is questioned.

Starting CPR
In adults and children in cardiac arrest (out-of-hospital and in-hospital), does the use of compressions first (30 compressions then 2 breaths) compared with standard care (2 breaths and then 30 compressions) improve outcome (eg, ROSC, survival)?

Consensus on Science
There is no published human or animal evidence to determine whether starting CPR in adults or children with 30 compressions rather than 2 ventilations leads to improved outcomes.

Evidence from 1 observational, adult manikin LOE 5 study\(^\text{182}\) shows that starting with 30 compressions rather than 2 ventilations leads to a shorter delay to first compression.

Treatment Recommendation
For treatment of adult victims of cardiac arrest, starting CPR with chest compressions rather than ventilations may be considered.

Effect of Interruptions on Delivery of Chest Compressions
Interruptions to chest compressions during CPR must be minimized. Legitimate reasons for the interruption of CPR include the need to ventilate, the need to assess the rhythm or to assess ROSC, and the need to defibrillate.

Interruption of Compressions for Post-Shock Rhythm Analysis\(^\text{BLS-025A, BLS-025B}\)
- In patients with VF, will the resumption of chest compressions, compared with delayed initiation for rhythm analysis, result in better outcomes?\(^\text{BLS-022A}\)
- In adults and children with cardiac arrest (out-of-hospital and in-hospital), does the minimization of hands-off time for rhythm analysis, including frequency and duration of checks, as opposed to standard care (according to treatment algorithm) improve outcome (eg, ROSC, survival)?\(^\text{BLS-025A, BLS-025B}\)

Consensus on Science
In 2 observational studies (LOE 4\(^\text{171,173}\)) and secondary analyses of 2 randomized trials (LOE 5\(^\text{153,182}\)), interruptions of chest compressions were common. Interruption of CPR was associated with a decreased probability of conversion of VF to another rhythm (LOE 5\(^\text{182}\)).

In 2 case series (LOE 4\(^\text{153,154}\)), a palpable pulse was rarely present immediately after defibrillation, suggesting that a pulse check after a shock is not useful and delays the resumption of chest compressions. However, in 1 randomized study (LOE 1\(^\text{183}\)), immediate resumption of chest compressions after defibrillation was associated with earlier VF recurrence when compared to a pulse check prior to resumption of CPR; there was no difference in cumulative incidence of VF 60 seconds after the shock.

Five animal studies (LOE 5\(^\text{184–188}\)) and 1 human study (LOE 5\(^\text{182}\)) confirmed that more interruption of chest compressions during CPR reduced ROSC and survival. In 2 adult out-of-hospital witnessed VF studies (LOE 3\(^\text{221,255}\)) and 3 animal studies (LOE 5\(^\text{185,188,189}\)), immediate resumption of chest compressions after defibrillation was associated with better survival rates and/or survival with favorable neurologic outcome compared with immediate rhythm analysis and delayed resumption of chest compression. Another LOE 1 randomized study\(^\text{180}\) of an AED protocol based on the 2005 Guidelines,\(^\text{160,167}\) which included CPR during charging and immediate resumption of chest compressions after shock delivery, did not show significantly improved survival to admission or to discharge.

There is no evidence for or against immediate resumption of chest compressions in adults with VF of short duration.

Treatment Recommendations
Rescuers should minimize interruptions of chest compressions during the entire resuscitation attempt.

Use of Filtering Devices for Rhythm Analysis During CPR
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does the analysis of cardiac rhythm during chest compressions compared with standard care (analysis of cardiac rhythm during pauses in chest compressions) optimize the time of appropriate chest compression by avoiding unnecessary interruptions and unnecessary prolongations?

Consensus on Science
In 6 LOE 5 studies\(^\text{191–196}\) using human-derived ECG recordings with actual or simulated CPR artifacts and 1 LOE 5 study in a swine model of VF,\(^\text{197}\) the use of computerized algorithms that removed compression artifacts from the ECG during CPR reduced the accuracy of rhythm analysis relative to rhythm analysis during pauses. Sensitivity was between 90% and 98%, which would cause inappropriate prolongations in chest compression for shockable rhythms in up to 1 out of 10 patients. Specificity was between 80% and 89%, which could result in inappropriate interruptions in chest compression for...
shock delivery in victims who actually had nonshockable rhythms.

Treatment Recommendations
There is insufficient evidence to support or refute the use of artifact-filtering algorithms for analysis of ECG rhythm during CPR.

Compression-Ventilation Ratio During CPR
Any recommendation for a specific CPR compression-ventilation ratio represents a compromise between the need to generate blood flow and the need to supply oxygen to the lungs and remove carbon dioxide (CO₂) from the blood. At the same time, any such ratio must be taught to would-be rescuers, so the effect of the compression-ventilation ratio on skills acquisition and retention must be considered.

In adults and children in cardiac arrest (out-of-hospital and in-hospital), does the use of an alternative compression-ventilation ratio, compared with standard care (30:2 compression to ventilation ratio), improve outcome (eg, ROSC, survival)?

Consensus on Science
Evidence from 6 human studies (LOE 314,219,199, LOE 470; LOE 59) in adults and 23 additional studies (LOE 5: animal, manikin, and computer models) provides conflicting information about the optimal compression-ventilation ratio to maximize ROSC and survival to hospital discharge when CPR is administered by lay rescuers or by professional rescuers to patients with cardiac arrest in any setting.

In 2005, a single compression-ventilation ratio of 30:2 for the lone rescuer of an infant, child, or adult victim was recommended.200,201 After implementation of this new guideline, 2 studies (LOE 321,199) showed improvement of survival compared to survival with use of the previous 15:2 compression-ventilation ratio. However, other studies (LOE 314,198,202) failed to show any beneficial effect of the new guidelines on survival, although the potential contribution of each change in the guidelines could not be assessed.

Animal studies (LOE 5) showed improved survival with a compression-ventilation ratio above 30:2,203,204 However, a compression-ventilation ratio of more than 100:2 was associated with a low ROSC rate and reduced arterial partial pressure of oxygen.205 The mathematical studies (LOE 5) suggested that the optimal compression-ventilation ratio was near 30:2 for healthcare professionals and near 60:2 for lay rescuer206 or was a function of body weight in children.207 Other theoretical studies have recommended ratios of 15:2 or 50:5208 around 20:1.209

Many manikin studies (all LOE 5) showed that CPR performance, quality, and rescuer’s fatigue were not significantly different with differing compression-ventilation ratios,204,210–213 while others showed mixed results among various compression-ventilation ratios from 5:1 to 60:2,64,214–219

Treatment Recommendation
A compression-ventilation ratio of 30:2 is reasonable for an adult victim of cardiac arrest whose airway is not secured.

Chest Compression–Only CPR
Any recommendation regarding the use of compression-only CPR versus standard CPR is dependent not only on the skill level and ability of the provider (eg, untrained layperson, trained layperson, professional rescuer) but also on the patient (eg, age and etiology of arrest) and the situation (eg, number of providers, phases of prehospital care).

- In adults in cardiac arrest, does the calling of EMS and the provision of chest compressions (without ventilation) by trained laypersons or professionals compared with calling EMS only improve survival to hospital discharge? BLS-046A, BLS-046B
- In adults in cardiac arrest, does the provision of chest compressions (without ventilation) from bystanders, both trained and untrained, compared with chest compressions plus mouth-to-mouth breathing, improve survival to hospital discharge? BLS-047A, BLS-047B
- In adults in cardiac arrest, does provision of chest compressions (without ventilation) by EMS, compared to chest compressions plus ventilations, improve survival to hospital discharge? BLS-049A, BLS-049B

Consensus on Science
There are no human studies that have compared compression-only CPR with standard CPR using a 30:2 ratio of compressions to ventilations. Multiple mathematical and educational studies (LOE 67,206,208,213,220–223) show some supporting evidence favoring a high compression-ventilation ratio or compression-only CPR. Some animal models of sudden VF cardiac arrest (LOE 518,186,203,224) demonstrate benefits of compression-only CPR compared with conventional CPR. Additional animal studies (LOE 5225–231) demonstrate neutral evidence, while other animal studies (LOE 5184,232–236) show advantages to adding ventilations to chest compressions.

Evidence from 1 interventional human trial (LOE 1237) and 8 observational studies (LOE 78,15,99,238–241; LOE 324) document consistent improvement in survival to hospital discharge when compression-only CPR compared with no CPR is administered by untrained or trained bystanders to adults with an out-of-hospital witnessed cardiac arrest.

Four human studies (LOE 1235,158; LOE 3243) demonstrated that provision of continuous chest compressions by trained professional (EMS) providers led to an improvement in survival to hospital discharge compared to standard CPR. Lower methodological rigor limits the ability to determine whether those improvements in survival were attributable to the provision of continuous chest compressions without pauses for ventilation or to other factors.

However, 3 additional studies (LOE 1244; LOE 2245; LOE 5246) failed to consistently show improvement in survival to hospital discharge when compression-only CPR compared with conventional CPR was administered by professionals to adult patients with an OHCA.

Evidence from 1 LOE 2 large pediatric prospective observational investigation247 showed that children in cardiac arrest of noncardiac etiology (asphyxial arrest) had higher 30-day survival with more favorable neurological outcome if they received standard bystander CPR (chest compressions...
with rescue breathing) compared with chest compression-only CPR. Standard CPR and chest compression-only CPR were similarly effective and better than no bystander CPR for pediatric cardiac arrest from cardiac causes. Of note, the same study showed that more than 50% of children with OHCA did not receive any bystander CPR. Compression-only CPR was as ineffective as no CPR in the small number of infants and children with asphyxial arrest.

Treatment Recommendation
All rescuers should perform chest compressions for all patients in cardiac arrest. Chest compressions alone are recommended for untrained laypersons responding to cardiac arrest victims. Performing chest compressions alone is reasonable for trained laypersons if they are incapable of delivering airway and breathing maneuvers to cardiac arrest victims. The provision of chest compressions with ventilation is reasonable for trained laypersons who are capable of giving CPR with ventilations to cardiac arrest victims.

Professional rescuers should provide chest compressions with ventilations for cardiac arrest victims. There is insufficient evidence to support or refute the provision of chest compressions plus airway opening and oxygen insufflation by professional rescuers during the first few minutes of resuscitation from cardiac arrest.

Chest Compression Knowledge Gaps
What is the optimal duration of CPR following administration of a defibrillation shock prior to rechecking the patient? Can ECG rhythm analysis during chest compressions be incorporated into resuscitation algorithms? Should the compression to ventilation ratio vary according to the victim’s age or arrest etiology? What is the effect of compression-only CPR by bystander training on the overall survival of OHCA in the community compared to standard CPR training? What is the effect of compression-only CPR training on the willingness of bystanders to perform CPR compared to standard CPR training? Does EMS provision of chest compressions plus airway opening and oxygen insufflation improve long-term survival of cardiac arrest when compared with high-quality CPR using a 30:2 compression to ventilation ratio?

Special Circumstances

Cervical Spine Injury
For victims of suspected spinal injury, additional time may be needed for careful assessment of breathing and circulation, and it may be necessary to move the victim if he or she is found face down.

Face-Down Victim
In adults and children with cardiac arrest (out-of-hospital and in-hospital) and suspected major injury, does any different strategy for positioning (e.g., leaving them in the position in which they are found), as opposed to standard care (i.e., positioning the victim on his or her back), improve outcome (e.g., ROSC, survival)?

Consensus on Science
No human studies have evaluated the relative benefits of strategies for positioning adults and children with cardiac arrest and suspected major injury. Head position is an important factor affecting airway patency (LOE 5248), and it is more difficult to check for breathing with the victim in a face-down position. Checking for breathing by lay and professional rescuers is often inaccurate when done within the recommended 10 seconds (LOE 516,39). A longer time to check for breathing will delay CPR and may compromise outcome.

Consensus on Science
In adults and children with OHCA does the description of any specific symptoms to the dispatcher compared with the absence of any specific description improve accuracy of the diagnosis of cardiac arrest?

Consensus on Science
One before-and-after trial (LOE D250) demonstrated a significant increase from 15% to 50% in cardiac arrest recognition after the implementation of a protocol requiring that EMS dispatchers assess absence of consciousness and quality of breathing (normal/not normal). Many descriptive studies (LOE D4,251–259) using a similar protocol to identify cardiac arrest report a sensitivity on the order of 70%, ranging from 38\%255 to 97\%,259 and a high specificity ranging from 95\%254 to 99\%.256

One case-control trial (LOE D249), 1 before-and-after trial (LOE D343), and 4 observational studies (LOE D4,41,42,260,261) describe agonal gasps or abnormal breathing as a significant barrier to cardiac arrest recognition by emergency medical dispatchers. Two before-and-after trials (LOE D3,262,263) improved the recognition of abnormal breathing using education or counting of breaths. Information spontaneously provided by the caller about the quality of breathing and other information such as facial color or describing the victim as “dead” can aid in identifying cardiac arrest cases (LOE D3,249,262,263).

One descriptive study (LOE D4,264) suggests that in cases where the victim’s problem is “unknown” to the EMS
dispatcher, inquiring about the victim’s level of activity (standing, sitting, moving, or talking) helps to identify cases who are not in cardiac arrest. Two descriptive studies (LOE D4261,265) suggest that confirming the absence of a past medical history of seizure may increase the likelihood of recognizing cardiac arrest among victims presenting with seizure activity. A case-control study (LOE D345) suggests that asking about regularity of breathing may help to recognize cardiac arrest among callers reporting seizure activity.

Treatment Recommendation
EMS dispatchers should inquire about a victim’s absence of consciousness and quality of breathing (normal/not normal) when attempting to identify cardiac arrest victims. If the victim is unresponsive, it is reasonable to assume that the victim is in cardiac arrest when callers report that breathing is not normal. Dispatchers should be specifically educated about identification of abnormal breathing in order to improve cardiac arrest recognition. The correct identification of cardiac arrest may be increased by careful attention to the caller’s spontaneous comments and by focused questions about seizures.

Dispatcher Instruction in CPR
In adults and children with cardiac arrest (out-of-hospital and in-hospital), does the provision of dispatch CPR instructions, as opposed to no instructions, improve outcome (eg, ROSC, survival)?

Consensus on Science
Three studies (LOE 2249,258,266) provide evidence that dispatcher telephone CPR instructions may improve survival from OHCA. In 3 randomized trials (LOE 1237–237b), compression-only dispatcher telephone CPR instruction produced survival to discharge at least equivalent to compression plus ventilation dispatcher telephone CPR instruction. Five additional simulation studies (LOE 5267,220,223,267,268) demonstrated that simplified chest compression–only telephone instructions in CPR reduce barriers to achieving reasonable-quality bystander CPR.

In 4 simulation studies (LOE 5260–272), video-enabled cell phone delivery of visual CPR instructions enhanced performance of CPR. However, in another simulation study (LOE 5273), simplified CPR instructions did not improve performance of bystander CPR by elderly rescuers.

Treatment Recommendation
Bystanders who call their local emergency response number should receive initial instructions on performing CPR. Dispatchers should assertively provide compression-only CPR instructions to untrained rescuers for adults with suspected OHCA without any delay. If dispatchers suspect asphyxial arrest, it is reasonable to provide instructions on rescue breathing followed by chest compressions. When performing quality improvement efforts, it is reasonable to assess the accuracy and timeliness of dispatcher recognition of cardiac arrest and the delivery of CPR instructions.

Risks to Victim
Many rescuers are concerned that delivering chest compressions to a victim who is not in cardiac arrest will lead to serious complications, and thus, they do not initiate CPR for some victims of cardiac arrest.

Risks for the Victim
In adults and children who are NOT in cardiac arrest, how often does provision of chest compressions from lay rescuers lead to harm (eg, rib fracture)?

Consensus on Science
There are no data to suggest that the performance of CPR by bystanders leads to more complications than CPR performed by professional rescuers. One LOE 4 study274 documented no difference in the incidence of injuries on chest radiograph for arrest victims with and without bystander CPR. One LOE 5275 study documented a higher rate of complications among inpatient arrest victims treated by less-experienced (non-ICU) rescuers. Four LOE 5276–279 reports document bystander CPR-related injuries in individual cases. Only 1 of these276 was a patient who was not in cardiac arrest.

Two LOE 4 studies237,280 reported that serious complications among nonarrest patients receiving dispatch-assisted bystander CPR occurred infrequently. Of 247 nonarrest patients with complete follow-up who received chest compressions from a bystander, 12% experienced discomfort; only 5 (2%) suffered a fracture; and no patients suffered visceral organ injury.280

Treatment Recommendation
In individuals with presumed cardiac arrest, bystander CPR rarely leads to serious harm in victims who are eventually found not to be in cardiac arrest; and therefore, bystander CPR should be assertively encouraged.

2005 Topics Not Reviewed in 2010
The following topics were included in 2005, but not in this document: devices for airway positioning, duty cycle, CPR in prone position, leg-foot chest compressions, mouth-to-nose ventilation, mouth-to-tracheal stoma ventilation, recovery position, airway opening, CPR for drowning victim in water, removing drowning victim from water, and improving EMS response interval. The reader is referred to the 2005 publication for the reviews.160,167

Acknowledgments
We thank the following individuals (the Adult Basic Life Support Chapter Collaborators) for their collaborations on the worksheets contained in this section: Tom P. Auferheide; Jocelyn Berdowski; Robert A. Berg; Maaret Castrén; Manya Charette; Sung Phil Chung; David C. Cone; Daniel P. Davis; Csaba Dioszeghy; James V. Dunford; Dana P. Edelson; Peter Fenici; Raúl J. Gazmuri; Laura S. Gold; Anton P.M. Gorgels; Colin A. Graham; Ahamed Idris; Jan L. Jensen; Peter Kohl; Peter J. Kudenchuk; Michael A. Kuiper; Douglas Kupas; E. Brooke Lerner; Bo Løfgren; Raina Merchant; Tommaso Pellis; Gavin D. Perkins; Thomas D. Rea; Andrea Scapigliati; Robert A. Swor; Keiichi Tanaka; Nigel M. Turner; Tyler F. Vadeboncoeur; Christian Vaillancourt; Antonius M.W. van Stipdonk; and Barbara Vantroyen.
CoSTR Part 5: Writing Group Disclosures

Disclosures

CoSTR Part 5: Adult Basic Life Support

S309
<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Jacobs</td>
<td>University of Western Australia: Discipline of Emergency Medicine Teaching/Research academic—Professor; American Heart Association: Evaluation of evidence worksheets for C2010—Work Sheet Expert</td>
<td>Chief investigator on numerous grants awarded by: a) National Health and Medical Research Council b) The Department of Health—Western Australia c) The National Heart Foundation of Australia. These funds are awarded to the University of Western Australia and none are used to provide any direct or indirect salary or other financial support</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Koen Monsieurs</td>
<td>Ghent University Hospital and Ghent University: Specialist in Emergency Medicine, academic staff</td>
<td>None</td>
<td>Laerdal (Norway), Zoll (US) and O-Two systems (Canada) for research projects in the field of resuscitation for technical support, training manikins and prototype devices. I have not received any payment of fees related to these studies</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter T. Morley</td>
<td>Royal Melbourne Hosp: Univ of Melbourne; Dir of Medical Education; ANA BEE</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jerry P. Nolan</td>
<td>Royal United Hospital NHS Trust; National Health Service Hospital; Consultant in Anaesthesia and Intensive Care</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrew H. Travers</td>
<td>Emergency Health Services, Nova Scotia—Department of Health, Nova Scotia—Provincial Medical Director</td>
<td>I was the lead Principal Investigator for the Public Access Defibrillation Trial for Edmonton, Alberta, Canada and received grant funding from NHLBI through contracts at the University of Washington which acted as the CRC</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be "significant" if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person's gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be "modest" if it is less than "significant" under the preceding definition.

*Modest.
†Significant.
CoSTR Part 5: Worksheet Collaborator Disclosures

<table>
<thead>
<tr>
<th>Worksheet Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom P. Aufderheide</td>
<td>Medical College of Wisconsin: Medical School and University—Professor of Emergency Medicine</td>
<td>†Resuscitation Outcomes Consortium (NIHHL): money comes to my institution Immediate Trial (NIHHL): money comes to my institution Neurological Emergency Treatment Trials (NETT): Network: money comes to my institution</td>
<td>†Automated external defibrillators donated to ROC by Zoll Medical for implementation of the PRIMED Trial: equipment given directly to Milwaukee County EMS for use in the trial</td>
<td>*Spoke at EMS Today in 2007: $2000 came directly to me</td>
<td>None</td>
<td>*Chairman of the Board for Citizen CPR Foundation and President: this is a volunteer position; I receive no money for this Secretary and Member of the Board for Take Heart America: I have received no money for this Consultant to Medtronic for an acute myocardial infarction study: money goes directly to my institution Consultant to JLIFE—consultancy terminated March, 2009: money goes directly to my institution Member Basic Life Support Subcommittee for National American Heart Association: this is a volunteer position</td>
<td>None</td>
</tr>
<tr>
<td>Jocelyn Berdowski</td>
<td>Academic Medical Center—University of Amsterdam—PhD student</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert A. Berg</td>
<td>University of Pennsylvania School of Medicine—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Maarit Castren</td>
<td>Karolinska Institute—Professor in emergency medicine</td>
<td>*Laerdal 155 000 NOK 2009 Laerdal 95 000 NOK 2008</td>
<td>*Equipment for therapeutic hypothermia during resuscitation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Manya Charette</td>
<td>Ottawa Hospital Research Institute—Research Coordinator</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sung-Phil Chung</td>
<td>Gangnam Severance Hospital, Yonsei University Health System: associate professor of the department of emergency medicine in Yonsei Univ. Seoul, Korea, also at Gangnam Severance Hospital, Seoul, Korea, emergency physician—Assoc.Prof.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David C. Gone</td>
<td>Yale University School of Medicine: Associate Professor of Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daniel P. Davis</td>
<td>UC San Diego University: Faculty Physician</td>
<td>†Zoll Medical (Air Medical Advanced Monitoring Strategies)</td>
<td>†BiPap Medical (Air Medical)</td>
<td>†Bispectral EEG Analyzer (Zoll Medical)</td>
<td>†Honoraria: Continuous Renal Replacement Therapy Conference 2008 & 2009; Hospital Medicine National and Regional Meeting 2008 & 2009; Grand Rounds Redding Medical Center</td>
<td>†Cardinal Health (Development of a Prehospital Ventilator)</td>
<td>*Expert Witness: Derek White Law Firm John Anderson Law Firm Otorowski Johnston Diamond & Golden Law Firm</td>
</tr>
<tr>
<td>Osada</td>
<td>Yeoil District Hospital NHS FoundationTrust: NHS Hospital—Consultant in Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James V. Dunford</td>
<td>UCSF Medical Center Academic teaching hospital: Faculty Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter Fentci</td>
<td>Bristol Myers Squibb Inc: CV & Metabolic Division head</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
CoSTR Part 5: Worksheet Collaborator Disclosures, Continued

<table>
<thead>
<tr>
<th>Worksheet Collaborator</th>
<th>Employment</th>
<th>Current Research Grants</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dana P. Edelson</td>
<td>University of Chicago—Assistant Professor</td>
<td>CURRENT RESEARCH GRANTS Pending NHLBI Career Development Award Strategies to Predict Sudden In-Hospital CA (HON) (1K23HL097157-01) To validate a clinical judgment-based tool for predicting impending clinical deterioration of hospitalized floor patients, and compare it to previously described physiology-based tools. Role: PI (funds delivered to university) 2006–present Philips Healthcare Research Grant Enhancements in CPR and Emergency Care during Hemodynamic Crisis To measure capnography and pulse pressure, using a novel plethysmographic sensor, in critically ill pts & correlate quality of CPR with these measures during CA; Role: PI (funds delivered to university) 2008–present Philips Healthcare Research Grant User & Development Research Alliance To establish a multi-center registry of in-hospital resuscitation quality data and a network for clinical trials of resuscitation. Role: PI (funds delivered to university) 2008–present Philips Healthcare Research Grant Loan Repayment—2 years of student loan repayment aims to evaluate the effects of integrated team debriefing using actual performance data to improve CPR quality and pt survival following IHCA; Role: PI (funds delivered to loan servicing program) 2007–present AHA Scientist Development Grant Improving CPR Quality and Patient Outcomes Using a Novel Educational Program—To evaluate the effects of integrated team debriefing using actual performance data to improve CPR quality and pt survival following IHCA; Role: PI (funds delivered to university) COMPLETED RESEARCH GRANTS 2006–2008 Philips Medical Systems Research Grant. 2008–2009 NIH Agency for Healthcare Research and Quality Immersive Simulation Team Training—Impact on Rescue, Recovery and Safety Culture (5U18HS016664-02) To study the effects of simulation-based training for Rapid Response Teams. Role: Consultant (funds to university) 2006–2008 NIH Clinical Research Loan Repayment Granted 2 years of student loan repayment for a study of end-tidal CO2 as a means of feedback for improving CPR quality during IHCA; Role: PI (funds delivered to loan servicing program)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Raul Gazmuri</td>
<td>N. Chicago VA</td>
<td>Vitamin C Preserves Myocardial Distensibility during Resuscitation from Cardiac Arrest Sponsor: Zdravstveni Dom. Dr. Adolfa Drolca, Maribor, Slovenia Support comes to Rosalind Franklin University Purpose: To support work in a rat model of VF and resuscitation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Laura S. Gold</td>
<td>Public Health Seattle King County Research Assistant</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Antonius M. Gorgels</td>
<td>Maastricht University Medical Centre Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Colin A. Graham</td>
<td>Chinese University of Hong Kong—Professor of Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Sponsor</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed H. Ibrahim</td>
<td>UT Southwestern Medical Center at Dallas—Professor of Surgery</td>
<td>NIH funding for the Resuscitation Outcomes Consortium. I am the PI for the Dallas-Fort Worth ROC site. Payments are made to UT Southwestern, my employer. *I participate as an investigator in a study funded by the American Heart Association. *My research organization receives in-kind support from Philips, Medtronics, and Zoll for monitors, software, and defibrillators used in training CPR.</td>
<td>Doctor's Hospital in Dallas paid me $750 for a lecture.</td>
<td>Philips Healthcare, Philips Healthcare, None, None</td>
<td>None</td>
<td>*I am a member of advisory boards for the US Army and the NIH, which pays for my travel expenses to attend board meetings</td>
<td>None</td>
</tr>
<tr>
<td>Jan L. Jensen</td>
<td>Dalhousie University/Emergency Health Services: Researcher</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter Kott</td>
<td>University of Oxford: Higher Education—Reader</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter J. Kudenchuk</td>
<td>University of Washington—Professor of Medicine</td>
<td>†Principal Investigator, Resuscitation Outcomes Consortium (ROC)—NIH</td>
<td>None</td>
<td>Sandi-Aventis, Network for Continuing Medical Education (CME organization) (unclear if this represents a COI for this topic) Academy for Healthcare Education (CME organization) (unclear if this represents a COI for this topic)</td>
<td>None</td>
<td>None</td>
<td>*Recently retained expert witness for AED use (unclear if represents a COI for this topic)</td>
</tr>
<tr>
<td>Michael A. Kuiper</td>
<td>Medical Center Leuwarden, the Netherlands: General teaching hospital—Intensivist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Douglas Kupas</td>
<td>Gesinger Health System: Serve as Associate Chief Academic Officer for Medical Student and Resident Affairs, as Service EMS Medical Director (for Danville Ambulance Service), and faculty and clinical physician in Emerg.Dept & Emerg.Med. Residency Program—Assoc. Chief Academic, Bureau of EMS, Pennsylvania Depart. of Health Officer Commonwealth EMS Med Director</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
<td>*Acted as expert witness for Pennsylvania law firm of Faulkner Ellis on a case related to treatment of anaphylaxis in an allergy office. Provided expert opinion, but case settled without deposition or trial</td>
</tr>
<tr>
<td>Bo Løfgren</td>
<td>Department of Cardiology, Aarhus Univ. Hospital, Skejby University Hosp/Acad Med. Center-Research Fellow, The Institute of Clinical Medicine, Aarhus University—Research Fellow</td>
<td>None</td>
<td>None</td>
<td>Speaking Honorary for Cardiac Science Corporation, Denmark</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Raima Merchant</td>
<td>University of Pennsylvania—Research fellow</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tommaso Relia</td>
<td>Santa Maria degli Angeli Hospital: Public hospital of the city of Paderno—Medical doctor, consultant in Anesthesiology, Intensive Care and EMS</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: COI = Conflict of Interest
CoSTR Part 5: Worksheet Collaborator Disclosures, Continued

<table>
<thead>
<tr>
<th>Worksheet Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gavin D. Perkins</td>
<td>University of Warwick—Associate Clinical Professor</td>
<td>U.K. Department of Health National Institute for Health Research—Quality of CPR improvement initiative— PI Resuscitation Council (UK) PhD studentship—quality of CPR— PI UK Department of Health National Institute for Health Research—mechanical CPR (LUCAS)—Co-PI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>†Expert witness to The Court; commissioned by UK government Health and Safety Executive to advise on pathophysiology/time sequence of drowning (single case; civil prosecution)</td>
</tr>
<tr>
<td>Thomas D. Rea</td>
<td>University of Washington; Physician, Associate Professor of Medicine Emergency Medical Services Division of Public Health—Seattle & King County Program Medical Director</td>
<td>*In the past, I have received unrestricted (modest) grant support from Philips Inc and PhysioControl. The topics were related to improving resuscitation generally (changing resuscitation protocols) and not specific to proprietary information or equipment. I am currently an investigator in the Resuscitations Outcomes Consortium. As part of this group, I am directly involved in the Feedback Trial to evaluate dynamic feedback available on the Philips MRX. The ROC is also evaluating the impedance threshold device. These studies are supported by the NIH primarily and I receive no support from Philips or the company that makes the impedance threshold device. Finally I am participating in a trial of chest compression only versus chest compression plus ventilation for dispatch-assisted CPR that is supported in part by the Lerner Foundation. Collectively, I receive less than 5% salary support for these activities. I do not own or hold stock in the commercial companies.</td>
<td>*Conducted an AED training study that recently completed where Philips and PhysioControl contributed equipment for the research. I did not receive any of this equipment</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>*†Conducting an AED training study that recently completed where Philips and PhysioControl contributed equipment for the research. I did not receive any of this equipment</td>
</tr>
<tr>
<td>Andrea Scapigliati</td>
<td>Università Cattolica del S. Cuore, School of Medicine, Rome, Italy</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert A. Swar</td>
<td>William Beaumont Hospital: Emergency Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Keiichi Tanaka</td>
<td>Fukuoka University: Educational institution for undergraduate and graduate education, Prof. School of Med</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nigel V. Turner</td>
<td>University Medical Centre Utrecht, the Netherlands—Consultant anesthesiologist</td>
<td>None</td>
<td>None</td>
<td>*Speaking at the Dutch RC meeting—About Eur 300 a year</td>
<td>None</td>
<td>None</td>
<td>†Medical director of the Dutch Foundation for the Emergency Medical Care of Children—a charitable educational organization. This is a past I may accept from Sept 09 which would pay me personally about 10000 Eur p.a. The work would include medical and educational advice but not include marketing of training and courses. I already teach for this organization on a voluntary basis. I do not consider this to be a COI but include it for completeness’s sake</td>
</tr>
<tr>
<td>Tyler F. Vadeboncoeur</td>
<td>Mayo Clinic—Emergency Physician</td>
<td>*Collaborator on an AHA grant to Bentley J Bobrow and colleagues to study the efficacy of an ultra brief video to teach hands-only CPR. The grant is for $100 000 and I will not receive any monies or protected time</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
CoSTR Part 5: Worksheet Collaborator Disclosures, Continued

<table>
<thead>
<tr>
<th>Collaborator</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian Vaillancourt</td>
<td>The Ottawa Hospital, Ottawa Hospital Research Institute Assistant Professor, Department of Emergency Medicine Scientist, OHRI Scientist</td>
<td>†All funds are administered by the Ottawa Hospital Research Institute; 2008–2010 A Survey of Factors Associated with the Successful Recognition of Agonal Breathing and Cardiac Arrest by 9-1-1 Call Takers Heart and Stroke Foundation of Ontario C. Vaillancourt (P) $49,000.00 2007–2010 Effectiveness of Dispatch-Assisted CPR Instructions: An Evaluation of 9-1-1 Calls Canadian Institutes of Health Research C. Vaillancourt (P) $378,517.00 2009–2010 A Survey of Factors Associated with the Successful Recognition of Agonal Breathing and Cardiac Arrest by 911 Call Takers Department of Emergency Medicine University of Ottawa C. Vaillancourt (P) $8,800.00 2008–2010 Effectiveness of Dispatch Prearrival CPR Instructions in Improving Survival in Cardiac Arrest Patients Department of Emergency Medicine University of Ottawa C. Vaillancourt (P) $8,500.00</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Antonius W van Stipdonk</td>
<td>Maastricht University Medical Centre+ Academic Hospital of Maastricht, departments of cardiology and social medicine employ me physician-researcher</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barbara Verhagen</td>
<td>CAZ Midden Limburg Regional Hospital, Emergency physician, medical internist</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table represents the relationships of worksheet collaborators that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all worksheet collaborators are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.
Appendix

CoSTR Part 5: Worksheet Appendix

<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLS</td>
<td>BLS-003A</td>
<td>In adult and pediatric patients with presumed cardiac arrest (prehospital or in-hospital) (P), are there any factors (eg. on clinical exam) (I) as opposed to standard care (C), that increase the likelihood of diagnosing cardiac arrest (as opposed to non-arrest conditions (eg post-seizure, hypoglycemia, intoxication) (O))?</td>
<td>Differentiation of cardiac arrest from other causes of unresponsiveness</td>
<td>Keenaad Menisieux</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-003A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-003B</td>
<td>In adult and pediatric patients with presumed cardiac arrest (prehospital or in-hospital) (P), are there any factors (eg. on clinical exam) (I) as opposed to standard care (C), that increase the likelihood of diagnosing cardiac arrest (as opposed to non-arrest conditions (eg post-seizure, hypoglycemia, intoxication) (O))?</td>
<td>Differentiation of cardiac arrest from other causes of unresponsiveness</td>
<td>Tyler F. Videbonceur</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-003B.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-004B</td>
<td>In adult and pediatric patients with out-of-hospital cardiac arrest (including residential settings) (P), does implementation of a public access AED program (I) as opposed to traditional EMS response (C), improve successful outcomes (O) (eg. ROSC, survival)?</td>
<td>Public access AED programs</td>
<td>E. Brooke Lerner</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-004B.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-006A</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) (P), does the use of alternative methods of manual CPR (eg. cough CPR, precordial thump, fist-pacing) (I) compared with standard CPR (C), improve any outcomes (eg. ROSC, survival) (O)?</td>
<td>Compression depth</td>
<td>Ahsamed H. Idris</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-006A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-006B</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) (P), does any specific compression depth (I) as opposed to standard care (ie. depth specified in treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Compression depth</td>
<td>Keenaad Menisieux</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-006B.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-007A</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) and suspected major injury (P), does any different strategy regarding positioning (eg. leaving them in the position they are found) (I) as opposed to standard care (ie. positioning the victim on his or her back) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Positioning of victim with traumatic cardiac arrest</td>
<td>Keichi Tanaka</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-007A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-008A</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) (P), does the interruption of CPR to check circulation (I) as opposed to no interruption of CPR (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Pulse check (risk benefit of interruption of CPR)</td>
<td>Peter Fennici, Ian Jacobs, Andrea Scapigliati</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-008A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-009A</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) and receiving chest compression only CPR (P), does the addition of any passive ventilation technique (eg positioning the body, opening the airway, passive oxygen administration) (I) as opposed to no addition (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Passive ventilation techniques</td>
<td>Douglas Kupas</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-009A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-010A</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) (P), does the provision of dispatch CPR instructions (I) as opposed to no instructions (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Dispatch CPR instructions</td>
<td>James V. Dunford</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-010A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-010B</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) (P), does the provision of dispatch CPR instructions (I) as opposed to no instructions (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Dispatch CPR instructions</td>
<td>Maaret Castèn</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-010B.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-011A</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) (P), does the provision of airway maneuvers by bystanders (I) as opposed to no such maneuvers (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Airway maneuvers in bystander CPR</td>
<td>Robert A. Sovar</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-011A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-011B</td>
<td>In adult and pediatric patients with cardiac arrest (out-of-hospital and in-hospital) (P), does the provision of airway maneuvers by bystanders (I) as opposed to no such maneuvers (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Airway maneuvers in bystander CPR</td>
<td>Sung Phiell Chung</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-011B.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-013A</td>
<td>In adult and pediatric patients with foreign body airway obstruction (out-of-hospital and in-hospital) (P), does the provision of abdominal thrusts, and/or back slaps, and/or chest thrusts, compared with no action (C), improve outcome (O) (eg. clearance of obstruction, ROSC, survival)?</td>
<td>Choking treatment</td>
<td>Anthony J. Handley</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-013A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-017A</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital [IHCA], in-hospital [IHCA]) (P), does the use of alternative methods of manual CPR (eg. cough CPR, precordial thump, fist-pacing) (I) compared with standard CPR (C), improve any outcomes (eg. ROSC, survival) (O)?</td>
<td>Alternative methods of CPR</td>
<td>Tom P. Aufderheide</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-017A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-017B</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital [IHCA], in-hospital [IHCA]) (P), does the use of alternative methods of manual CPR (eg. cough CPR, precordial thump, fist-pacing) (I) compared with standard CPR (C), improve any outcomes (eg. ROSC, survival) (O)?</td>
<td>Alternative methods of CPR</td>
<td>Jan L. Jensen</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-017B.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-017C</td>
<td>In adult cardiac arrest (prehospital [IHCA], in-hospital [IHCA]) (P), does the use of alternative methods of manual CPR (eg. cough CPR, precordial thump, fist-pacing) (I) compared with standard CPR (C), improve any outcomes (eg. ROSC, survival) (O)?</td>
<td>Alternative methods of CPR</td>
<td>Peter Kohl, Tommaso Pellici</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-017C.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-020A</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital [IHCA], in-hospital [IHCA]) (P), does the use of feedback regarding the mechanics of CPR quality (eg. rate and depth of compressions and/or ventilations) (I) compared with no feedback (C), improve any outcomes (eg. ROSC, survival) (O)?</td>
<td>Feedback for CPR quality</td>
<td>Diana Cave</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-020A.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-020B</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital [IHCA], in-hospital [IHCA]) (P), does the use of feedback regarding the mechanics of CPR quality (eg. rate and depth of compressions and/or ventilations) (I) compared with no feedback (C), improve any outcomes (eg. ROSC, survival) (O)?</td>
<td>Feedback for CPR quality</td>
<td>Peter T. Morley</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-020B.pdf</td>
</tr>
<tr>
<td>BLS</td>
<td>BLS-022A</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital or in-hospital) (P), does the maximization of hands off time after defibrillation for rhythm check (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Rhythm check (risk benefit of interruption of CPR)</td>
<td>Robert A. Berg</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-022A.pdf</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLS BLS-023A</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of another specific C/V ratio (I) compared with standard care (30:2) (O), improve outcome (eg. ROSC, survival) (C)?</td>
<td>Compression ventilation ratio</td>
<td>Sung Phil Chung</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-023A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-023B</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of another specific C/V ratio (I) compared with standard care (30:2) (O), improve outcome (eg. ROSC, survival) (C)?</td>
<td>Compression ventilation ratio</td>
<td>Michael Sayre</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-023B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-025A</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital or in-hospital) (P), does the minimization of hands off time for rhythm analysis including frequency and duration of checks (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Rhythm check (risk benefit of interruption of CPR)</td>
<td>Dana P. Edelson</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-025A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-025B</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital or in-hospital) (P), does the minimization of hands off time for rhythm analysis including frequency and duration of checks (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?</td>
<td>Rhythm check (risk benefit of interruption of CPR)</td>
<td>David C. Cone</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-025B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-026A</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of compressions first (30:2) (I) compared with standard care (2:30) (O), improve outcome (eg. ROSC, survival) (C)?</td>
<td>Compression first vs ventilation first</td>
<td>Anthony J. Handley</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-026A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-026B</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of compressions first (30:2) (I) compared with standard care (2:30) (O), improve outcome (eg. ROSC, survival) (C)?</td>
<td>Compression first vs ventilation first</td>
<td>Diana Cave</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-026B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-032A</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of any specific placement of hands for external chest compressions (I) compared with standard care (eg. “placement of the rescuer’s hands in the middle of the chest”) (C), improve outcome (eg. ROSC, survival) (O)?</td>
<td>Hand placement</td>
<td>Raina Merchant</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-032A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-032B</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of any specific placement of hands for external chest compressions (I) compared with standard care (eg. “placement of the rescuer’s hands in the middle of the chest”) (C), improve outcome (eg. ROSC, survival) (O)?</td>
<td>Hand placement</td>
<td>Nigel M. Turner</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-032B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-033A</td>
<td>In rescuers performing CPR on adult or pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of any specific method for locating recommended hand position (I) compared with standard care (eg. “placement of the rescuer’s hands in the middle of the chest”) (C), improve outcome (eg. time to commence CPR, decreased hands off time, ROSC, survival) (O)?</td>
<td>Hand placement</td>
<td>Anthony J. Handley</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-033A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-034A</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of any specific rate for external chest compressions (I) compared with standard care (ie. approximately 100/min) (C), improve outcome (eg. ROSC, survival) (O)?</td>
<td>Chest compression rate</td>
<td>Ahamed H. Ibrir</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-034A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-034B</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of any specific rate for external chest compressions (I) compared with standard care (ie. approximately 100/min) (C), improve outcome (eg. ROSC, survival) (O)?</td>
<td>Chest compression rate</td>
<td>Barbara Vantroyen</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-034B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-035A</td>
<td>In adult and pediatric patients with cardiac arrest while on a bed (prehospital [OHCA], in-hospital [IHCA]) (P), does the performance of CPR on a hard surface like backboard or deflatable mattress (I) compared with performance of CPR on a regular mattress (O), improve outcome (eg. ROSC, survival) (C)?</td>
<td>Soft vs hard surface for CPR</td>
<td>Gavin D. Perkins</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-035A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-035B</td>
<td>In adult and pediatric patients with cardiac arrest while on a bed (prehospital [OHCA], in-hospital [IHCA]) (P), does the performance of CPR on a hard surface like backboard or deflatable mattress (I) compared with performance of CPR on a regular mattress (O), improve outcome (eg. ROSC, survival) (C)?</td>
<td>Soft vs hard surface for CPR</td>
<td>Bo Lafgren</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-035B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-039</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the analysis of cardiac rhythm during chest compressions (I) compared with standard care (analysis of cardiac rhythm during pauses in chest compressions) (C), optimize the time of appropriate chest compression by avoiding unnecessary interruptions and unnecessary prolongations (O)?</td>
<td>Analysis of rhythm during chest compression</td>
<td>Raji J. Gazmuri, Michael A. Kulper</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-039.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-044A</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA]) (P), does the description of any specific symptoms to the dispatcher (I) compared with the absence of any specific description (C), improve accuracy of the diagnosis of cardiac arrest (O)?</td>
<td>Rescuer communication with dispatcher for CPR</td>
<td>Manya Charette, Christian Vaillancourt</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-044A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-044B</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA]) (P), does the description of any specific symptoms to the dispatcher (I) compared with the absence of any specific description (C), improve accuracy of the diagnosis of cardiac arrest (O)?</td>
<td>Rescuer communication with dispatcher for CPR</td>
<td>Maanel Castrién</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-044B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-045A</td>
<td>In adult and pediatric patients with cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does optimizing chest wall recoil (I) compared with standard care (C), improve outcome (eg. ROSC, survival) (O)? In patients with CA (P), does optimizing chest wall recoil (I), improve survival (O)?</td>
<td>Chest wall recoil</td>
<td>Tom P. Aufferheide</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-045A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-046A</td>
<td>In adult patients suffering from a cardiac arrest (P) does the calling of EMS and the provision of chest compressions (without ventilation) by untrained laypersons, trained laypersons, or professionals (I) compared with calling EMS only (O) improve survival to hospital discharge (C)?</td>
<td>Untrained lay responder CC, Only call EMS</td>
<td>Tetsuo Hatahaka</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-046A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-046B</td>
<td>In adult patients suffering from a cardiac arrest (P) does the calling of EMS and the provision of chest compressions (without ventilation) by untrained laypersons, trained laypersons, or professionals (I) compared with calling EMS only (O) improve survival to hospital discharge (C)?</td>
<td>Untrained lay responder CC, Only call EMS</td>
<td>Thomas D. Rea</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-046B.pdf</td>
<td></td>
</tr>
</tbody>
</table>
CoSTR Part 5: Worksheet Appendix, Continued

<table>
<thead>
<tr>
<th>Task Force</th>
<th>WS ID</th>
<th>PICO Title</th>
<th>Short Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLS BLS-047A</td>
<td>In adults and pediatric patients who are NOT in cardiac arrest (P), how does the provision of chest compressions (without ventilation) by bystanders, both trained and untrained, (I) compared with chest compressions plus mouth-to-mouth breathing (O) improve survival to hospital discharge (Q)?</td>
<td>Chest compression only CPR</td>
<td>Csaba Diosgyothy</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-047A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-047B</td>
<td>In adults and pediatric patients who are NOT in cardiac arrest (P), how does the provision of chest compressions (without ventilation) by bystanders, both trained and untrained, (I) compared with chest compressions plus mouth-to-mouth breathing (O) improve survival to hospital discharge (Q)?</td>
<td>Chest compression only CPR</td>
<td>Andrew Travers</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-047B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-049A</td>
<td>In adults and pediatric patients suffering from a cardiac arrest (P) does the provision of chest compressions (without ventilation) by EMS (I) compared with chest compressions plus ventilations (O) improve survival to hospital discharge (Q)?</td>
<td>EMS CC only vs standard CPR</td>
<td>Laura S. Gold, Peter J. Kudenchuk</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-049A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-049B</td>
<td>In adults and pediatric patients suffering from a cardiac arrest (P) does the provision of chest compressions (without ventilation) by EMS (I) compared with chest compressions plus ventilations (O) improve survival to hospital discharge (Q)?</td>
<td>EMS CC only vs standard CPR</td>
<td>Andrew Travers</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-049B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-050A</td>
<td>In adult and pediatric patients with presumed cardiac arrest (prehospital or in-hospital) (P), how frequently should chest compressions be paused to re-diagnose accurately the cardiac rhythm (I) to provide the best outcomes (eg ROSC, survival) (Q)?</td>
<td>Differentiating cardiac arrest from non-cardiac etiologies</td>
<td>Anthony J. Handley</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-050A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-050B</td>
<td>In adult and pediatric patients with presumed cardiac arrest (prehospital or in-hospital) (P), how frequently should chest compressions be paused to re-diagnose accurately the cardiac rhythm (I) to provide the best outcomes (eg ROSC, survival) (Q)?</td>
<td>Differentiating cardiac arrest from non-cardiac etiologies</td>
<td>Michael A. Kupper</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-050B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-051A</td>
<td>In adults and pediatric patients who are NOT in cardiac arrest (P), how often does provision of chest compressions from lay rescuers (I), lead to harm (eg rib fracture) (Q)?</td>
<td>Harm from CPR to victims not in arrest</td>
<td>Anton P.M. Gorgels, Antonius M.W. van Strijdonck</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-051A.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-051B</td>
<td>In adults and pediatric patients who are NOT in cardiac arrest (P), how often does provision of chest compressions from lay rescuers (I), lead to harm (eg rib fracture) (Q)?</td>
<td>Harm from CPR to victims not in arrest</td>
<td>Daniel P. Davis</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-051B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-052B</td>
<td>In adult and pediatric patients in cardiac arrest (prehospital [IHCA], in-hospital [IHCA]) who are NOT endotracheally intubated (P), does providing ventilation with a 1 second inspiratory time and tidal volume of about 600 mL (I), compared with other inspiratory times and tidal volume of about 600 mL (O), improve any outcomes (including ventilation, oxygenation) (Q)?</td>
<td>Ventilation inspiratory time and volume</td>
<td>Colin A. Graham</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-052B.pdf</td>
<td></td>
</tr>
<tr>
<td>BLS BLS-053A</td>
<td>In adults in cardiac arrest (P), how frequently should chest compressions be paused to re-diagnose accurately the cardiac rhythm (I) to provide the best outcomes (eg ROSC, survival) (Q)?</td>
<td>Timing of CPR cycles</td>
<td>Michael Cudnik</td>
<td>http://circ.ahajournals.org/site/C2010/BLS-053A.pdf</td>
<td></td>
</tr>
</tbody>
</table>

References

Hostler D, Rittenberger JC, Roth R, Callaway CW. Increased chest compression to ventilation ratio improves delivery of CPR. Resuscitation. 2007;74:446–452.

207. Sayre et al Part 5: Adult Basic Life Support S323

225. Sayre et al Part 5: Adult Basic Life Support S323

238. 2008;39:179–188.

249. Johnsden E, Bolle SR. To see or not to see—better dispatcher-assisted CPR? 2003;10:955–969.

Part 5: Adult Basic Life Support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations
Michael R. Sayre, Rudolph W. Koster, Martin Botha, Diana M. Cave, Michael T. Cudnik, Anthony J. Handley, Tetsuo Hatanaka, Mary Fran Hazinski, Ian Jacobs, Koen Monsieurs, Peter T. Morley, Jerry P. Nolan and Andrew H. Travers

Circulation. 2010;122:S298-S324
doi: 10.1161/CIRCULATIONAHA.110.970996

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/122/16_suppl_2/S298

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/