An 83-year-old man, with a history of coronary artery bypass graft surgery 19 years before presentation and subsequent percutaneous coronary intervention to saphenous vein graft with placement of a paclitaxel drug-eluting stent 16 years later, presented with a 2-week history of fevers, productive cough, and pleuritic chest pain. He was found to have leukocytosis and chest x-ray evidence of pneumonia with a widened mediastinum. He was admitted for treatment of protracted pneumonia. He had a borderline elevated troponin I, which, in the absence of anginal pain, was thought to be secondary to demand ischemia. A chest radiograph obtained at admission showed bilateral pleural effusions, a right lower lobe infiltrate, and a widened mediastinum (Figure 1A and 1B). An ECG was initially unremarkable (Figure 1C). Blood cultures were positive for methicillin-sensitive *Staphylococcus aureus*, and despite antibiotic therapy, the patient became progressively hypotensive. A repeat ECG showed anterolateral T-wave inversions (Figure 1D). Chest computed tomography (CT) (Figure 2A and 2B) revealed a fractured stent and a giant aortocoronary saphenous vein graft pseudoaneurysm. Transthoracic echocardiography then revealed a mass that was compressing the right ventricular outflow tract, suggesting that the cause of the patient’s hypotension was low cardiac output due to right ventricular outflow tract obstruction (Figure 2C and Movies I and II in the online-only Data Supplement). The patient was believed to be too unstable for surgery, and therefore he was taken urgently to the cardiac catheterization laboratory for placement of a covered stent across the apparent graft perforation (Figure 2D), but the attempt was unsuccessful. The patient became progressively hypotensive and later expired in the coronary care unit. Although autopsy was declined by the family, the cause of death was thought to be heart failure due to a giant aortocoronary saphenous vein graft pseudoaneurysm caused by stent fracture.

Stent fracture is a rare but increasingly recognized complication of percutaneous coronary intervention, usually occurring after placement of drug-eluting stents and stents placed in the right coronary artery. Little is known about the clinical presentation of stent fracture, but the most common presentation appears to be acute coronary syndrome, with unstable angina or non-ST-segment elevation myocardial infarction being reported the most frequently. In many cases, the long-term prognosis is benign. Sixty-four-slice CT coronary angiography has been shown to be more sensitive and specific for detection of stent fractures than conventional coronary cine angiography and coronary intravascular ultrasound. This case represents an unusual complication of stent fracture in which the diagnosis was apparent by CT imaging of the chest and was refined by echocardiography and coronary angiography.

Disclosures

None.

References


Figure 1. Chest radiograph in anteroposterior and lateral views (A and B) showing bilateral small pleural effusions, a right lower lobe infiltrate, and a widened mediastinum. ECG on admission (C) showed sinus rhythm without ischemic changes. Repeat ECG (D) showed diffuse anterolateral T-wave changes.

Figure 2. Chest CT (A and B) shows a fractured stent (arrowheads) and a giant aortocoronary saphenous vein graft pseudoaneurysm (arrow). Transthoracic echocardiography shows a fluid-filled mass (arrow) that was compressing the right ventricular outflow tract (C). Coronary angiogram shows contrast extravasation in the area of the fractured stent and the giant pseudoaneurysm visualized by CT and echocardiography (D; arrow). The attempt to deploy a covered stent across the perforation was unsuccessful.
Bypass Graft Stent Fracture Leading to Saphenous Vein Graft Pseudoaneurysm

W. Kyle Stribling, Andreas W. Prinz, On Topaz, Rehan Khan, Angela Gentili and Ion S. Jovin

Circulation. 2010;122:e476-e477
doi: 10.1161/CIRCULATIONAHA.110.947036
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/122/14/e476

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2010/10/05/122.14.e476.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/