A 46-year-old man with a clinical diagnosis of dilated phase of hypertrophic cardiomyopathy was followed up at our hospital for 26 years. His refractory congestive heart failure gradually worsened over several years, and he was unresponsive to conventional medications. He then underwent left ventriculoplasty. Biochemical and genetic investigations of the left ventricular myocardium revealed a novel point mutation in the mitochondrial DNA.1

Scanning electron microscopy can directly observe both the 3-dimensional structure of a cell with high resolution and the 3-dimensional structure of the membrane system using the osmium-dimethyl sulfoxide-osmium method2 to remove the cytoplasmic matrix. Conventional transmission electron microscopy detects the fine structure of the membranous components of mitochondria. We used these methods to examine mitochondria in the heart of the present patient. The myocardium excised from the left ventricular anterolateral wall during the operation was processed and observed under a Hitachi S-5000 scanning electron microscope and a Hitachi H-7100 transmission electron microscope.

The endomyocardial biopsy sample with normal histology, obtained from the left ventricle of a patient with suspected idiopathic dilated cardiomyopathy, was used for comparison. Similar-sized normal mitochondria lined up regularly (Figure 1). In contrast, abnormal features of mitochondria were observed in cardiomyocytes of this patient. Several mitochondria were deformed into various shapes, particularly spherical, oval, and enlarged forms, often with concentric circular cristae. Giant mitochondria were intermixed with small mitochondria, which proliferated under the sarcolemma or between...
myofibrils in the cardiomyocytes. Some giant mitochondria appeared to be formed by the fusion of adjacent mitochondria with concentric cristae (Figure 2). Giant mitochondria occasionally showed extensive tubular and lamellar undulating cristae (Figure 3). Transmission electron microscopy also suggested the fusion of enlarged mitochondria with adjacent normal-sized mitochondria (Figure 4). The pathogenic mechanisms of the formation of giant mitochondria remain unclear. However, the giant mitochondria in this patient might reflect mechanisms whereby mitochondria compensate for functional deterioration caused by mutation of mitochondrial DNA.3,4

Disclosures

None.

References

Giant Mitochondria in the Myocardium of a Patient With Mitochondrial Cardiomyopathy: Transmission and 3-Dimensional Scanning Electron Microscopy
Yumiko Kanzaki, Fumio Terasaki, Makoto Okabe, Kaoru Otsuka, Takashi Katashima, Shuichi Fujita, Takahide Ito and Yasushi Kitaura

_Circulation_. 2010;121:831-832
doi: 10.1161/CIR.0b013e3181d22e2d

_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/121/6/831

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/