Duplex ultrasound is widely used to detect vascular dysfunction after kidney transplantation. We describe musical murmurs found in renal allografts.

A 29-year-old man with an increase in serum creatinine 1 month after cadaveric kidney transplantation was referred for duplex ultrasound to exclude perfusion dysfunction. Renal arterial and venous circulation was normal. However, during Doppler spectral recording, a loud “seagull cry” was audible (audio file in the online-only Data Supplement). Spectral analysis displayed mirror-image parallel strings and bands of low to moderate frequency (Figure 1A and B). A small arteriovenous fistula, presumably after previous biopsy, was detected as cause of the turbulent flow. Inasmuch as no bleeding complication or pseudoaneurysm formation occurred, a conservative strategy was chosen, and follow-up with duplex ultrasound was recommended.

A 49-year-old woman was referred for duplex ultrasound during her first annual follow-up visit after cadaveric renal transplantation. Duplex ultrasound revealed a narrowing of the transplant vein with turbulent flow and increased peak systolic velocity up to 200 cm/s in the middle part (Figure 2A). Furthermore, spectral analysis showed a turbulent pulsatile spindle signal (Figure 2B), and a high-frequency “seagull cry” was clearly audible. Renal function was normal, and no signs of venous congestion were present; therefore, no further intervention was necessary.

Duplex ultrasound performed during the first follow-up visit after cadaveric renal transplantation in a 50-year-old woman revealed an audible high-frequency pulsatile sound in the transplant renal artery. Peak systolic velocity increased from 110 cm/s to 250 cm/s, indicating renal artery stenosis (Figure 3A and B). Doppler spectral analysis showed a turbulent systolic spindle signal (Figure 3C). However, intrarenal spectral waveforms were normal, as were renal function and blood pressure, and therefore hemodynamic relevant stenosis was unlikely. After the color display was optimized, a kink of the renal artery directly after the anastomosis was seen. Severe kinking of the transplant artery is a rare but relevant cause of early graft dysfunction, and surgical resection is recommended. However, in this patient, renal function remained normal, and peak flow velocity in the kink did not change over the next 2 years.

Seagull cry, also called “goose cry” or “cooing murmur,” is an outstanding acoustic phenomenon in duplex ultrasound and indicates severely disturbed flow. Musical murmurs have been described in color-coded carotid and transcranial duplex ultrasound and imply such severe vascular diseases as high-grade carotid artery stenosis, arteriovenous fistula, and Moya-Moya disease.

Figure 1. A and B, Renal transplant with arteriovenous fistula after previous biopsy. Doppler spectral analysis shows mirror-image parallel strings in different areas (arrows).
moya disease. Doppler spectral analysis commonly detects mirror-image parallel strings (Figure 1) or bands of low to moderate frequencies (Figures 2 and 3) caused by flow acceleration and turbulence along the vessel. An experienced sonographer may be able to correctly identify the cause of the musical murmurs and its impact on renal function.

In addition to the 3 cases described here, we have observed the phenomenon of musical murmurs in patients directly postoperatively after renal transplantation with severe perfusion dysfunction and graft failure. However, in this situation, urgent surgical revision was necessary to rescue transplant function. To our knowledge this is the first report of “seagull cry” in color-coded duplex ultrasound after renal transplantation.2

Disclosures
None.

References
"The Seagull Cry": A Sign of Emergency after Renal Transplantation?
Christoph Thalhammer, Markus Aschwanden and Beatrice R. Amann-Vesti

Circulation. 2010;121:e25-e26
doi: 10.1161/CIRCULATIONAHA.109.889113
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/121/5/e25

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2010/01/26/121.5.e25.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/