Three-Dimensional Structure of Pulmonary Capillary Vessels in Patients With Pulmonary Hypertension

Aya Miura, MSc*; Kazufumi Nakamura, MD, PhD*; Kengo F. Kusano, MD, PhD; Hiromi Matsubara, MD, PhD; Aiko Ogawa, MD, PhD; Satoshi Akagi, MD, PhD; Takahiro Oto, MD, PhD; Takuro Murakami, MD, PhD; Aiji Ohtsuka, MD, PhD; Chikao Yutani, MD, PhD; Tohru Ohe, MD, PhD; Hiroshi Ito, MD, PhD

Pulmonary arterial hypertension, pulmonary veno-occlusive disease, and pulmonary capillary hemangiomatosis are included in the same group (group 1) of clinical classification of pulmonary hypertension.1 Histological changes in the small pulmonary arteries (ie, intimal fibrosis and medial hypertrophy) are similar in these 3 diseases, and clinical presentations of the 3 diseases are often indistinguishable.1 However, it is estimated that the hemodynamics of capillary vessels are quite different in each disease. The hemodynamics of capillary vessels (ie, capillary occlusion) play an important role in cardiovascular diseases.2 Thus, clarification of the differences in the hemodynamics is essential to understand the pathophysiology of these 3 diseases.

We obtained lung segments from patients with pulmonary hypertension who underwent living-donor lung transplantation and from patients with bronchogenic carcinoma who underwent lobectomy as described previously.3 All experiments were performed after approval was obtained from the Human Ethics Committee of Okayama University, and written informed consent was obtained from all patients before the procedure. We succeeded in visualization of the 3-dimensional structure of the pulmonary capillary in patients with pulmonary arterial hypertension, pulmonary veno-occlusive disease, and pulmonary capillary hemangiomatosis using scanning electron microscopy of blood vascular casts.4 A 42-year-old man underwent lobectomy for bronchogenic carcinoma. Figure 1A shows hematoxylin-eosin staining of a normal small pulmonary artery. Blood vascular architecture in the most distal area from the carcinoma in the resected lobe shows a normal capillary network around the alveolus of the lung (Figure 1B).

A 20-year-old man underwent lung transplantation for idiopathic pulmonary arterial hypertension. The blood vascular architecture resembled dead branches. The small vessels were severely stenosed and were often occluded (Figure 2A), and the capillary was deficient (Figure 2B).

A 27-year-old man underwent lung transplantation for pulmonary arterial hypertension. The blood vascular casts revealed the differences in the 3 diseases. Pulmonary arterial hypertension was characterized by a deficient capillary network, pulmonary veno-occlusive disease by swollen capillary vessels, and pulmonary capillary hemangiomatosis by a tumorlike outgrowth of capillaries. To the best of our knowledge, this is the first report on differences in the 3-dimensional structure of capillary vessels in normal controls, pulmonary arterial hypertension, pulmonary veno-occlusive disease, and pulmonary capillary hemangiomatosis using scanning electron microscopy of blood vascular casts. These findings provide an insight into the basic mechanism responsible for pulmonary hypertension.

Sources of Funding
This work was supported by the Research Grant for Cardiovascular Diseases (19–9) from the Ministry of Health, Labour and Welfare, Japan.

Disclosures
None.

References

From the Department of Cardiovascular Medicine (A.M., K.N., K.F.K., A. Ogawa, S.A., T. Ohe, H.I.), Department of Cancer and Thoracic Surgery (T. Oto), and Department of Human Morphology (T.M., A. Ohtsuka), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences; Division of Cardiology, National Hospital Organization, Okayama Medical Center (H.M.); and Department of Life Science (C.Y.), Okayama University Graduate School of Medicine, Okayama, Japan.

*The first 2 authors contributed equally to this work.

Correspondence to Kazufumi Nakamura, MD, PhD, Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan. E-mail ichibus@cc.okayama-u.ac.jp

(Circulation. 2010;121:2151-2153.)

© 2010 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.0b013e3181e037c1
Figure 1. Images of normal control microvessels. A, Hematoxylin-eosin staining of a small pulmonary artery (*). Bar=200 μm. B, Scanning electron micrograph of blood vascular casts. Bar=200 μm.

Figure 2. Images of microvessels from a patient with pulmonary arterial hypertension. A, Hematoxylin-eosin staining of small pulmonary arteries (*). Bar=200 μm. B, Scanning electron micrograph of blood vascular casts. A deficient capillary network is seen. Bar=1 mm.
Figure 3. Images of microvessels from a patient with pulmonary veno-occlusive disease. A, Masson’s trichrome staining of a small pulmonary vein (*). Bar=200 μm. B, Scanning electron micrograph of blood vascular casts. Swollen capillary vessels are seen. Bar=200 μm.

Figure 4. Images of microvessels from pulmonary capillary hemangiomatosis. A, Hematoxylin-eosin staining of small pulmonary vessels. Bar=200 μm. B, Scanning electron micrograph of blood vascular casts. Tumorlike outgrowth of capillary vessels is seen. Bar=1 mm.
Three-Dimensional Structure of Pulmonary Capillary Vessels in Patients With Pulmonary Hypertension

Aya Miura, Kazufumi Nakamura, Kengo F. Kusano, Hiromi Matsubara, Aiko Ogawa, Satoshi Akagi, Takahiro Oto, Takuro Murakami, Aiji Ohtsuka, Chikao Yutani, Tohru Ohe and Hiroshi Ito

_Circulation_. 2010;121:2151-2153
doi: 10.1161/CIR.0b013e3181e037c1

_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/121/19/2151

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/