2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease: Executive Summary

Endorsed by the North American Society for Cardiovascular Imaging

WRITING COMMITTEE MEMBERS

Loren F. Hiratzka, MD, Chair*; George L. Bakris, MD†; Joshua A. Beckman, MD, MS‡; Robert M. Bersin, MPH, MD§; Vincent F. Carr, DO¶; Donald E. Casey, Jr, MD, MPH, MBA‖; Kim A. Eagle, MD*#; Luke K. Hermann, MD***; Eric M. Isselbacher, MD*; Ella A. Kazerooni, MD, MS††; Nicholas T. Kouchoukos, MD†‡; Bruce W. Lytle, MD§§; Dianna M. Milewicz, MD, PhD; David L. Reich, MD¶¶; Souvik Sen, MD, MS†††; Julie A. Shinn, RN, MA, CCRN; Lars G. Svensson, MD, PhD##; David M. Williams, MD###

ACCF/AHA TASK FORCE MEMBERS

Alice K. Jacobs, MD, FACC, FAHA, Chair 2009–2011; Sidney C. Smith, Jr, MD, FACC, FAHA, Immediate Past Chair 2006–2008; Jeffrey L. Anderson, MD, FACC, FAHA, Chair-Elect; Cynthia D. Adams, MSN, PhD, FAHA†††; Christopher E. Buller, MD, FACC; Mark A. Creager, MD, FACC, FAHA; Steven M. Ettinger, MD, FACC; Robert A. Guyton, MD, FACC, FAHA; Jonathan L. Halperin, MD, FACC, FAHA; Sharon A. Hunt, MD, FACC, FAHA†; Harlan M. Krumsoli, MD, FACC, FAHA, FAHA††; Frederick G. Kushner, MD, FACC, FAHA; Bruce W. Lytle, MD, FACC, FAHA††; Rick Nishimura, MD, FACC, FAHA††; Richard L. Page, MD, FACC, FAHA†; Barbara Riegel, DNSc, RN, FAHA††; William G. Stevenson, MD, FACC, FAHA; Lynn G. Tarkington, RN; Clyde W. Yancy, MD, FACC, FAHA

*ACCF/AHA Representative. †AHA Representative. ‡SVM Representative. §ACCF Board of Governors Representative. ††American College of Physicians Representative. #Recused from Section 19, Recommendations for Descending Thoracic Aorta and Thoracoabdominal Aortic Aneurysms. **American College of Emergency Physicians Representative. †††ACCF/AHA Representative. †††‡STS Representative. §§ACCF/AHA Task Force Liaison. |||SCAI Representative. ¶¶ASA Representative. #AATS Representative. ****SIR Representative. ††††Former Task Force member during this writing effort.

Authors with no symbol by their name were included to provide additional content expertise apart from organizational representation.

This document was approved by the American College of Cardiology Foundation Board of Trustees and the American Heart Association Science Advisory and Coordinating Committee in January 2010. All other cosponsoring organizations approved in February 2010.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/cgi/content/full/CIR.0b013e3181d47d48/DC1.

This article has been published in the Journal of the American College of Cardiology, Catheterization and Cardiovascular Interventions, and Anesthesia & Analgesia.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.acc.org) and the American Heart Association (my.americanheart.org). A copy of the document is also available at http://www.americanheart.org/presenter.jhtml?identifier=3003999 by selecting either the “topic list” link or the “chronological list” link (No. KB-0023). To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsey@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted at the AHA National Center. For more on AHA statements and guidelines development, visit http://www.americanheart.org/presenter.jhtml?identifier=3023366.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.americanheart.org/presenter.jhtml?identifier=4431. A link to the “Permission Request Form” appears on the right side of the page.

© 2010 by the American College of Cardiology Foundation and the American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.0b013e3181d47d48

1544
Table of Contents

Preamble ..1545
1. Introduction ...1546
 1.1. Methodology and Evidence Review1546
 1.2. Organization of the Writing Committee1548
 1.3. Document Review and Approval1548
 1.4. Scope of the Guideline1548
 1.4.1. Critical Issues1548
 1.5. Glossary of Terms and Abbreviations
 Used Throughout the Guideline1549
2. The Thoracic Aorta1549
3. Thoracic Aortic Histopathology1549
 3.1. Atherosclerosis1549
 3.2. Aneurysms and Dissections1549
 3.3. Vasculitis and Inflammatory Diseases1550
4. Recommendations for Aortic Imaging
 Techniques to Determine the Presence and
 Progression of Thoracic Aortic Disease1550
 4.1. Chest X-Ray1552
 4.2. Computed Tomographic Imaging1552
 4.3. Magnetic Resonance Imaging1552
 4.4. Echocardiography1552
5. Recommendations for Genetic Syndromes1553
6. Recommendations for Familial Thoracic
 Aortic Aneurysm and Dissections1554
7. Recommendations for Bicuspid Aortic Valve
 and Associated Congenital Variants in Adults1555
8. Recommendations for Takayasu Arteritis and
 Giant Cell Arteritis1555
9. Recommendations for Estimation of Pretest
 Risk of Thoracic Aortic Dissection1556
10. Initial Evaluation and Management of Acute
 Thoracic Aortic Disease1557
 10.1. Recommendations for Screening Tests1557
 10.2. Recommendations for Diagnostic Imaging
 Studies1559
 10.3. Recommendations for Initial Management ...1559
 10.4. Recommendations for Definitive
 Management1560
11. Recommendation for Surgical Intervention for
 Acute Thoracic Aortic Dissection1560
12. Recommendation for Intramural Hematoma
 Without Intimal Defect1560
13. Recommendation for History and Physical
 Examination for Thoracic Aortic Disease1560
14. Recommendation for Medical Treatment of
 Patients With Thoracic Aortic Diseases1560
 14.1. Recommendations for Blood Pressure
 Control1561
 14.2. Recommendation for Dyslipidemia1562
 14.3. Recommendation for Smoking Cessation1562
15. Recommendations for Asymptomatic Patients
 With Ascending Aortic Aneurysm1563
16. Recommendation for Symptomatic Patients
 With Thoracic Aortic Aneurysm1564
17. Recommendations for Open Surgery for Ascending
 Aortic Aneurysm1564
18. Recommendations for Aortic Arch Aneurysms1565
19. Recommendations for Descending Thoracic
 Aorta and Thoracoabdominal Aortic Aneurysms1566
20. Recommendations for Counseling and
 Management of Chronic Aortic Diseases in
 Pregnancy ..1566
21. Recommendations for Aortic Arch and Thoracic
 Aortic Atheroma and Atheroembolic Disease1567
22. Periprocedural and Perioperative Management1567
 22.1. Recommendations for Preoperative Evaluation .1567
 22.2. Recommendations for Choice of Anesthetic
 and Monitoring Techniques1567
 22.3. Recommendation for Transfusion Management
 and Anticoagulation in Thoracic Aortic
 Surgery1568
 22.4. Recommendations for Brain Protection
 During Ascending Aortic and Transverse
 Aortic Disease or Previously Repaired Patients .1568
 22.5. Recommendations for Spinal Cord
 Protection During Descending Aortic Open
 Surgical and Endovascular Repairs1568
 22.6. Recommendations for Renal Protection
 During Descending Aortic Open Surgical
 and Endovascular Repairs1568
23. Recommendations for Surveillance of Thoracic
 Aortic Disease or Previously Repaired Patients1569
24. Recommendation for Employment and Lifestyle
 in Patients With Thoracic Aortic Disease1569
25. Tumors of the Thoracic Aorta1569
26. Recommendations for Quality Assessment and
 Improvement for Thoracic Aortic Disease1570
Appendix 1. Author Relationships With Industry and
 Other Entities1571
Appendix 2. Reviewer Relationships With Industry
 and Other Entities1573
References ...1574

Preamble

It is essential that the medical profession play a central role in
critically evaluating the evidence related to drugs, devices, and
procedures for the detection, management, or prevention of
disease. Properly applied, rigorous, expert analysis of the avail-
able data documenting absolute and relative benefits and risks of
these therapies and procedures can improve outcomes and
reduce costs of care by focusing resources on the most effective
strategies. One important use of such data is the production of
clinical practice guidelines which, in turn, can provide a foun-
dation for a variety of other applications such as performance
measures, appropriate use criteria, clinical decision support
tools, and quality improvement tools.

The American College of Cardiology Foundation (ACCF) and the
American Heart Association (AHA) have jointly en-
gaged in the production of guidelines in the area of cardiovas-
cular disease since 1980. The ACCF/AHA Task Force on
Practice Guidelines is charged with developing, updating, and
revising practice guidelines for cardiovascular diseases and
procedures, and the Task Force directs and oversees this effort.
Writing committees are charged with assessing the evidence as
an independent group of authors to develop, update, or revise
recommendations for clinical practice.
Experts in the subject under consideration have been selected from both organizations to examine subject-specific data and write guidelines in partnership with representatives from other medical practitioner and specialty groups. Writing committees are specifically charged to perform a formal literature review, weigh the strength of evidence for or against particular treatments or procedures, and include estimates of expected health outcomes where data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that may influence the choice of tests or therapies are considered. When available, information from studies on cost is considered, but data on efficacy and clinical outcomes constitute the primary basis for recommendations in these guidelines.

The ACCF/AHA Task Force on Practice Guidelines makes every effort to avoid actual, potential, or perceived conflicts of interest that may arise as a result of industry relationships or personal interests among the writing committee. Specifically, all members of the writing committee, as well as peer reviewers of the document, are asked to disclose all current relationships and those 24 months prior to initiation of the writing effort that may be perceived as relevant. All guideline recommendations require a confidential vote by the writing committee and must be approved by a consensus of the members voting. Members who were recused from voting are noted on the title page of this document. Members must recuse themselves from voting on any recommendation where their relationships with industry (RWI) and other entities apply. If a writing committee member develops a new relationship with industry during his/her tenure, he/she is required to notify guideline staff in writing. These statements are reviewed by the writing committee and must be approved by a consensus of the members voting. The guidelines will be reviewed annually by the ACCF/AHA Task Force on Practice Guidelines and considered current unless they are updated, revised, or withdrawn from distribution. The full-text guidelines are e-published in the April 6, 2010, issues of the Journal of the American College of Cardiology and Circulation.

Alice K. Jacobs, MD, FACC, FAHA
Chair, ACCF/AHA Task Force on Practice Guidelines

Sidney C. Smith, Jr, MD, FACC, FAHA
Immediate Past Chair, ACCF/AHA Task Force on Practice Guidelines

1. Introduction
1.1. Methodology and Evidence Review

The writing committee conducted a comprehensive search of the medical and scientific literature through the use of PubMed/MEDLINE. Searches were limited to publications written in the English language. Compiled reports were reviewed and additional articles were provided by committee members. Specifically targeted searches were conducted on the following subtopics: acute aortic dissection, ankylosing spondylitis, aortic dissection and litigation, aortic neoplasm, aortic tumors, Behcet disease, bicuspid aortic valve, calcified aorta, chronic dissection, coarctation of the aorta, D-dimer, dissecting aneurysm, Ehlers-Danlos syndrome, endovascular and aortic aneurysms, medial degeneration, porcelain aorta, giant cell arteritis, imaging and thoracic aortic disease, inflammatory disease, intramural hematoma, Loeys-Dietz syndrome, Marfan syndrome, Noonan syndrome, penetrating aortic ulcer, polycystic kidney disease, thoracic and aortic aneurysms, thoracic aortic disease and patient care, thoracic aortic disease and surgery, thoracic aorta and Kawasaki disease, Takayasu arteritis, thoracoabdominal and aorta or aortic disease, and Turner syndrome. More than 850 references were reviewed, with 830 used as the primary evidence base for the final guideline. The ACCF/AHA Task Force on Practice Guidelines methodology processes were followed to write the text and recommendations. In general, published manuscripts appearing in journals listed in Index Medicus were used as the evidence base. Published abstracts were used only for emerging information but were not used in the formulation of recommendations.

The committee reviewed and ranked evidence supporting current recommendations with the weight of evidence ranked as Level A if the data were derived from multiple randomized
clinical trials or meta-analyses. The committee ranked available evidence as Level B when data were derived from a single randomized trial or nonrandomized studies. Evidence was ranked as Level C when the primary source of the recommendation was consensus opinion, case studies, or standard of care. In the narrative portions of these guidelines, evidence is generally presented in chronological order of development. Studies are identified as observational, retrospective, prospective, or randomized. For certain conditions for which inadequate data are available, recommendations are based on expert consensus and clinical experience and are ranked as Level C. An analogous example is the use of penicillin for pneumococcal pneumonia, where there are no randomized trials and treatment is based on clinical experience. When recommendations at Level C are supported by historical clinical data, appropriate references (including clinical reviews) are cited if available. For issues where sparse data are available, a survey of current practice among the clinicians on the writing committee formed the basis for Level C recommendations and no references are cited. The schema for classification of recommendations and level of evidence is summarized in Table 1, which also illustrates how the grading system provides an estimate of the size of the treatment effect and an estimate of the certainty of the treatment effect.

To provide clinicians with a comprehensive set of data, whenever possible, the exact event rates in various treatment arms of clinical trials are presented to permit calculation of the absolute risk difference (ARD), number needed to harm (NNH); the relative treatment effects are described either as odds ratio (OR), relative risk (RR), or hazard ratio (HR) depending on the format in the original publication. Along
with all other point statistics, confidence intervals (CIs) for those statistics are added when available.

The writing committee recognized that the evidence base for this guideline is less robust in terms of randomized clinical trials than prior ACCF/AHA guidelines, particularly those focused on coronary artery disease (CAD) and heart failure. As the reader will discern, much of the evidence base for this topic consists of cohort studies and retrospective reviews, which largely emanate from centers with a specialized interest in specific types of thoracic aortic disease. The writing committee attempted to focus on providing the practitioner with recommendations for evaluation and treatment wherever possible and where controversy exists, identified as such in the text.

The writing committee acknowledges the expertise of the highly experienced and effective practice guidelines staff of the ACCF and AHA. The writing committee chair also acknowledges the commitment and dedication of the diverse writing committee members who were able to put aside issues of specialty “turf” and focus on providing the medical community with a guideline aimed at optimal patient care.

1.2. Organization of the Writing Committee

The guideline was written by a committee comprised of experts in cardiovascular medicine, surgery, radiology, and nursing. For many of the previous ACCF/AHA practice guidelines, writing expertise has been available within these 2 organizations. Because of the broad scope and diversity of thoracic aortic diseases, as well as the specialists who treat such patients, the ACCF and AHA sought greater involvement from many specialty organizations. Most, but not all, specialty organizations that represent the major stakeholders caring for patients with thoracic aortic diseases provided writing committee members and financial support of the project, and they are recognized as marquee level partners with the ACCF and AHA. These organizations included the American Association for Thoracic Surgery (AATS), American College of Radiology (ACR), American Stroke Association (ASA), Society of Cardiovascular Anesthesiologists (SCA), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of Thoracic Surgeons (STS), and Society for Vascular Medicine (SVM). The American College of Emergency Physicians (ACEP) and the American College of Physicians (ACP) were also represented on the writing committee.

Where additional expertise was needed, the scientific councils of the AHA were contacted for writing committee representatives. Representation was provided or facilitated by the Councils on Cardiovascular Nursing, Cardiovascular Surgery and Anesthesia, Cardiovascular Radiology and Intervention, and Clinical Cardiology, Council for High Blood Pressure Research, and Stroke Council.

1.3. Document Review and Approval

This document was reviewed by 3 outside reviewers nominated by the ACCF and 2 outside reviewers nominated by the AHA, as well as 1 or 2 reviewers from each of the following organizations: the AATS, ACP, ACEP, ACR, ASA, SCA, SCAI, SIR, STS, and the SVM. It was also reviewed by 6 individual content reviewers—2 content reviewers from the ACCF Catheterization Committee and 1 content reviewer from the ACCF Interventional Council. All reviewer RWI information was collected and distributed to the writing committee and is published in this document (see Appendix 2).

This document was approved for publication by the governing bodies of the ACCF and the AHA; and the AATS, ACEP, ACR, ASA, SCA, SCAI, SIR, STS, and SVM and was endorsed by the North American Society for Cardiovascular Imaging.

1.4. Scope of the Guideline

The term thoracic aortic disease encompasses a broad range of degenerative, structural, acquired, genetic-based, and traumatic disease states and presentations. According to the Centers for Disease Control and Prevention death certificate data, diseases of the aorta and its branches account for 43 000 to 47 000 deaths annually in the United States. The precise number of deaths attributable to thoracic aortic diseases is unclear. However, autopsy studies suggest that the presentation of thoracic aortic disease is often death due to aortic dissection (AoD) and rupture, and these deaths account for twice as many deaths as attributed to ruptured abdominal aortic aneurysms (AAAs). The diagnosis of acute thoracic AoD or rupture is often difficult and delayed, and errors in diagnosis may account for deaths otherwise attributed to cardiac arrhythmia, myocardial infarction (MI), pulmonary embolism, or mesenteric ischemia.

Most patients with significant thoracic aortic disease will be directed to specialized practitioners and institutions. However, the importance of early recognition and prompt treatment and/or referral for a variety of thoracic aortic diseases by all healthcare professionals provides the rationale for this document. This guideline will provide the practitioner with a sufficient description of background information, diagnostic modalities, and treatment strategies so that appropriate care of these patients can be facilitated and better understood. The goal of this guideline is to improve the health outcomes and quality of life for all patients with thoracic aortic disease.

This guideline includes diseases involving any or all parts of the thoracic aorta with the exception of aortic valve diseases and includes the abdominal aorta when contiguous thoracic aortic diseases are present. Specific disease states are described in the following sections and the reader is referred to the glossary of terminology in Section 1.5 for abbreviations used throughout the guideline.

1.4.1. Critical Issues

As the writing committee developed this guideline, several critical issues emerged:

- Thoracic aortic diseases are usually asymptomatic and not easily detectable until an acute and often catastrophic complication occurs. Imaging of the thoracic aorta with computed tomographic imaging (CT), magnetic resonance imaging (MR), or in some cases, echocardiographic examination is the only method to detect thoracic aortic diseases and determine risk for future complications.
- Radiologic imaging technologies have improved in terms of accuracy of detection of thoracic aortic disease.

...
ever, as the use of these technologies has increased, so also has the potential risk associated with repeated radiation exposure, as well as contrast medium–related toxicity. Whether these technologies should be used repeatedly as a widespread screening tool is discussed in the full-text document. In addition, the writing committee formulated recommendations on a standard reporting format for thoracic aortic findings as discussed in Section 4.

- Imaging for asymptomatic patients at high risk based on history or associated diseases is expensive and not always covered by payers.
- For many thoracic aortic diseases, results of treatment for stable, often asymptomatic, but high-risk conditions are far better than the results of treatment required for acute and often catastrophic disease presentations. Thus, the identification and treatment of patients at risk for acute and catastrophic disease presentations (eg, thoracic AoD and thoracic aeurysm rupture) prior to such an occurrence are paramount to eliminating the high morbidity and mortality associated with acute presentations.
- A subset of patients with acute AoD are subject to missed or delayed detection of this catastrophic disease state. Many present with atypical symptoms and findings, making diagnosis even more difficult. This issue has come under greater medical-legal scrutiny, and specific cases have been widely discussed in the public domain. Widespread awareness of the varied and complex nature of thoracic aortic disease presentations has been lacking, especially for acute AoD. Risk factors and clinical presentation clues are noted in Section 9. The collaboration and cosponsorship of multiple medical specialties in the writing of this guideline will provide unique opportunities for widespread dissemination of knowledge to raise the level of awareness among all medical specialties.
- There is rapidly accumulating evidence that genetic alterations or mutations predispose some individuals to aortic diseases. Therefore, identification of the genetic alterations leading to these aortic diseases has the potential for early identification of individuals at risk. In addition, biochemical abnormalities involved in the progression of aortic disease are being identified through studies of patients’ aortic samples and animal models of the disease. The biochemical alterations identified in the aortic tissue have the potential to serve as biomarkers for aortic disease. Understanding the molecular pathogenesis may lead to targeted therapy to prevent aortic disease. Medical and gene-based treatments are beginning to better than the results of treatment required for acute and catastrophic disease presentations. Thus, the identification and treatment of patients at risk for acute and catastrophic disease presentations (eg, thoracic AoD and thoracic aeurysm rupture) prior to such an occurrence are paramount to eliminating the high morbidity and mortality associated with acute presentations.

1.5. Glossary of Terms and Abbreviations Used Throughout the Guideline

Aneurysm (or true aneurysm): a permanent localized dilatation of an artery, having at least a 50% increase in diameter compared to the expected normal diameter of the artery in question. Although all 3 layers (intima, media, and adventitia) may be present, the intima and media in large aneurysms may be so attenuated that in some sections of the wall they are undetectable.

Pseudoaneurysm (or false aneurysm): contains blood resulting from disruption of the arterial wall with extravasation of blood contained by periarterial connective tissue and not by the arterial wall layers. Such an extravascular hematoma that freely communicates with the intravascular space is also known as a pulsating hematoma.

Ectasia: arterial dilatation less than 150% of normal arterial diameter.

Arteriomegaly: diffuse arterial dilatation involving several arterial segments with an increase in diameter greater than 50% by comparison to the expected normal arterial diameter.

Thoracoabdominal aneurysm (TAA): aneurysm involving the thoracic and abdominal aorta.

Abdominal aortic aneurysm (AAA): aneurysm involving the infradiaphragmatic abdominal aorta.

Aortic dissection (AoD): disruption of the media layer of the aorta with bleeding within and along the wall of the aorta. Dissection may, and often does, occur without an aneurysm being present. An aneurysm may, and often does, occur without dissection. The term dissecting aortic aneurysm is often used incorrectly and should be reserved only for those cases where a dissection occurs in an aneurysmal aorta.

2. The Thoracic Aorta

The thoracic aorta is divided into 4 parts: the aortic root (which includes the aortic valve annulus, the aortic valve cusps, and the sinuses of Valsalva); the ascending aorta (which includes the tubular portion of the ascending aorta beginning at the sinotubular junction and extending to the brachiocephalic artery origin); the aortic arch (which begins at the origin of the brachiocephalic artery, and is the origin of the head and neck arteries, coursing in front of the trachea and to the left of the esophagus and the trachea); and the descending aorta (which begins at the isthmus between the origin of the left subclavian artery and the ligamentum arteriosum and courses anterior to the vertebral column, and then through the diaphragm into the abdomen) (see Figure 1).

The normal human adult aortic wall is composed of 3 layers, listed from the blood flow surface outward:

- Intima: Endothelial layer on a basement membrane with minimal ground substance and connective tissue.
- Media: Bound by an internal elastic lamina, a fenestrated sheet of elastic fibers; layers of elastic fibers arranged concentrically with interposed smooth muscle cells; bound by an external elastic lamina, another fenestrated sheet of elastic fibers.
- Adventitia: A resilient layer of collagen containing the vasa vasorum and nerves. Some of the vasa vasorum can penetrate into the outer third of the media.

3. Thoracic Aortic Histopathology

3.1. Atherosclerosis

A 1995 consensus document from the AHA defines the types and histological classes of atherosclerosis

3.2. Aneurysms and Dissections

Aortic aneurysm histopathology, more accurately termed medial degeneration, is characterized by disruption and loss of elastic
by guest on October 27, 2017 http://circ.ahajournals.org/ Downloaded from

valves16,18 and inconsistently in ascending aortic tissue from

rysms from patients with either tricuspid or bicuspid aortic

immunostaining has been demonstrated in ascending aneu-

of disrupted elastic fibers. Elevated MMP-2 and MMP-9

the borders of areas of medial degeneration and on the surface

Marfan syndrome has demonstrated increases of MMP-2 and

randomly with respect to one another.13,14

aorta, but instead, the smooth muscle cells were oriented

for a lack of structured orientation parallel to the lumen of the

plasia associated with smooth muscle cells that were remarkable

hyperplastic response by smooth muscle cells in the aortic

mutations leading to ascending aortic aneurysms demonstrates a

ogy associated with myosin heavy chain 11, smooth muscle

9.15–18 Immunostaining of aortic media from patients with

thoracic aortic aneurysms, particularly MMP-2 and MMP-

proteinases (MMPs) has been described in the media of

aortic wall is not clear. Recent literature supports the presence of

there are areas of loss of smooth muscle cells in the aortic media,

but whether there is a total loss of smooth muscle cells in the

aortic root measurements, the widest diameter, typically at the mid-sinus level,

should be used. (Level of Evidence: C)

3. For measurements taken by echocardiography, the

internal diameter should be measured perpendicular to

the axis of blood flow. For aortic root measurements,

the widest diameter, typically at the mid-sinus level,

should be used. (Level of Evidence: C)

4. Abnormalities of aortic morphology should be

recognized and reported separately even when

aortic diameters are within normal limits. (Level of Evidence: C)

5. The finding of aortic dissection, aneurysm, traum-

atic injury and/or aortic rupture should be imme-

diately communicated to the referring physician. (Level of Evidence: C)

6. Techniques to minimize episodic and cumulative

radiation exposure should be utilized whenever possible.20,21 (Level of Evidence: B)

4. Recommendations for Aortic Imaging

Techniques to Determine the Presence and

Progression of Thoracic Aortic Disease

Class I

1. Measurements of aortic diameter should be taken at

reproducible anatomic landmarks, perpendicular to

the axis of blood flow, and reported in a clear and

consistent format (see Table 2). (Level of Evidence: C)

2. For measurements taken by computed tomographic

imaging or magnetic resonance imaging, the exter-

nal diameter should be measured perpendicular to

the axis of blood flow. For aortic root measurements,

the widest diameter, typically at the mid-sinus level,

should be used. (Level of Evidence: C)

3. For measurements taken by echocardiography, the

internal diameter should be measured perpendicular to

the axis of blood flow. For aortic root measurements,

the widest diameter, typically at the mid-sinus level,

should be used. (Level of Evidence: C)

Class IIa

1. If clinical information is available, it can be useful to

relate aortic diameter to the patient’s age and body

size (see Tables 3 and 4). (Level of Evidence: C)

Definitive identification or exclusion of thoracic aortic disease or

one of its anatomic variants requires dedicated aortic imaging.

Selection of the most appropriate imaging study may depend on

patient related factors (ie, hemodynamic stability, renal function,

contrast allergy) and institutional capabilities (ie, rapid availabil-

Figure 1. Normal anatomy of the thoracoabdominal aorta with

standard anatomic landmarks for reporting aortic diameter as

illustrated on a volume-rendered CT image of the thoracic

aorta. CT indicates computed tomographic imaging. Anato-

mic locations: 1, Aortic sinuses of Valsalva; 2, Sinotubular

junction; 3, Mid ascending aorta (midpoint in length between

Nos. 2 and 4); 4, Proximal aortic arch (aorta at the origin of

the innominate artery); 5, Mid aortic arch (between left com-

mon carotid and subclavian arteries); 6, Proximal descending

thoracic aorta (begins at the isthmus, approximately 2 cm
distal to left subclavian artery); 7, Mid descending aorta (mid-

point in length between Nos. 6 and 8); 8, Aorta at diaphragm

(2 cm above the celiac axis origin); 9, Abdominal aorta at the

celiac axis origin. CT indicates computed tomographic

imaging.

fibers and increased deposition of proteoglycans. Typically,

there are areas of loss of smooth muscle cells in the aortic media,

but whether there is a total loss of smooth muscle cells in the

aortic wall is not clear. Recent literature supports the presence of

inflammatory cell infiltration in this disease.11,12 Aortic pathol-

ogy associated with myosin heavy chain 11, smooth muscle

(MYH11) and actin, alpha 2, smooth muscle aorta (ACTA2)

mutations leading to ascending aortic aneurysms demonstrates a

hyperplastic response by smooth muscle cells in the aortic

media. The aortic media in aneurysm tissue taken from patients

harboring mutations in these genes demonstrated focal hyper-

plasia associated with smooth muscle cells that were remarkable

for a lack of structured orientation parallel to the lumen of the

aorta, but instead, the smooth muscle cells were oriented

randomly with respect to one another.13,14

Increased immunostaining for a subset of matrix metallo-

proteinases (MMPs) has been described in the media of

thoracic aortic aneurysms, particularly MMP-2 and MMP-

9.15–18 Immunostaining of aortic media from patients with

Marfan syndrome has demonstrated increases of MMP-2 and

MMP-9, which was associated with smooth muscle cells at

the borders of areas of medial degeneration and on the surface

of disrupted elastic fibers. Elevated MMP-2 and MMP-9

immunostaining has been demonstrated in ascending aneu-

rysms from patients with either tricuspid or bicuspid aortic

valves16,18 and inconsistently in ascending aortic tissue from

patients with tricuspid aortic valves.17 These 2 MMPs are

known to have elastolytic activity. Variable expression of

MMPs and tissue inhibitors of MMPs has also been demon-

strated in aortic tissue of patients with Marfan syndrome versus patients without Marfan syndrome.19 Although accumu-

lation of proteoglycans in the aortic media is another

consistent finding in thoracic aortic aneurysms, no studies

have determined why this accumulation occurs or whether

these are causative in nature.

3.3. Vasculitis and Inflammatory Diseases

Giant cell arteritis and Takayasu arteritis share important

features19a with T-cell clonal expansion suggesting an anti-
genic response. An adventitial inflammatory response is marked by augmented cytokine and MMP production causing granuloma formation, which causes vessel destruction.19b Behçet disease affects both arteries and veins of all sizes.
of individual imaging modalities, state of the technology, and imaging specialist expertise). Consideration should be given to patients with borderline abnormal renal function (serum creatinine greater than 1.8 to 2.0 mg/dL)—specifically, the tradeoffs between the use of iodinated intravenous contrast for CT and the possibility of contrast-induced nephropathy, and gadolinium agents used with MR and the risk of nephrogenic systemic fibrosis.22 Radiation exposure should be minimized.21,23–26 The risk of radiation-induced malignancy is the greatest in neonates, children, and young adults.21 Generally, above the age of 30 to 35 years, the probability of radiation-induced malignancy decreases substantially.20,21 For patients who require repeated imaging to follow an aortic abnormality, MR may be preferred to CT. MR may require sedation due to longer examination times and tendency for claustrophobia.

CT as opposed to echocardiography can best identify thoracic aortic disease, as well as other disease processes that can mimic aortic disease, including pulmonary embolism, pericardial disease, and hiatal hernia. After intervention or open surgery, CT is preferred to detect asymptomatic post-procedural leaks or pseudoaneurysms because of the presence of metallic closure devices and clips.

CT and MR measure external aortic diameter, whereas echocardiography measures internal aortic diameter. Lumen size may not accurately reflect external diameter due to intraluminal clot, wall inflammation, or AoD. A recent refinement in the CT measurement of aortic size examines the vessel size using a centerline of flow, which reduces the error

Table 2. Essential Elements of Aortic Imaging Reports

1. The location at which the aorta is abnormal.
2. The maximum diameter of any dilatation, measured from the external wall of the aorta, perpendicular to the axis of flow, and the length of the aorta that is abnormal.
3. For patients with presumed or documented genetic syndromes at risk for aortic root disease measurements of aortic valve, sinuses of Valsalva, sinotubular junction, and ascending aorta.
4. The presence of internal filling defects consistent with thrombus or atheroma.
5. The presence of IMH, PAU, and calcification.
6. Extension of aortic abnormality into branch vessels, including dissection and aneurysm, and secondary evidence of end-organ injury (eg, renal or bowel hypoperfusion).
7. Evidence of aortic rupture, including peri-aortic and mediastinal hematoma, pericardial and pleural fluid, and contrast extravasation from the aortic lumen.
8. When a prior examination is available, direct image to image comparison to determine if there has been any increase in diameter.

IMH indicates intramural hematoma; and PAU, penetrating atherosclerotic ulcer.

Table 3. Normal Adult Thoracic Aortic Diameters

<table>
<thead>
<tr>
<th>Thoracic Aorta</th>
<th>Range of Reported Mean (cm)</th>
<th>Reported SD (cm)</th>
<th>Assessment Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root (female)</td>
<td>3.50 to 3.72</td>
<td>0.38</td>
<td>CT</td>
</tr>
<tr>
<td>Root (male)</td>
<td>3.63 to 3.91</td>
<td>0.38</td>
<td>CT</td>
</tr>
<tr>
<td>Ascending (female, male)</td>
<td>2.86</td>
<td>NA</td>
<td>CXR</td>
</tr>
<tr>
<td>Mid-descending (female)</td>
<td>2.45 to 2.64</td>
<td>0.31</td>
<td>CT</td>
</tr>
<tr>
<td>Mid-descending (male)</td>
<td>2.39 to 2.98</td>
<td>0.31</td>
<td>CT</td>
</tr>
<tr>
<td>Diaphragmatic (female)</td>
<td>2.40 to 2.44</td>
<td>0.32</td>
<td>CT, arteriography</td>
</tr>
<tr>
<td>Diaphragmatic (male)</td>
<td>2.43 to 2.69</td>
<td>0.27 to 0.40</td>
<td>CT, arteriography</td>
</tr>
</tbody>
</table>

CT indicates computed tomographic imaging; CXR, chest x-ray; and NA, not applicable. Reprinted with permission from Johnston et al.27
of tangential measurement and allows true short-axis measurement of aortic diameter. Essential element of aortic imaging reports are listed in Table 2.

4.1. Chest X-Ray
Routine chest x-ray may occasionally detect abnormalities of aortic contour or size that require definitive aortic imaging. Chest x-ray often serves as a part of the evaluation of patients with potential acute AoD, primarily to identify other causes of patient’s symptoms, but also as a screening test to identify findings due to a dilated aorta or bleeding.

4.2. Computed Tomographic Imaging
CT scanning has several advantages, including near-universal availability; the ability to image the entire aorta, including lumen, wall, and periaortic regions; to identify anatomic variants and branch vessel involvement; to distinguish among types of acute aortic syndromes (ie, intramural hematoma [IMH], penetrating atherosclerotic ulcer [PAU], and acute AoD); and the short time required to complete the imaging process and the 3-dimensional data. Electrocardiogram-gated techniques have made it possible to generate motion-free images of the aortic root and coronary arteries, similar to coronary CT angiographic imaging. Reports of newer-generation multidetector helical CT scanners show sensitivities of up to 100% and specificities of 98% to 99%.

The sequence for a CT performed in the potential setting of acute AoD generally would include a noncontrast study to detect subtle changes of IMH, followed by a contrast study to delineate the presence and extent of the dissection flap, identify regions of potential malperfusion, and demonstrate contrast leak indicating rupture. Imaging of the vascular tree from the thoracic inlet to the pelvis, including the iliac and femoral arteries, provides sufficient information to plan surgical or endovascular treatment, if needed. Prompt interpretation and communication of findings to the appropriate treating physicians are essential in the acute setting. (For further information on technique parameters and anatomic coverage, see the online-only Data Supplement.)

4.3. Magnetic Resonance Imaging
MR has been shown to be very accurate in the diagnosis of thoracic aortic disease, with sensitivities and specificities that are equivalent to or may exceed those of CT and transesophageal echocardiogram (TEE). Advantages of MR include the ability to identify anatomic variants of AoD (IMH and PAU), assess branch artery involvement, and diagnose aortic valve pathology and left ventricular dysfunction without exposing the patient to either radiation or iodinated contrast. Disadvantages include prolonged duration of imaging acquisition during which the patient is inaccessible to care providers; inability to use gadolinium contrast in patients with renal insufficiency; contraindication in patients with claustrophobia, metallic implants or pacemakers, and lack of widespread availability on an emergency basis.

4.4. Echocardiography
Echocardiography can detect the presence of aortic enlargement and associated cardiac pathology that suggests the underlying etiology of the aortic disease (eg, bicuspid aortic valve). For AoD (Figure 3), one of the major limitations of both transthoracic echocardiogram (TTE) and TEE is the frequent appearance of artifacts that mimic a dissection flap (Figure 4). These usually arise from a mirror image or reverberation artifact that appears as a mobile linear echoden-
sity overlying the aortic lumen. It is therefore essential that the echocardiographer make certain to distinguish true dissection flaps from such artifacts.

5. Recommendations for Genetic Syndromes

Class I

1. An echocardiogram is recommended at the time of diagnosis of Marfan syndrome to determine the aortic root and ascending aortic diameters (see Figure 5) and 6 months thereafter to determine the rate of enlargement of the aorta. (Level of Evidence: C)

2. Annual imaging is recommended for patients with Marfan syndrome if stability of the aortic diameter is documented. If the maximal aortic diameter is 4.5 cm or greater, or if the aortic diameter shows significant growth from baseline, more frequent imaging should be considered. (Level of Evidence: C)

3. Patients with Loeys-Dietz syndrome or a confirmed genetic mutation known to predispose to aortic aneurysms and aortic dissections (TGFBR1, TGFBR2, FBN1, ACTA2, or MYH11) should undergo complete aortic imaging at initial diagnosis and 6 months thereafter to establish if enlargement is occurring. (Level of Evidence: C)

4. Patients with Loeys-Dietz syndrome should have yearly magnetic resonance imaging from the cerebrovascular circulation to the pelvis.18,44,45 (Level of Evidence: B)

Figure 5. Transthoracic echocardiogram of a patient with Marfan syndrome with mitral valve prolapse and 4-cm ascending aortic aneurysm.
5. Patients with Turner syndrome should undergo imaging of the heart and aorta for evidence of bicuspid aortic valve, coarctation of the aorta, or dilatation of the ascending thoracic aorta.\(^4\) If initial imaging is normal and there are no risk factors for aortic dissection, repeat imaging should be performed every 5 to 10 years or if otherwise clinically indicated. If abnormalities exist, annual imaging or follow-up imaging should be done. (Level of Evidence: C)

Class IIa

1. It is reasonable to consider surgical repair of the aorta in all adult patients with Loeys-Dietz syndrome or a confirmed TGFBR1 or TGFBR2 mutation and an aortic diameter of 4.2 cm or greater by transesophageal echocardiogram (internal diameter) or 4.4 to 4.6 cm or greater by computed tomographic imaging and/or magnetic resonance imaging (external diameter).\(^4\) (Level of Evidence: C)

2. For women with Marfan syndrome contemplating pregnancy, it is reasonable to prophylactically replace the aortic root and ascending aorta if the diameter exceeds 4.0 cm.\(^4\) (Level of Evidence: C)

3. If the maximal cross-sectional area in square centimeters of the ascending aorta or root divided by the patient’s height in meters exceeds a ratio of 10, surgical repair is reasonable because shorter patients have dissection at a smaller size and 15% of patients with Marfan syndrome have dissection at a size smaller than 5.0 cm.\(^4\) (Level of Evidence: C)

Class IIb

1. In patients with Turner syndrome with additional risk factors, including bicuspid aortic valve, coarctation of the aorta, and/or hypertension, and in patients who attempt to become pregnant or who become pregnant, it may be reasonable to perform imaging of the heart and aorta to help determine the risk of aortic dissection. (Level of Evidence: C)

There are several syndromic and nonsyndromic genetic conditions that are associated with the development of thoracic aortic aneurysms and present with dissections at smaller diameters than usual. The following recommendations focus on these specific conditions, including Marfan syndrome, Loeys-Dietz syndrome, Turner syndrome, bicuspid aortic valve, and other genetic mutations (TGFBR1, TGFBR2, FBN1, ACTA2, COL3A1, MYH11) (see Tables 5 and 6).

A substantial proportion of Ehlers-Danlos syndrome patients who do not have the vascular form also have aortic root dilatation but the progression of this dilatation to AoD is rare.\(^4\) Similarly, patients with congenital contractural arachnodactyly or Beals syndrome due to mutations in FBN2 have had aortic root enlargement without documented progression to dissection.\(^5\)

There are other genetic syndromes that have multiple reports or documentation of thoracic aortic aneurysms leading to Type A dissections. There are multiple case reports of AoD in patients with autosomal dominant polycystic kidney disease.\(^5\) Although AoD is a complication of autosomal dominant polycystic kidney disease, it is less common than cerebral aneurysms leading to subarachnoid hemorrhage in this population. There is insufficient information to gauge the value of routine or screening imaging for these patients.

Similar to autosomal dominant polycystic kidney disease, there are multiple reports in the literature of patients with Noonan syndrome experiencing AoDs.\(^5\) The value of imaging or routine monitoring of these patients is unknown. A review of 200 patients with Alagille syndrome also identified thoracic aortic disease in a small subset of these patients.\(^5\)

6. Recommendations for Familial Thoracic Aortic Aneurysms and Dissections

Class I

1. Aortic imaging is recommended for first-degree relatives of patients with thoracic aortic aneurysm and/or dissection to identify those with asymptomatic disease.\(^6\) (Level of Evidence: B)

2. If the mutant gene (FBN1, TGFBR1, TGFBR2, COL3A1, ACTA2, MYH11) associated with aortic aneurysm and/or dissection is identified in a patient, first-degree relatives should undergo counseling and testing. Then, only the relatives with the
genetic mutation should undergo aortic imaging.

(Level of Evidence: C)

Class IIa

1. If one or more first-degree relatives of a patient with known thoracic aortic aneurysm and/or dissection are found to have thoracic aortic dilatation, aneurysm, or dissection, then imaging of second-degree relatives is reasonable. (Level of Evidence: B)

2. Sequencing of the ACTA2 gene is reasonable in patients with a family history of thoracic aortic aneurysms and/or dissections to determine if ACTA2 mutations are responsible for the inherited predisposition. (Level of Evidence: B)

Class IIb

1. Sequencing of other genes known to cause familial thoracic aortic aneurysms and/or dissection (TGFBRI, TGFBRII, MYH11) may be considered in patients with a family history and clinical features associated with mutations in these genes. (Level of Evidence: B)

2. If one or more first-degree relatives of a patient with known thoracic aortic aneurysm and/or dissection are found to have thoracic aortic dilatation, aneurysm, or dissection, then referral to a geneticist may be considered. (Level of Evidence: C)

7. Recommendations for Bicuspid Aortic Valve and Associated Congenital Variants in Adults

Class I

1. First-degree relatives of patients with a bicuspid aortic valve, premature onset of thoracic aortic disease with minimal risk factors, and/or a familial form of thoracic aortic aneurysm and dissection should be evaluated for the presence of a bicuspid aortic valve and asymptomatic thoracic aortic disease. (Level of Evidence: C)

2. All patients with a bicuspid aortic valve should have both the aortic root and ascending thoracic aorta evaluated for evidence of aortic dilatation. (Level of Evidence: B)

8. Recommendations for Takayasu Arteritis and Giant Cell Arteritis

See Table 7 and Figure 6.

Class I

1. Initial therapy for active Takayasu arteritis and active giant cell arteritis should be corticosteroids at a high dose (prednisone 40 to 60 mg daily at initiation or its equivalent) to reduce the active inflammatory state. (Level of Evidence: B)
Table 7. Inflammatory Diseases Associated With Thoracic Aortic Aneurysm and Dissection

<table>
<thead>
<tr>
<th>Names</th>
<th>Criteria Used in Diagnosis/Source</th>
<th>When Is Diagnosis Established?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takayasu arteritis</td>
<td>Age of onset <40 y</td>
<td>≥3 criteria are present</td>
</tr>
<tr>
<td></td>
<td>Intermittent claudication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diminished brachial artery pulse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subclavian artery or aortic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systolic BP variation of >10 mm Hg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>between arms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aortographic evidence of aorta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or aortic branch stenosis</td>
<td></td>
</tr>
<tr>
<td>Giant cell arteritis</td>
<td>Age >50 y</td>
<td>≥3 criteria are present</td>
</tr>
<tr>
<td></td>
<td>Recent-onset localized headache</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temporary artery tenderness or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pulse attenuation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elevated erythrocyte sedimentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arterial biopsy shows necrotizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vasculitis</td>
<td></td>
</tr>
<tr>
<td>Behçet disease</td>
<td>Oral ulceration</td>
<td>Oral ulceration plus 2 of the other 3 criteria</td>
</tr>
<tr>
<td></td>
<td>Recurrent genital ulceration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uveitis or retinal vasculitis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin lesions—erythema nodosum,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pseudo-folliculitis, or pathergy</td>
<td></td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>Onset of pain <40 y</td>
<td>4 of the diagnostic criteria are present</td>
</tr>
<tr>
<td></td>
<td>Back pain for >3 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morning stiffness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtle symptom onset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvement with exercise</td>
<td></td>
</tr>
</tbody>
</table>

BP indicates blood pressure.

2. The success of treatment of patients with Takayasu arteritis and giant cell arteritis should be periodically evaluated to determine disease activity by repeated physical examination and either an erythrocyte sedimentation rate or C-reactive protein level,68,69 (Level of Evidence: B)

3. Elective revascularization of patients with Takayasu arteritis and giant cell arteritis should be delayed until the acute inflammatory state is treated and quiescent.70 (Level of Evidence: B)

4. The initial evaluation of Takayasu arteritis or giant cell arteritis should include thoracic aorta and branch vessel computed tomographic imaging or magnetic resonance imaging to investigate the possibility of aneurysm or occlusive disease in these vessels. (Level of Evidence: C)

Class IIa

1. It is reasonable to treat patients with Takayasu arteritis receiving corticosteroids with an additional anti-inflammatory agent if there is evidence of progression of vascular disease, recurrence of constitutional symptoms, or re-elevation of inflammatory marker.66 (Level of Evidence: C)

9. Recommendations for Estimation of Pretest Risk of Thoracic Aortic Dissection

Class I

1. Providers should routinely evaluate any patient presenting with complaints that may represent acute thoracic aortic dissection to establish a pretest risk of disease that can then be used to guide diagnostic decisions (see Figure 7). This process should include specific questions about medical history, family history, and pain features as well as a focused examination to identify findings that are associated with aortic dissection, including:

(a) High-risk conditions and historical features (see Table 8)75,76–77 (Level of Evidence: B):

- Marfan syndrome, Loewy-Dietz syndrome, vascular Ehlers-Danlos syndrome, Turner syndrome, or other connective tissue disease.
- Patients with mutations in genes known to predispose to thoracic aortic aneurysms and dissections, such as FBN1, TGFBR1, TGFBR2, ACTA2, and MYH11.
- Family history of aortic dissection or thoracic aortic aneurysm.
- Known aortic valve disease.
- Recent aortic manipulation (surgical or catheter-based).
- Known thoracic aortic aneurysm.

(b) High-risk chest, back or abdominal pain features75–81 (Level of Evidence: B):

- Pain that is abrupt or instantaneous in onset.
- Pain that is severe in intensity.
- Pain that has a ripping, tearing, stabbing, or sharp quality.

(c) High-risk examination features75,77,81–84 (Level of Evidence: B):

- Pulse deficit.
- Systolic blood pressure limb differential greater than 20 mm Hg.
- Focal neurological deficit.
- Murmur of aortic regurgitation (new).

2. Patients presenting with sudden onset of severe chest, back and/or abdominal pain, particularly those less than 40 years of age, should be questioned about a history and examined for physical features of Marfan syndrome, Loewy-Dietz syndrome, vascular Ehlers-Danlos syndrome, Turner syndrome, or other connective tissue disorders associated with thoracic aortic disease.76 (Level of Evidence: B)

3. Patients presenting with sudden onset of severe chest, back, and/or abdominal pain should be questioned about a history of aortic pathology in immediate family members as there is a strong familial component to acute thoracic aortic disease.76 (Level of Evidence: B)

4. Patients presenting with sudden onset of severe chest, back and/or abdominal pain should be questioned about recent aortic manipulation (surgical or catheter-based) or a known history of aortic valvular disease, as these factors predispose to acute aortic dissection. (Level of Evidence: C)

5. In patients with suspected or confirmed aortic dissection who have experienced a syncopal episode, a focused examination should be performed to identify associated neurological injury or the presence of pericardial tamponade. (Level of Evidence: C)
6. All patients presenting with acute neurological complaints should be questioned about the presence of chest, back, and/or abdominal pain and checked for peripheral pulse deficits as patients with dissection-related neurological pathology are less likely to report thoracic pain than the typical aortic dissection patient.\(^8\) (Level of Evidence: C)

These recommendations provide guidance to improve more prompt diagnosis of acute AoD (Figure 7). The true incidence of acute AoD is difficult to define as AoD can be rapidly fatal and when patients expire prior to hospitalization, death may be erroneously attributed to another cause. Acute AoD is frequently missed on initial presentation and early mortality among this group may be misclassified as nondissection related. Classes of intimal tears are described in Figure 8. The DeBakey and Stanford Classifications of AoD are pictured in Figure 9. There is no unanimity as to which classification system should be universally used.

10. Initial Evaluation and Management of Acute Thoracic Aortic Disease

10.1. Recommendations for Screening Tests

Class I

1. An electrocardiogram should be obtained on all patients who present with symptoms that may represent acute thoracic aortic dissection.

a. Given the relative infrequency of dissection-related coronary artery occlusion, the presence of ST-segment elevation suggestive of myocardial infarction should be treated as a primary cardiac event without delay for definitive aortic imaging.
unless the patient is at high risk for aortic dissection.75,81,88 (Level of Evidence: B)

2. The role of chest x-ray in the evaluation of possible thoracic aortic disease should be directed by the patient’s pretest risk of disease as follows:
 a. Intermediate risk: Chest x-ray should be performed on all intermediate-risk patients, as it may establish a clear alternate diagnosis that will obviate the need for definitive aortic imaging. (Level of Evidence: C)
 b. Low risk: Chest x-ray should be performed on all low-risk patients, as it may either establish an alternative diagnosis or demonstrate findings that are suggestive of thoracic aortic disease, indicating the need for urgent definitive aortic imaging. (Level of Evidence: C)

3. Urgent and definitive imaging of the aorta using transesophageal echocardiogram, computed tomographic imaging, or magnetic resonance imaging is recommended to identify or exclude thoracic aortic dissection in patients at high risk for the disease by initial screening.29–32,37,89,90 (Level of Evidence: B)

Class III

1. A negative chest x-ray should not delay definitive aortic imaging in patients determined to be high risk for aortic dissection by initial screening. (Level of Evidence: C)
10.2. Recommendations for Diagnostic Imaging Studies
Class I

1. Selection of a specific imaging modality to identify or exclude aortic dissection should be based on patient variables and institutional capabilities, including immediate availability. *(Level of Evidence: C)*
2. If a high clinical suspicion exists for acute aortic dissection but initial aortic imaging is negative, a second imaging study should be obtained. *(Level of Evidence: C)*

10.3. Recommendations for Initial Management
See Figure 10.

Class I

1. Initial management of thoracic aortic dissection should be directed at decreasing aortic wall stress by controlling heart rate and blood pressure as follows:
 a. In the absence of contraindications, intravenous beta blockade should be initiated and titrated to a target heart rate of 60 beats per minute or less. *(Level of Evidence: C)*
 b. In patients with clear contraindications to beta blockade, nondihydropyridine calcium channel-blocking agents should be utilized as an alternative for rate control. *(Level of Evidence: C)*
 c. If systolic blood pressures remain greater than 120 mm Hg after adequate heart rate control has been obtained, then angiotensin-converting enzyme inhibitors and/or other vasodilators should be administered intravenously to further reduce blood pressure that maintains adequate end-organ perfusion. *(Level of Evidence: C)*
 d. Beta blockers should be used cautiously in the setting of acute aortic regurgitation because they will block the compensatory tachycardia. *(Level of Evidence: C)*

Class III

1. Vasodilator therapy should not be initiated prior to rate control so as to avoid associated reflex tachycardia that may increase aortic wall stress.
leading to propagation or expansion of a thoracic aortic dissection. (Level of Evidence: C)

10.4. Recommendations for Definitive Management

See Figures 9 and 11.

Class I

1. Urgent surgical consultation should be obtained for all patients diagnosed with thoracic aortic dissection regardless of the anatomic location (ascending versus descending) as soon as the diagnosis is made or highly suspected. (Level of Evidence: C)

2. Acute thoracic aortic dissection involving the ascending aorta should be urgently evaluated for emergent surgical repair because of the high risk of associated life-threatening complications such as rupture. (Level of Evidence: B)

3. Acute thoracic aortic dissection involving the descending aorta should be managed medically unless life-threatening complications develop (eg, malperfusion syndrome, progression of dissection, enlarging aneurysm, inability to control blood pressure or symptoms). (Level of Evidence: B)

11. Recommendation for Surgical Intervention for Acute Thoracic Aortic Dissection

Class I

1. For patients with ascending thoracic aortic dissection, all aneurysmal aorta and the proximal extent of the dissection should be resected. A partially dissected aortic root may be repaired with aortic valve resuspension. Extensive dissection of the aortic root should be treated with aortic root replacement with a composite graft or with a valve sparing root replacement. If a DeBakey Type II dissection is present, the entire dissected aorta should be replaced. (Level of Evidence: C)

12. Recommendation for Intramural Hematoma Without Intimal Defect

Class IIa

1. It is reasonable to treat intramural hematoma similar to aortic dissection in the corresponding segment of the aorta. (Level of Evidence: C)

13. Recommendation for History and Physical Examination for Thoracic Aortic Disease

Class I

1. For patients presenting with a history of acute cardiac and noncardiac symptoms associated with a significant likelihood of thoracic aortic disease, the clinician should perform a focused physical examination, including a careful and complete search for arterial perfusion differentials in both upper and lower extremities, evidence of visceral ischemia, focal neurological deficits, a murmur of aortic regurgitation, bruits, and findings compatible with possible cardiac tamponade. (Level of Evidence: C)

14. Recommendation for Medical Treatment of Patients With Thoracic Aortic Diseases

Class I

1. Stringent control of hypertension, lipid profile optimization, smoking cessation, and other atherosclerosis risk-reduction measures should be instituted for
patients with small aneurysms not requiring surgery, as well as for patients who are not considered surgical or stent graft candidates (see Table 9). (Level of Evidence: C)

14.1. Recommendations for Blood Pressure Control

Class I

1. Antihypertensive therapy should be administered to hypertensive patients with thoracic aortic diseases to achieve a goal of less than 140/90 mm Hg (patients without diabetes) or less than 130/80 mm Hg (patients with diabetes or chronic renal disease) to reduce the risk of stroke, myocardial infarction, heart failure, and cardiovascular death.107–111 (Level of Evidence: B)

2. Beta adrenergic–blocking drugs should be administered to all patients with Marfan syndrome and aortic aneurysm to reduce the rate of aortic dilatation unless contraindicated.101 (Level of Evidence: B)
Class IIa

1. For patients with thoracic aortic aneurysm, it is reasonable to reduce blood pressure with beta blockers and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers to the lowest point patients can tolerate without adverse effects. (Level of Evidence: B)

2. An angiotensin receptor blocker (losartan) is reasonable for patients with Marfan syndrome, to reduce the rate of aortic dilatation unless contraindicated. (Level of Evidence: B)

14.2. Recommendation for Dyslipidemia

Class IIa

1. Treatment with a statin to achieve a target LDL cholesterol of less than 70 mg/dL is reasonable for patients with a coronary heart disease risk equivalent such as noncoronary atherosclerotic disease, atherosclerotic aortic aneurysm, and coexistent coronary heart disease at high risk for coronary ischemic events. (Level of Evidence: A)

14.3. Recommendation for Smoking Cessation

Class I

1. Smoking cessation and avoidance of exposure to environmental tobacco smoke at work and home are recommended. Follow-up, referral to special programs, and/or pharmacotherapy (including nicotine replacement, bupropion, or varenicline) is useful, as is adopting a stepwise strategy aimed at smoking cessation (the 5 As are Ask, Advise, Assess, Assist, and Arrange). (Level of Evidence: B)
15. Recommendations for Asymptomatic Patients With Ascending Aortic Aneurysm

See Figures 12 and 13.

Class I

1. Asymptomatic patients with degenerative thoracic aneurysm, chronic aortic dissection, intramural hematoma, penetrating atherosclerotic ulcer, mycotic aneurysm, or pseudoaneurysm, who are otherwise suitable candidates and for whom the ascending aorta or aortic sinus diameter is 5.5 cm or greater should be evaluated for surgical repair.119 (Level of Evidence: C)

2. Patients with Marfan syndrome or other genetically mediated disorders (vascular Ehlers-Danlos syndrome, Turner syndrome, bicuspid aortic valve, or familial thoracic aortic aneurysm and dissection) should undergo elective operation at smaller diameters (4.0 to 5.0 cm depending on the condition; see Section 5) to avoid acute dissection or rupture.47,119–125 (Level of Evidence: C)

3. Patients with a growth rate of more than 0.5 cm/y in an aorta that is less than 5.5 cm in diameter should be considered for operation. (Level of Evidence: C)

4. Patients undergoing aortic valve repair or replacement and who have an ascending aorta or aortic root of greater than 4.5 cm should be considered for concomitant repair of the aortic root or replacement of the ascending aorta. (Level of Evidence: C)

Class IIa

1. Elective aortic replacement is reasonable for patients with Marfan syndrome, other genetic diseases, or bicuspid aortic valves, when the ratio of maximal ascending or
aortic root area (πr^2) in cm2 divided by the patient's height in meters exceeds 10.48.123 \((\text{Level of Evidence: C}) \)

2. It is reasonable for patients with Loeys-Dietz syndrome or a confirmed TGFBR1 or TGFBR2 mutation to undergo aortic repair when the aortic diameter reaches 4.2 cm or greater by transesophageal echocardiogram (internal diameter) or 4.4 to 4.6 cm or greater by computed tomographic imaging and/or magnetic resonance imaging.\(^{44}\) \((\text{Level of Evidence: C}) \)

16. Recommendation for Symptomatic Patients With Thoracic Aortic Aneurysm

Class I

1. Patients with symptoms suggestive of expansion of a thoracic aneurysm should be evaluated for prompt surgical intervention unless life expectancy from comorbid conditions is limited or quality of life is substantially impaired. \((\text{Level of Evidence: C}) \)

17. Recommendations for Open Surgery for Ascending Aortic Aneurysm

Class I

1. Separate valve and ascending aortic replacement are recommended in patients without significant aortic root dilatation, in elderly patients, or in young patients with minimal dilatation who have aortic valve disease. \((\text{Level of Evidence: C}) \)

2. Patients with Marfan, Loeys-Dietz, and Ehlers-Danlos syndromes and other patients with dilatation of the aortic root and sinuses of Valsalva should undergo excision of the sinuses in combination with a modified David reimplantation operation if tech-
nically feasible or, if not, root replacement with valved graft conduit.72,126–129 (Level of Evidence: B)

18. Recommendations for Aortic Arch Aneurysms

Class IIa

1. For thoracic aortic aneurysms also involving the proximal aortic arch, partial arch replacement together with ascending aorta repair using right subclavian/axillary artery inflow and hypothermic circulatory arrest is reasonable.130–132 (Level of Evidence: B)

2. Replacement of the entire aortic arch is reasonable for acute dissection when the arch is aneurysmal or there is extensive aortic arch destruction and leakage.131,132 (Level of Evidence: B)

3. Replacement of the entire aortic arch is reasonable for aneurysms of the entire arch, for chronic dissection when the arch is enlarged, and for distal arch aneurysms that also involve the proximal descending thoracic aorta, usually with the elephant trunk procedure (see Figure 14).133–135 (Level of Evidence: B)

4. For patients with low operative risk in whom an isolated degenerative or atherosclerotic aneurysm of the aortic arch is present, operative treatment is reasonable for asymptomatic patients when the diameter of the arch exceeds 5.5 cm.136 (Level of Evidence: B)

5. For patients with isolated aortic arch aneurysms less than 4.0 cm in diameter, it is reasonable to reimage using computed tomographic imaging or magnetic resonance imaging, at 12-month intervals, to detect enlargement of the aneurysm. (Level of Evidence: C)

6. For patients with isolated aortic arch aneurysms 4.0 cm or greater in diameter, it is reasonable to reimage using computed tomographic imaging or magnetic resonance imaging, at 6-month intervals, to detect enlargement of the aneurysm. (Level of Evidence: C)
19. Recommendations for Descending Thoracic Aorta and Thoracoabdominal Aortic Aneurysms

Class I

1. For patients with chronic dissection, particularly if associated with a connective tissue disorder, but without significant comorbid disease, and a descending thoracic aortic diameter exceeding 5.5 cm, open repair is recommended.119,137,138 (Level of Evidence: B)

2. For patients with degenerative or traumatic aneurysms of the descending thoracic aorta exceeding 5.5 cm, saccular aneurysms, or postoperative pseudoaneurysms, endovascular stent grafting should be strongly considered when feasible119,139 (Level of Evidence: B)

3. For patients with thoracoabdominal aneurysms, in whom endovascular stent graft options are limited and surgical morbidity is elevated, elective surgery is recommended if the aortic diameter exceeds 6.0 cm, or less if a connective tissue disorder such as Marfan or Loeys-Dietz syndrome is present.119 (Level of Evidence: C)

4. For patients with thoracoabdominal aneurysms and with end-organ ischemia or significant stenosis from atherosclerotic visceral artery disease, an additional revascularization procedure is recommended.140 (Level of Evidence: B)

20. Recommendations for Counseling and Management of Chronic Aortic Diseases in Pregnancy

Class I

1. Women with Marfan syndrome and aortic dilatation, as well as patients without Marfan syndrome who have known aortic disease, should be counseled about the risk of aortic dissection as well as the heritable nature of the disease prior to pregnancy.50,141 (Level of Evidence: C)

2. For pregnant women with known thoracic aortic dilatation or a familial or genetic predisposition for aortic dissection, strict blood pressure control,
specifically to prevent Stage II hypertension, is recommended. (Level of Evidence: C)

3. For all pregnant women with known aortic root or ascending aortic dilatation, monthly or bimonthly echocardiographic measurements of the ascending aortic dimensions are recommended to detect aortic expansion until birth. (Level of Evidence: C)

4. For imaging of pregnant women with aortic arch, descending, or abdominal aortic dilatation, magnetic resonance imaging (without gadolinium) is recommended over computed tomographic imaging to avoid exposing both the mother and fetus to ionizing radiation. Transesophageal echocardiogram is an option for imaging of the thoracic aorta. (Level of Evidence: C)

5. Pregnant women with aortic aneurysms should be delivered where cardiothoracic surgery is available. (Level of Evidence: C)

Class IIa

1. Fetal delivery via cesarean section is reasonable for patients with significant aortic enlargement, dissection, or severe aortic valve regurgitation.141 (Level of Evidence: C)

Class IIb

1. If progressive aortic dilatation and/or advancing aortic valve regurgitation are documented, prophylactic surgery may be considered.142 (Level of Evidence: C)

21. Recommendations for Aortic Arch and Thoracic Aortic Atheroma and Atheroembolic Disease

Class IIa

1. Treatment with a statin is a reasonable option for patients with aortic arch atheroma to reduce the risk of stroke.143 (Level of Evidence: C)

Class IIb

1. Oral anticoagulation therapy with warfarin (INR, 2.0 to 3.0) or antiplatelet therapy may be considered in stroke patients with aortic arch atheroma 4.0 mm or greater to prevent recurrent stroke. (Level of Evidence: C)

22. Periprocedural and Perioperative Management

Sections 22.1 to 22.6 list recommendations regarding the periprocedural and perioperative management of patients undergoing open surgical or thoracic aortic endograft procedures including strategies to preserve end-organ function. More detailed discussions are available in the full-text document.

22.1 Recommendations for Preoperative Evaluation

Class I

1. In preparation for surgery, imaging studies adequate to establish the extent of disease and the potential limits of the planned procedure are recommended. (Level of Evidence: C)

2. Patients with thoracic aortic disease requiring a surgical or catheter-based intervention who have symptoms or other findings of myocardial ischemia should undergo additional studies to determine the presence of significant coronary artery disease. (Level of Evidence: C)

3. Patients with unstable coronary syndromes and significant coronary artery disease should undergo revascularization prior to or at the time of thoracic aortic surgery or endovascular intervention with percutaneous coronary intervention or concomitant coronary artery bypass graft surgery. (Level of Evidence: C)

Class IIa

1. Additional testing is reasonable to quantitate the patient’s comorbid states and develop a risk profile. These may include pulmonary function tests, cardiac catheterization, aortography, 24-hour Holter monitoring, noninvasive carotid artery screening, brain imaging, echocardiography, and neurocognitive testing. (Level of Evidence: C)

2. For patients who are to undergo surgery for ascending or arch aortic disease, and who have clinically stable, but significant (flow limiting), coronary artery disease, it is reasonable to perform concomitant coronary artery bypass graft surgery. (Level of Evidence: C)

Class IIb

1. For patients who are to undergo surgery or endovascular intervention for descending thoracic aortic disease, and who have clinically stable, but significant (flow limiting), coronary artery disease, the benefits of coronary revascularization are not well established.144–146 (Level of Evidence: B)

22.2. Recommendations for Choice of Anesthetic and Monitoring Techniques

Class I

1. The choice of anesthetic techniques and agents and patient monitoring techniques should be tailored to individual patient needs to facilitate surgical and perfusion techniques and the monitoring of hemodynamics and organ function. (Level of Evidence: C)

Class IIa

1. Transesophageal echocardiography is reasonable in all open surgical repairs of the thoracic aorta, unless there are specific contraindications to its use. Transesophageal echocardiography is reasonable in endovascular thoracic aortic procedures for monitoring, procedural guidance, and/or endovascular graft leak detection.147–149 (Level of Evidence: B)

2. Motor or somatosensory evoked potential monitoring can be useful when the data will help to guide therapy. It is reasonable to base the decision to use neurophysiologic monitoring on individual patient needs, institutional resources, the urgency of the
procedure, and the surgical and perfusion techniques to be employed in the open or endovascular thoracic aortic repair.150,151 (Level of Evidence: B)

Class III

1. Regional anesthetic techniques are not recommended in patients at risk of neuraxial hematoma formation due to thienopyridine antiplatelet therapy, low-molecular-weight heparins, or clinically significant anticoagulation.152 (Level of Evidence: C)

2. Routinely changing double-lumen endotracheal (endobronchial) tubes to single-lumen tubes at the end of surgical procedures complicated by significant upper airway edema or hemorrhage is not recommended. (Level of Evidence: C)

22.3. Recommendation for Transfusion Management and Anticoagulation in Thoracic Aortic Surgery

Class IIa

1. An algorithmic approach to transfusion, antifibrinolytic, and anticoagulation management is reasonable to use in both open and endovascular thoracic aortic repairs during the perioperative period. Institutional variations in coagulation testing capability and availability of transfusion products and other prothrombotic and antithrombotic agents are important considerations in defining such an approach.153 (Level of Evidence: C)

22.4. Recommendations for Brain Protection During Ascending Aortic and Transverse Aortic Arch Surgery

Class I

1. A brain protection strategy to prevent stroke and preserve cognitive function should be a key element of the surgical, anesthetic, and perfusion techniques used to accomplish repairs of the ascending aorta and transverse aortic arch.154–160 (Level of Evidence: B)

Class IIa

1. Deep hypothermic circulatory arrest, selective antegrade brain perfusion, and retrograde brain perfusion are techniques that alone or in combination are reasonable to minimize brain injury during surgical repairs of the ascending aorta and transverse aortic arch. Institutional experience is an important factor in selecting these techniques.161–184 (Level of Evidence: B)

Class III

1. Perioperative brain hyperthermia is not recommended in repairs of the ascending aortic and transverse aortic arch as it is probably injurious to the brain.185–187 (Level of Evidence: B)

22.5. Recommendations for Spinal Cord Protection During Descending Aortic Open Surgical and Endovascular Repairs

Class I

1. Cerebrospinal fluid drainage is recommended as a spinal cord protective strategy in open and endovascular thoracic aortic repair for patients at high risk of spinal cord ischemic injury.188–190 (Level of Evidence: B)

Class IIa

1. Spinal cord perfusion pressure optimization using techniques, such as proximal aortic pressure maintenance and distal aortic perfusion, is reasonable as an integral part of the surgical, anesthetic, and perfusion strategy in open and endovascular thoracic aortic repair patients at high risk of spinal cord ischemic injury. Institutional experience is an important factor in selecting these techniques.188,191–193 (Level of Evidence: B)

2. Moderate systemic hypothermia is reasonable for protection of the spinal cord during open repairs of the descending thoracic aorta.194 (Level of Evidence: B)

Class IIb

1. Adjunctive techniques to increase the tolerance of the spinal cord to impaired perfusion may be considered during open and endovascular thoracic aortic repair for patients at high risk of spinal cord injury. These include distal perfusion, epidural irrigation with hypothermic solutions, high-dose systemic glucocorticoids, osmotic diuresis with mannitol, intrathecal papaverine, and cellular metabolic suppression with anesthetic agents.193,195–197 (Level of Evidence: B)

2. Neurophysiological monitoring of the spinal cord (somatosensory evoked potentials or motor evoked potentials) may be considered as a strategy to detect spinal cord ischemia and to guide reimplantation of intercostal arteries and/or hemodynamic optimization to prevent or treat spinal cord ischemia.150,198–200 (Level of Evidence: B)

22.6. Recommendations for Renal Protection During Descending Aortic Open Surgical and Endovascular Repairs

Class IIb

1. Preoperative hydration and intraoperative mannitol administration may be reasonable strategies for preservation of renal function in open repairs of the descending aorta. (Level of Evidence: C)

2. During thoracoabdominal or descending aortic repairs with exposure of the renal arteries, renal protection by either cold crystalloid or blood perfusion may be considered.201–203 (Level of Evidence: B)

Class III

1. Furosemide, mannitol, or dopamine should not be given solely for the purpose of renal protection in descending aortic repairs.204,205 (Level of Evidence: B)
23. Recommendations for Surveillance of Thoracic Aortic Disease or Previously Repaired Patients

Class IIa

1. Computed tomographic imaging or magnetic resonance imaging of the thoracic aorta is reasonable after a Type A or B aortic dissection or after prophylactic repair of the aortic root/ascending aorta.\(^{20}\) (Level of Evidence: C)

2. Computed tomographic imaging or magnetic resonance imaging of the aorta is reasonable at 1, 3, 6, and 12 months postdissection and, if stable, annually thereafter so that any threatening enlargement can be detected in a timely fashion. (Level of Evidence: C)

3. When following patients with imaging, utilization of the same modality at the same institution is reasonable, so that similar images of matching anatomic segments can be compared side by side. (Level of Evidence: C)

4. If a thoracic aortic aneurysm is only moderate in size and remains relatively stable over time, magnetic resonance imaging instead of computed tomographic imaging is reasonable to minimize the patient’s radiation exposure. (Level of Evidence: C)

5. Surveillance imaging similar to classic aortic dissection is reasonable in patients with intramural hematoma. (Level of Evidence: C)

The mean rate of growth for all thoracic aortic aneurysms is approximately 1 mm/y, but that growth rate increases with increasing aneurysm diameter. Growth rates tend to be faster for aneurysms involving the descending versus the ascending aorta, for dissected versus nondissected aortas, for those with Marfan syndrome versus those without,\(^ {206}\) and for those with bicuspid versus tricuspid aortic valves.\(^ {207}\) Table 11 notes suggested intervals for follow up.

24. Recommendation for Employment and Lifestyle in Patients With Thoracic Aortic Disease

Class IIa

1. For patients with a current thoracic aortic aneurysm or dissection, or previously repaired aortic dissection, employment and lifestyle restrictions are reasonable, including the avoidance of strenuous lifting, pushing or straining that would require a Valsalva maneuver. (Level of Evidence: C)

Establishing clear lifestyle goals for patients with thoracic aortic disease is important in improving long-term health and reducing the risk of complications.

There are no outcomes data, and scant data of any variety for that matter, to indicate how much exercise is safe or beneficial for patients with thoracic aortic disease. However, aerobic exercise, sometimes referred to as dynamic exercise, is associated with only a modest increase in mean arterial pressure,\(^ {209}\) and AoD rarely occurs during aerobic exercise. Consequently, most experts believe that aerobic exercise, particularly when heart rate and blood pressure are well controlled with medications, is beneficial overall.

Nevertheless, if patients wish to engage in vigorous aerobic exercise, such as running or basketball, one might consider performing a symptom limited stress test to ensure that the patient does not have a hypertensive response to exercise.

Conversely, with isometric exercise, there is a significant increase in mean arterial pressure. When the Valsalva maneuver is used for the lifting of heavy weights, there is a superimposed increase in intrathoracic pressure, followed by a dramatic increase in systemic arterial pressure,\(^ {209}\) with systolic pressures reaching 300 mm Hg or more.\(^ {210}\) As a result, most experts believe that heavy weight lifting or competitive athletics involving isometric exercise may trigger AoD and/or rupture and that such activities should be avoided.\(^ {211}\) Working with patients on an individualized basis to streamline these goals based on insufficient data can be challenging. For patients who are very much interested in maintaining some sort of weight lifting program, choosing sets of repetitive light weights appears to make more sense than permitting heavy weight lifting.\(^ {209}\)

25. Tumors of the Thoracic Aorta

Neoplasms of the thoracic aorta are usually secondary and related to contiguous spread of adjacent primary malignancies, particularly lung and adjacent primary malignancies or subsequent metastases, particularly lung and esophagus.\(^ {212-215}\) Primary neoplasms of the thoracic aorta are rare.\(^ {213}\) Metastatic disease is often demonstrated at the time of diagnosis of primary aortic neoplasms. Symptoms may include malaise, fatigue, weight loss and nausea or the occurrence of distal arterial embolization (with histopathologic examination showing neoplasm, or identified by imaging techniques during a search for an embolic source).\(^ {216-218}\) AoD may originate in the area of the neoplasm or the aortic occlusion.\(^ {219}\) Resection and reconstruc-
26. Recommendations for Quality Assessment and Improvement for Thoracic Aortic Disease

Class I

1. Hospitals that provide regional care for patients with acute sequelae of thoracic aortic disease (eg, procedures for thoracic aortic dissection and rupture) should participate in standardized quality assessment and improvement activities, including thoracic aortic disease registries. Such activities should include periodic measurement and regional/national interfacility comparisons of thoracic aortic disease-related procedural volumes, complications and risk-adjusted mortality rates. (*Level of Evidence: C*)

2. Hospitals that provide regional care for patients with acute sequelae of thoracic aortic disease (eg, procedures for thoracic aortic dissection and rupture) should facilitate and coordinate standardized quality assessment and improvement activities with transferring facilities and emergency medical services teams. Such activities might include:
 a. cooperative joint facility meetings to discuss opportunities for quality improvement and
 b. interfacility and emergency medical services team comparisons of pretransfer care based on available outcome data and future performance measures developed in accordance with this guideline. (*Level of Evidence: C*)

Patients with acute aortic syndromes may require transfer to specialized institutions. Ideally, the communications between institutions will completely and accurately portray the condition of the patient including items listed in Table 12.

Table 12. Standardized Transferring Facility Assessment, Communication, and Documentation for the Following Domains

- Blood pressure control for hypertension
- Heart rate control for tachycardia
- Hemodynamic instability
- Blood volume
- Cardiac ischemia
- Neurologic ischemia
- Renal function
- Mesenteric ischemia
- Peripheral arterial pulses and perfusion
- Activation of receiving team
- Imaging expectations and communications
- Timeliness and efficiency
- EMS characteristics of transferring facility, including requisite personnel, requisite in-transport equipment, including catastrophic resuscitation capabilities, in-transfer contingency planning, weather conditions, estimated transfer time, etc.

EMS indicates emergency medical services.

Staff

American College of Cardiology Foundation
- John C. Lewin, MD, Chief Executive Officer
- Charlene May, Senior Director, Science and Clinical Policy
- Lisa Bradfield, CAE, Associate Director, Science and Clinical Policy
- Mark D. Stewart, MPH, Associate Director, Evidence-Based Medicine
- Sue Keller, BSN, MPH, Senior Specialist, Evidence-Based Medicine
- Erin A. Barrett, Senior Specialist, Science and Clinical Policy

American Heart Association
- Nancy Brown, Chief Executive Officer
- Gayle R. Whitman, PhD, RN, FAHA, FAAN, Senior Vice President, Office of Science Operations
Disclosures

Appendix 1. Author Relationships With Industry and Other Entities—2010 ACCF/AHA/AATS/ACR/ASA/SCA/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker</th>
<th>Ownership/Partnership/Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loren F. Hiratzka, Chair</td>
<td>Cardiac, Vascular & Thoracic Surgeons Inc. and TriHealth Inc.—Medical Director, Cardiac Surgery</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2007; Defense; Aortic Dissection</td>
</tr>
<tr>
<td>George L. Bakris</td>
<td>University of Chicago Medical Center—Professor of Medicine; Director, Hypertension Center</td>
<td>Abbott</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joshua A. Beckman</td>
<td>Brigham & Women’s Hospital—Director, Cardiovascular Fellows Program</td>
<td>Bristol-Myers Squibb</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert M. Bersin</td>
<td>Seattle Cardiology—Director, Endovascular Services & Clinical Research</td>
<td>Abbott Vascular</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vincent F. Carr</td>
<td>Uniformed Services University of Health Science—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Donald E. Casey, Jr</td>
<td>Atlantic Health—Vice President of Quality & Chief Medical Officer; Associate Professor of Medicine, Mount Sinai School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kim A. Eagle</td>
<td>University of Michigan Health System—Albion Walter Professor of Internal Medicine; Clinical Director, Cardiovascular Center</td>
<td>NHLBI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Luke K. Hermann</td>
<td>Mount Sinai Medical Center—Assistant Professor of Emergency Medicine; Director, Chest Pain Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric M. Isselbacher</td>
<td>Massachusetts General Hospital—Associate Professor of Medicine, Harvard Medical School; Co-Director, Thoracic Aortic Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2007; Plaintiff; Aortic Dissection</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker</th>
<th>Ownership/ Partnership/ Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ella A. Kazerooni</td>
<td>University of Michigan Health System—Professor of Medicine, Director, Cardiothoracic Radiology</td>
<td>● GE Healthcare</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● GEPRAF (GE Radiology Research Fellowship)</td>
<td>None</td>
</tr>
<tr>
<td>Nicholas T. Kououchkous</td>
<td>Missouri Baptist Medical Center—Cardiovascular Surgeon</td>
<td>● Edwards Lifesciences</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● 2006; Defense; Aortic Dissection</td>
<td>None</td>
</tr>
<tr>
<td>Bruce W. Lytle</td>
<td>The Cleveland Clinic—Chair, Heart and Vascular Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dianna M. Milewicz</td>
<td>University of Texas Southwestern Medical Center—President George H.W. Bush Chair in Cardiovascular Medicine; Professor & Director, Division of Medical Genetics</td>
<td>None</td>
<td>None</td>
<td>● Doris Duke Foundation</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David L. Reich</td>
<td>Mount Sinai Medical Center—Professor & Chair, Department of Anesthesiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Souvik Sen</td>
<td>University of South Carolina School of Medicine—Professor and Chair, Department of Neurology</td>
<td>● Coaxa</td>
<td>● Boehringer Ingelheim</td>
<td>None</td>
<td>● American Heart Association</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Bristol-Myers Squib</td>
<td>● Pfizer</td>
<td></td>
<td>● Genetech</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Sanofi-aventis</td>
<td></td>
<td></td>
<td>● Sanofi-aventis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julie A. Shinn</td>
<td>Stanford University School of Medicine—Cardiovascular Clinical Nurse Specialist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lars G. Svensson</td>
<td>The Cleveland Clinic—Director, The Center for Aortic Surgery; Director, Marfan Syndrome and Collective Tissue Disorder Clinic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Edwards Lifesciences</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● Evolve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David M. Williams</td>
<td>University of Michigan Health System—Professor, Department of Radiology; Director, Interventional Radiology</td>
<td>● W.L. Gore</td>
<td>None</td>
<td>● W.L. Gore</td>
<td>None</td>
<td>● 2000; Defense; Failure to diagnose and treat mesenteric ischemia with aortic dissection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● Medtronic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NHLBI indicates National Heart, Lung, and Blood Institute; NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases.

This table represents the relevant relationships of committee members with industry and other entities that were reported orally at the initial writing committee meeting and updated in conjunction with all meetings and conference calls of the writing committee during the document development process. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of 5% or more of the voting stock or share of the business entity, or ownership of $10 000 or more of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships noted in this table are modest unless otherwise noted.

*Significant (greater than $10 000) relationship.
Appendix 2. Reviewer Relationships With Industry and Other Entities—2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease

<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Consultant</th>
<th>Speaker</th>
<th>Ownership/Partnership/Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amjad Almahameed</td>
<td>Official Reviewer—Society for Vascular Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard A. Bernstein</td>
<td>Official Reviewer—American Stroke Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher E. Buller</td>
<td>Official Reviewer—ACCF/AHA Task Force Lead Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Albert T. Cheung</td>
<td>Official Reviewer—Society of Cardiovascular Anesthesiologists</td>
<td>EKR Therapeutics</td>
<td>EKR Therapeutics</td>
<td>The Medicines Company</td>
<td>The Medicines Company*</td>
<td>The Medicines Company*</td>
<td>Dr. E. Shemin</td>
</tr>
<tr>
<td>Michael D. Dake</td>
<td>Official Reviewer—Society of Interventional Radiologists</td>
<td>Medtronic</td>
<td>Medtronic</td>
<td>Cook</td>
<td>Cook</td>
<td>W.L. Gore*</td>
<td>None</td>
</tr>
<tr>
<td>Antionette S. Gomes</td>
<td>Official Reviewer—AHA Cardiovascular Surgery and Anesthesia Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert A. Guyton</td>
<td>Official Reviewer—ACCF Board of Trustees</td>
<td>Medtronic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Clifford J. Kovinsky</td>
<td>Official Reviewer—Society for Cardiovascular Angiography and Interventions</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Scott Kinslay</td>
<td>Official Reviewer—Society of Vascular Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard J. Kovacs</td>
<td>Official Reviewer—ACCF Board of Governors</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christine Mora Manganos</td>
<td>Official Reviewer—Society of Cardiovascular Anesthesiologists</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Steven R. Messé</td>
<td>Official Reviewer—American Stroke Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric Roselli</td>
<td>Official Reviewer—Society of Thoracic Surgeons</td>
<td>Medtronic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Geoff D. Rubin</td>
<td>Official Reviewer—American College of Radiology</td>
<td>Fovia</td>
<td>Bracco</td>
<td>TeraRecon</td>
<td>Biosense-Webster*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Frank J. Rybicki</td>
<td>Official Reviewer—American College of Radiology</td>
<td>Bracco</td>
<td>Siemens Medical</td>
<td>Siemens Medical</td>
<td>Siemens Medical</td>
<td>Toshiba Medical Systems*</td>
<td>None</td>
</tr>
<tr>
<td>Theralf M. Sundt</td>
<td>Official Reviewer—American Association for Thoracic Surgery</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Bolton Medical</td>
<td>None</td>
</tr>
<tr>
<td>Richard D. White</td>
<td>Official Reviewer—AHA Peripheral Vascular Disease Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Wyatt Decker</td>
<td>Organizational Reviewer—American College of Emergency Physicians</td>
<td>Medtronic Vascular</td>
<td>Medtronic Vascular</td>
<td>Medtronic Vascular</td>
<td>Medtronic Vascular</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Josh M. Kosowsky</td>
<td>Organizational Reviewer—American College of Emergency Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Appendix 2. Continued

<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Consultant</th>
<th>Speaker</th>
<th>Ownership/Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emile Mohler</td>
<td>Organizational Reviewer—American College of Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James Burke</td>
<td>Content Reviewer—ACCF Catheterization Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Edward P. Chen</td>
<td>Content Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark A. Creager</td>
<td>Content Reviewer—ACCF/AHA Task Force on Practice Guidelines</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jose G. Diez</td>
<td>Content Reviewer—ACCF Catheterization Committee</td>
<td>● Sandví-sventids</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John A. Elefteriades</td>
<td>Content Reviewer</td>
<td>● Baxter</td>
<td>None</td>
<td>● Coolspine</td>
<td>● Cetera Diagnostics</td>
<td>None</td>
<td>● 2006; Plaintiff; Aortic Dissection*</td>
</tr>
<tr>
<td>D. Craig Miller</td>
<td>Content Reviewer—ACCF/AHA Task Force on Practice Guidelines</td>
<td>● Medtronic</td>
<td>● St. Jude Medical</td>
<td>None</td>
<td>● NHLBI</td>
<td>● Stanford PARTNER Trial</td>
<td>None</td>
</tr>
<tr>
<td>Nishimura</td>
<td>Content Reviewer—ACCF/AHA Task Force on Practice Guidelines</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Patrick T. O’Dara</td>
<td>Content Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Carlos Ruiz</td>
<td>Content Reviewer—ACCF Interventional Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

ACCF indicates American College of Cardiology Foundation; AHA, American Heart Association; and NHLBI, National Heart, Lung, and Blood Institute.

This table represents the relevant relationships with industry and other entities that were disclosed at the time of peer review. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of 5% or more of the voting stock or share of the business entity, or ownership of $10,000 or more of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

*Significant (greater than $10,000) relationship.

References

91. Deleted in proof.

109. Leitch in proof.

Key Words: ACC/AHA Clinical Practice Guideline ■ thoracic aortic disease ■ thoracic aortic dissection ■ thoracic aortic aneurysm ■ intramural hematoma ■ genetic syndromes associated with thoracic aortic aneurysm ■ emergency department ■ acute thoracic aortic disease presentation and evaluation

Circulation. 2010;121:1544-1579; originally published online March 16, 2010; doi: 10.1161/CIR.0b013e3181d47d48

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/121/13/1544

An erratum has been published regarding this article. Please see the attached page for:
/content/128/11/e175.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/

On page 1558, in Figure 7, in the step 3 “Risk based diagnostic evaluation” section, T11 “Aortic Imaging Study,” the second bullet read, “CT (Image entire aorta: chest to pelvis).” It should be changed to read, “CT with contrast (Image entire aorta: chest to pelvis).” The revised figure is reproduced in its entirety on the next page.
Consider acute AoD in all patients presenting with:
• Chest, back, or abdominal pain
• Syncope
• Symptoms consistent with perfusion deficit (i.e., CNS, mesenteric, myocardial, or limb ischemia)

Intermediate Risk
Any single high risk feature present.

Low Risk
No high risk features present.

Determine pre-test risk by combination of risk conditions, history, and exam.

STEP 2
Bedside risk assessment

High Risk Conditions
1. Marfan Syndrome
2. Connective tissue disease
3. Family history aortic disease
4. Known aortic valve disease
5. Recent aortic manipulation
6. Known thoracic aortic aneurysm

High Risk Pain Features
1. Chest, back, or abdominal pain described as the following:
 - Abrupt in onset/severe in intensity
 - Ripping tearing sharp or stabbing quality

High Risk Exam Features
1. Evidence of perfusion deficit
2. Pulse deficit
3. Focal neurologic deficit
4. Murmurs of aortic insufficiency
5. Hypotension or shock state

Expedited aortic imaging

If high clinical suspicion for aortic dissection exists, consider secondary imaging study.

STEP 3
Risk based diagnostic evaluation

Low Risk
No high risk features present.

Intermediate Risk
Any single high risk feature present.

High Risk
Two or more high risk features present.

Determine pre-test risk by combination of risk conditions, history, and exam.

STEP 4
Acute AoD identified or excluded

Aortic Dissection Present?
Yes
Proceed to Treatment Pathway

Figure 7. AoD evaluation pathway. ACS indicates acute coronary syndrome; AoD, aortic dissection; BP, blood pressure; CNS, central nervous system; CT, computed tomographic imaging; CXR, chest x-ray; EKG, electrocardiogram; MR, magnetic resonance imaging; STEMI, ST-elevated myocardial infarction; TAD; thoracic aortic disease; and TEE, transesophageal echocardiogram.

Technique Parameters and Anatomical Coverage for Thoracic Aortic Computed Tomography Studies

<table>
<thead>
<tr>
<th>Scan Parameter</th>
<th>Parameter Specification</th>
<th>Comments</th>
</tr>
</thead>
</table>
| mAs | | • The mAs selected should result in diagnostic-quality images \(^{56}\)
 | | • Should take into account the patient’s body habitus and age, collimation, kVp, and unique attributes of the scanner and acquisition mode \(^{56}\) | |
| Max. tube rotation time | \(\leq 1\) s \(^{57}\) | |
| kVp | 120 to 140 kV \(^{56}\) | |
| Collimation \(^{2}\) | \(\leq 3\) mm | |
| Pitch (IEC definition) | Between 1.0 and 1.75 | |
| IV contrast medium | 80 to 150 cc \(^{56}\) | • 60% ionic or 300 mg/mL nonionic contrast
 | | • Dense enhancement of the thoracic aorta that is sustained throughout the sequence of scans may suggest an excessive contrast dose for the patient’s weight
 | | • Higher or lower volumes may be used if the protocol states that the volume may be adjusted for patient weight | |
| Oral contrast | N/A \(^{56}\) | • If used, oral contrast should not produce streaking artifact |
| Injection rate | 3 to 5 mL/s \(^{56}\) | |
| Scan delay | Computer assisted or empirc standardized \(^{56}\) |
| | | • The scan should be completed prior to visual evidence or significant washout of intra-aortic contrast
<pre><code> | | • This is best assessed in the chest by noting little or no difference between intra-aortic density and muscle attenuation |
</code></pre>
<p>| Reconstruction algorithm| Standard or soft tissue (^{56}) |
| Reconstruction spacing | Should overlap at least 50% of the slice thickness for helical scans if the capability of the scanner used is (<64) slices (^{56}) | |
| | | • In situations where helical scans are reconstructed at overlapping intervals (eg, every 1.25 mm) for cine viewing on a workstation and to obtain high-quality reconstructions, it is reasonable for every second or third image to be photographed in an attempt to reduce the number of films required to display the entire study |
| CTDIvol | There are no reference values for this examination |
| | | • The CTDIvol should be appropriate for the examination |
| Coverage | Above the aortic arch to at least the level of the aortoiliac bifurcation (^{56}) (may include pelvic arteries, particularly to evaluate endovascular repair access pathway) |
| Gantry tilt | N/A | |</p>
<table>
<thead>
<tr>
<th>Scan Parameter</th>
<th>Parameter Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display FOV</td>
<td>Should not be so small that a portion of the aorta is excluded or so large that edge of the image lies well beyond the edge of the patient’s body.</td>
<td></td>
</tr>
<tr>
<td>Display window width/level</td>
<td>Lung and mediastinum.</td>
<td></td>
</tr>
</tbody>
</table>
| | Lung: | • WW = 1200 to 1500 HU
WL = –550 to –700 HU
Mediastinum: | • WW = 250 to 450 HU
WL = 40 to 80 HU | • The settings should allow adequate visualization of the aortic lumen and should not display an aorta so dense that it is indistinguishable from cortical bone, or so hypodense that it is virtually indistinguishable from normal soft-tissue (ie, chest wall musculature) |

From: American College of Radiology. ACR CT Accreditation Clinical Image Quality Guide; Fan et al.

cc indicates cubic centimeter; CTDIvol, Computed Tomography Dose Index; FOV, field of view; HU, Hounsfield units; IEC, International Electrotechnical Commission; IV, intravenous; kVp, kilovolt peak; mAs, millimere seconds; N/A, not available; WL, window level; and WW, window width.