Bromocriptine for the Treatment of Peripartum Cardiomyopathy

Uri Elkayam, MD; Sorel Goland, MD

Peripartum cardiomyopathy (PPCM) is a pregnancy-associated idiopathic cardiomyopathy presenting during pregnancy or within few months after delivery, with signs and symptoms of heart failure caused by marked depression of left ventricular (LV) systolic function. Although the disease is uncommon, it is increasing in frequency and represents an important cause of pregnancy-related morbidity and mortality. The incidence of PPCM has recently been estimated to be 1 in 2000 to 4000 deliveries, thus affecting approximately 1000 to 2000 women per year in the United States alone. Data from South Africa and Haiti suggest a significantly higher incidence of PPCM in these countries, affecting 1 in 1000 (Africa) and 1 in 300 (Haiti) pregnant women.

Although early recovery of LV function frequently occurs, failure to recover has been reported in one third to two thirds of the patients in the United States and in an even larger number of patients in other populations. A strong relationship has been demonstrated between the severity and persistence of LV dysfunction and the incidence of morbidity and mortality. Although the use of evidence-based therapies, proven effective in patients with heart failure with other origins, makes good clinical sense, there is no clear evidence for the effect of these therapies on the recovery of cardiac function in patients with PPCM, and the rate of recovery reported in early studies, before the current therapeutic era, seems comparable to that published more recently. Because the cause of PPCM is still unknown, no specific therapy has been established to treat this condition.

On the basis of the hypothesis that abnormal maternal immunologic response may cause PPCM, Bozkurt et al attempted the use of intravenous immune globulin, which has a significant immune modulator properties, in 6 women with PPCM and reported a significantly greater improvement in LV ejection fraction in these women compared with 11 historical control patients who received conventional therapy alone. Although the results seemed encouraging, the study was limited by a small number of patients and by the lack of a blindly randomized, well-matched control group. The failure of immune globulin treatment to improve LV function in another study of women with recent-onset dilated cardiomyopathy may have discouraged further investigation of this therapy in PPCM.

More recent studies emphasized the potential role of cytokine-mediated inflammation in the progression of PPCM. Sliwa et al therefore investigated the effect of pentoxifylline, a xanthine agent known to inhibit the production of tumor necrosis factor and to prevent apoptosis. These investigators reported on 59 patients with PPCM, 30 of whom were randomized to receive pentoxifylline 400 mg TID for 6 months in addition to conventional therapy, including diuretics, digoxin, enalapril, and carvedilol. The results of the study demonstrated a significant improvement in a combined end point of poor outcome defined as death, failure to improve LV ejection fraction >10 absolute points, or persistence of New York Heart Association functional class III to IV at the latest follow-up (52% versus 27%; P=0.03). Despite these positive results, no further studies have been conducted, and this therapy has not been widely adopted to treat PPCM.

In this issue of Circulation, Sliwa and coworkers report the preliminary results of another therapy based on the concept of enhanced oxidative stress–mediated cleavage of the nursing hormone prolactin into an antiangiogenic and proapoptotic 16-kDa form that may be responsible for the development of PPCM. This prospective single-center, proof-of-concept pilot study performed in South Africa evaluated the effect of prolactin blockade with bromocriptine. Treatment with this drug given after diagnosis at a dose of 2.5 mg twice daily for 2 weeks, followed by 2.5 mg daily for 6 weeks, in addition to standard heart failure therapy in 10 patients with PPCM resulted in a significantly larger rate of LV recovery at 6 months compared with a comparable group of 10 women with PPCM treated with standard heart failure therapy alone (31% versus 9%; P=0.012). In addition, there was a lower rate of mortality in the treatment group (1 versus 4 patients) and of an index of poor outcome defined as a combined end point of death, New York Heart Association functional class III/IV, or LV ejection fraction <35% at 6 months.

The results of this study are encouraging and may represent breakthroughs in the understanding of the mechanism causing PPCM and in the development of a new specific therapy for this condition. At the same time, however, the study suffers from important limitations that are mentioned by the authors but need to be further emphasized. Similar to other pilot studies, the small number of patients included in each arm of the study may lead to erroneous results and conclusions. This concern is further supported by the excessive mortality rate reported in the control group, which far exceeds mortality rates reported by other investigators and even previously.
by the same investigators.1,12 This high mortality rate may be coincidental and could have importantly affected the results of the study. Another potential limitation of the study is related to the fact that African patients with PPCM demonstrate important phenotypic differences compared with patients in other geographical areas13,14; thus, the results of this study may not be applicable to non-African populations of patients with PPCM. This assumption may be supported by our preliminary experience with 2 Israeli women who were diagnosed with PPCM in the first week after delivery and failed to show an improvement in markedly depressed LV function with bromocriptine at the regimen used by the investigators and described in other cases.16,17 It should also be noted that although the use of bromocriptine may be safe in most patients, the safety of bromocriptine as a drug of choice in the suppression of lactation has been questioned, and important complications, including stroke, seizures, and myocardial infarction, have been reported in isolated cases.18,19 For all the above reasons, the promising preliminary results of the study by Sliwa et al15 should be viewed with caution and should serve only as a basis for further studies aimed at clearly establishing the efficacy and safety of bromocriptine therapy.

Performing an adequate study to evaluate this therapy for PPCM patient may be challenging. The relatively low incidence of the disease and the possible reluctance of women to use bromocriptine and deprive themselves and their newborn babies of the emotional and physical benefits of breast-feeding may limit the number of patients randomized. For these reasons, only a large, multicenter trial will enable the enrollment of enough patients to answer the clinical questions at hand at a reasonable time period. Because of significant variability in the clinical presentation of PPCM in different populations,1 a multinational study is preferred to capture potential heterogeneous responses to therapy. Because a significant number of patients demonstrate improvement in LV function either spontaneously or after standard therapy, the effect of bromocriptine may be better tested in patients at high risk of failure to recover. This should include patients with more severe myocardial insult at presentation as reflected by a larger degree of LV dilatation and systolic dysfunction, as well as hemodynamic compromise and elevation of troponin levels.20–22

Despite these potential difficulties, the promising results of the study by Sliwa et al published in this issue of Circulation should provide a strong incentive for physicians and funding institutions to perform a large, well-designed, prospective study aimed at evaluating the therapeutic potential of bromocriptine as the first specific therapy for patients with PPCM.

Disclosures

None.

References


Key Words: Editorial • cardiomyopathy • pregnancy
Bromocriptine for the Treatment of Peripartum Cardiomyopathy
Uri Elkayam and Sorel Goland

Circulation. 2010;121:1463-1464; originally published online March 22, 2010; doi: 10.1161/CIR.0b013e3181db2f07
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/121/13/1463

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/