Heart failure is epidemic in developed countries and is expanding rapidly worldwide. Roughly 5% of patients with heart failure have end-stage disease that is refractory to medical therapy (stage D heart failure). Palliative care consultation relieves symptoms, improves patient satisfaction, and decreases the costs of care for these patients. Despite this, only a small fraction of end-stage heart failure patients receive palliative care consultation. In recognition of this, palliative/hospice care referral was recommended for end-stage heart failure (Level of Evidence 1A) in the most recent American College of Cardiology/American Heart Association heart failure guidelines.

To identify evidence-based studies of palliative care in heart failure, we searched the Medline database for literature with the medical subject headings “heart failure” and “palliative care,” “supportive care,” or “symptom management” and found 394 results. We identified 92 systematic reviews, 44 of which were English-language systematic reviews published within the past 5 years.

The Burden of Advanced Heart Failure

More than 5 million Americans have heart failure, with a yearly incidence estimated to be >500,000. The number of deaths due to heart failure in 2004 was 284,365, which exceeds the deaths due to lung cancer, breast cancer, prostate cancer, and HIV/AIDS combined (Table 1). Even as the national death rate decreased by 2% from 1994 to 2004, deaths due to heart failure increased by 28%.

The yearly cost of heart failure was roughly $30 billion in 2006. The mean length of stay is almost 6 days, and more than one third of patients are admitted for more than 5 days. Nearly half of the hospitalizations for heart failure exceed Medicare diagnosis-related groups reimbursement. Compared with all other patients, heart failure patients incur greater costs through increased physician visits, hospital admissions, and the need to spend twice as many days in intensive care units.

End-stage heart failure has one of the largest effects on quality of life of any advanced disease. Patients living with serious illness have identified the following as their top-priority needs from the healthcare system: adequate pain and symptom management, avoidance of inappropriate prolongation of dying, achievement of a sense of control, relief of the burden on others, and a strengthening of relationships with loved ones. Although heart failure patients are often assumed principally to suffer from fatigue and dyspnea, a majority have pain, and depression is extremely common. Other sources of suffering include edema, insomnia, anxiety, confusion, anorexia, and constipation.

Overview of Palliative Care

The palliative care movement began in the 1970s as a grassroots community hospice movement aimed at caring for cancer patients in their homes. Medicare added hospice services to its benefits in 1982. Patients who choose hospice must agree to forego curative or life-prolonging medical treatments. The mean length of stay for the more than 1.3 million patients who received hospice services in 2006 was 59 days, and the median length of stay was only 20.6 days. Nearly half of the patients enrolled in hospice have cancer as a primary diagnosis, and only 12.2% have a primary diagnosis of cardiac disease.

Nonhospice palliative medicine is aimed at improving quality of life and supporting patients and the families of patients with serious and complex chronic illnesses in whom prognosis is uncertain or may be measured in years. Thus, the hospice care palliative model is based on patient prognosis, and the nonhospice palliative care model is based on patient and family needs, independent of prognosis. Palliative care aims to relieve suffering by a multidisciplinary and holistic approach that addresses patients’ and caregivers’ physical, emotional, spiritual, and logistical needs. Heart failure is associated with a notoriously variable prognosis, which is a barrier to timely hospice referral. Hence, it is important to ensure access to nonhospice palliative care in this patient population.

Relationship of Nonhospice Palliative Care to Hospice Palliative Care

Palliative care consultations increase referrals to hospice and result in earlier referrals to hospice. Late referrals to hospice correlate with lower overall family satisfaction, lower satisfaction with hospice services, more unmet needs, lack of awareness about what to expect at time of death, lower confidence in participating in patient care at home, and more concerns about coordination of care. In half of all cases of

From Oregon Health Sciences University (E.D.A.), Portland, Ore, and Mount Sinai School of Medicine (J.Z.G., J.K., M.E.P., D.E.M.), New York, NY. Correspondence to Eric Adler, Oregon Health Sciences University, Cardiovascular Medicine, 3181 SW Sam Jackson Park Rd, UHN62, Portland, OR 97239. E-mail adler@ohsu.edu

(Circulation. 2009;120:2597-2606.)

© 2009 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.109.869123
late referral, family members reported that physicians were a barrier to earlier hospice referral.19

It can be difficult to determine when to transition from nonhospice palliative care to hospice, and this should be a group decision made among patient, family members, and healthcare providers. An ongoing assessment by the physician using prognostic models can help make it clear when death is likely to occur in less than 6 months. Furthermore, an increase in the frequency of hospitalizations may be a sign that hospice is appropriate. Traditional medical models view the curing of disease and the providing of comfort care as mutually exclusive. An integrative model, in which palliation occurs while life-prolonging therapies are administered, is more appropriate. Palliative therapies gradually expand as illnesses progress. Hospice is ultimately administered according to the patient’s wishes or when the harm of therapies outweighs their benefits (Figure 1).

Palliative Care Effects on Clinical Outcomes
Palliative care improves outcomes, including patient and family satisfaction with care and symptom management.20–26 Patients who receive in-home palliative care are more likely to die at home. This is consistent with the expressed wishes of most patients27 and leads to decreases in expenditures. Palliative care promotes patient well-being and dignity, communication with healthcare providers, emotional and spiritual support for the patient and the family, and access to community support services.17,19,21 In a recent nonrandomized study of hospice care, patients with end-stage heart failure paradoxically had an improvement in survival of 81 days compared with those who did not receive hospice.27 The study authors speculated that this increased longevity may be due to the avoidance of procedures and hospital stays with their attendant risk of nosocomial infection and adverse events, or because heart failure patients in the study may have benefited from the hospice focus on symptom relief, support for exhausted caregivers, and close attention to prevention of complications.

Impact of Palliative Care on Healthcare Utilization and Costs
Inpatient palliative care consultations decrease the number of procedures or interventions performed near the end of life,28,29 the length of stay in inpatient wards,17,24,30–35 the length of stay in intensive care wards,25,34,35 hospital direct costs including pharmacy and imaging, and the overall cost of care.24,25,30,32,33 A recent large study of 8 well-established hospital palliative care programs in the United States demonstrated that patients receiving palliative care services had an adjusted net savings of $4908 in direct costs per admission \((P=0.003) \) and $374 in direct costs per day \((P<0.001) \) compared with propensity-score–matched control subjects.36 Hospice has demonstrated an ability to provide significant cost savings as well. Hospice programs can save up to 40% of healthcare costs during the last month of life and up to 17% during the last 6 months of life, by an average of $2309 per hospice user.37,38 A 1995 study by Pyenson et al showed that enrollment in hospice resulted in a reduction in mean Medicare cost per heart failure patient from $53 528 to $46 792.39

Guideline Recommendations for Palliation in End-Stage Heart Failure
The 2005 American College of Cardiology and American Heart Association guidelines now include ongoing discussion with patients and families about prognosis for functional capacity and survival, advance directives, palliative care and hospice care, the option to deactivate implantable cardiac defibrillators (ICDs), and the provision of care geared toward symptom management, including use of opiates.2 The guidelines state that aggressive procedures performed in the last several months of life that do not contribute to recovery or improve quality of life, including intubation and implantation of a cardiac defibrillator, are not appropriate.

Guidelines do not specifically address when to refer end-stage heart failure patients for hospice/nonhospice palliative care.40 Unlike many cancers, which are characterized by a steep linear decline in performance status during the last few months of life, heart failure is characterized by unpredictable decompensations and improvements, with a subtler decline over time.41,42 This makes it difficult for doctors to recognize when it is appropriate to refer a patient to hospice. A sample algorithm for management of end-stage heart failure patients is found in Figure 2.
Prognostication in Heart Failure

Prognostic tools and models developed for heart failure may be useful to help patients and care providers determine when to refer patients to hospice. There is a large body of evidence for prognostic prediction in heart failure, including single-item predictors such as the 6-minute walk test, maximal oxygen consumption, B-type natriuretic peptide, and creatinine levels, as well as more complex multivariable models. A summary of these models is presented in Table 2. Factors that predict an increased likelihood of death are summarized in Table 4.

Dyspnea

The use of diuretics is the cornerstone of therapy. Patients with end-stage heart failure may develop increasing levels of diuretic resistance; in such patients, aquapheresis may be safe and beneficial. Afterload reduction with long-acting nitroglycerin formulations such as isosorbide dinitrate, with or without the vasodilator hydralazine, may provide relief, but their use may be limited by hypotension. Inotropic agents may be appropriate in select patients. Multiple studies demonstrate the efficacy and safety of opioids for dyspnea. Doses are typically a small fraction of those required for analgesia, such as 2.5 mg of morphine or 1 mg of oxycodone. Benzodiazepines may help with symptoms of panic associated with breathlessness. Some evidence exists for less frequently used techniques for dyspnea, including neuromuscular blocking agents, chest wall vibration, exercise and breathing training, and hawthorn extract. Studies suggest oxygen is no better than room air for dyspnea in patients without hypoxia. Insufficient data exist to judge the benefit of
Table 2. Comparison of Heart Failure Prognostic Tools

<table>
<thead>
<tr>
<th>Model</th>
<th>Components</th>
<th>End Point</th>
<th>Validation C-Statistic</th>
</tr>
</thead>
</table>
| Heart Failure Survival Score⁴⁸ | • Ischemic cardiomyopathy
• Resting heart rate
• Ejection fraction
• Mean resting blood pressure
• Intraventricular conduction delay
• Maximal oxygen consumption
• Serum sodium
• AND pulmonary capillary wedge pressure in the invasive model | Death at 1 y | 0.79 (first 7 components; noninvasive model); 0.81 (8 components; invasive model) |
| Zugck 2-variable model⁴⁹ | • Ejection fraction
• Maximal oxygen consumption or 6-min walk test | Death at 1 y | 0.84 (ejection fraction and maximal oxygen consumption); 0.85 (ejection fraction and 6-min walk test) |
| Bouvy model⁵⁰ | • Age
• Male sex
• History of diabetes
• History of renal insufficiency
• Ankle edema
• Weight
• Blood pressure
• Use of β-blockers
• New York Heart Association class
• Minnesota Heart Failure Questionnaire | Death at 18 mo | 0.85 |
| Heart Failure Risk Scoring System⁵¹ | On admission:
• Age
• Respiratory rate
• Systolic blood pressure
• Blood urea nitrogen
• Serum sodium
• Comorbid conditions: cerebrovascular disease, dementia, chronic obstructive pulmonary disease, cirrhosis, cancer, anemia | Death at 30 d and 1 y | 0.80 (at 30 d), 0.77 (at 1 y) |
| Digitalis Investigation Group model⁵² | • Age
• Ejection fraction
• New York Heart Association class
• Cardiotoracic ratio >50%
• Clinical signs/symptoms
• Serum creatinine
• Body mass index
• Blood pressure
• Nitrate use
• If diabetes, cause of heart failure | Death at 1 y and 3 y | Not reported |
| Acute Decompensated Heart Failure National Registry⁵³ | • Systolic blood pressure
• Blood urea nitrogen
• Creatinine | Death in hospital | 0.687 |
| Seattle Heart Failure model⁵⁴ | • Age
• Sex
• New York Heart Association class
• Weight
• Ejection fraction
• Systolic blood pressure
• Cause of heart failure
• Medication use
• Diuretic dose
• Anemia
• % Lymphocytes
• Uric acid
• Total cholesterol
• Serum sodium
• Intraventricular conduction delay
• Use of devices
• Percent worsening of fractional shortening | Death at 1 y, 2 y, 3 y | 0.729 |
| Munich score⁵⁵ | • Cause of heart failure
• Systolic blood pressure
• Left ventricular end-diastolic diameter
• Maximum workload
• Percent worsening of fractional shortening | Death at 1 y, 2 y | Not reported |

⁴⁸ [Gheorghiade et al., 2002]
⁴⁹ [Zugck et al., 2003]
⁵⁰ [Bouvy et al., 2003]
⁵¹ [Borlaug et al., 2004]
⁵² [Chugh et al., 2004]
⁵³ [Ismail et al., 2005]
⁵⁴ [Gaziano et al., 2005]
⁵⁵ [Munich et al., 2006]
Pain

Pain is common and often undertreated in end-stage heart failure. Pharmacological agents that treat the underlying cause of pain, such as bisphosphonates for fractures, should be used when appropriate. Nonsteroidal antiinflammatory drugs should be avoided, because the risks of gastrointestinal bleeding, renal failure, and fluid retention are high. Alternative therapies, such as acupuncture, exercise training, and music, may be beneficial, although evidence is generally lacking to support the latter.

Acupuncture/acupressure or distractive auditory stimuli, such as music, may be useful in patients with chronic pain, but antimuscarinic side effects are relatively common. They also may cause QT prolongation and arrhythmias. The serotonin norepinephrine reuptake inhibitors (SNRIs) show promise and may be used as an alternative to tricyclic antidepressants because they have similar effects but fewer side effects.

Fatigue

The foundation for treatment of fatigue is the identification and treatment of secondary causes such as anemia, infection, dehydration, electrolyte abnormalities, thyroid dysfunction, and depression. Pharmacological options for primary fatigue include stimulants, such as methylphenidate, as well as nonpharmacological techniques, such as training in energy conservation and aerobic exercise. Sleep apnea may lead to fatigue and can be treated with noninvasive ventilation.

Edema

Edema can be a significant cause of discomfort in patients. As with dyspnea, it is treated principally with diuretics. Compression stockings may be effective for lower-extremity edema. Patients with refractory ascites may benefit from paracentesis, which also may improve renal function in patients with elevated intra-abdominal pressure.

Medical Therapy Discontinuation

As heart failure progresses, the focus shifts away from life-extending therapeutics to a focus on quality of life. In certain situations, the discontinuation of medical therapy may result in an improvement in quality of life. β-Blockers may need to be withdrawn in patients with refractory fluid overload or symptomatic bradycardia. Discontinuation of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers...
Inotropes in End-Stage Heart Failure

Clinical trials of inotropic agents used to treat refractory symptoms of heart failure and low cardiac output have not demonstrated improvement in survival, but inotropic agents may provide symptomatic relief for prolonged periods of time. In a recent retrospective study of end-stage patients given continuous-infusion milrinone or dobutamine, the 6-month and 1-year survival rates were 58% and 44%, respectively. Both inotropes were associated with a decrease in hospitalizations. Of note, dobutamine had an overall cost-saving effect at 1 year, but milrinone was significantly more costly than standard therapy. Given the lack of survival benefit, the American College of Cardiology/American Heart Association guidelines classify intravenous inotropes as a Class IIB indication for end-stage heart failure. Some hospices, either inpatient or home based, provide intravenous inotrope therapy; however, cost considerations prevent many agencies from providing them.

ICDs and Cardiac Resynchronization Therapy

ICDs reduce the likelihood of death by decreasing sudden cardiac death due to arrhythmias. As heart failure worsens, patients are likely to receive more frequent shocks, which cause significant pain and anxiety. Clinicians infrequently discuss ICD deactivation with patients, and most devices remain active until death. Qualitative studies have shown that patients may not fully understand how their ICDs work and develop complex psychological relationships with their devices that may contribute to a reluctance to deactivate the ICDs. For end-stage heart failure patients, deactivation of ICDs when death is near is advisable to avoid repeated shocks.

Table 4. Common Heart Failure Symptoms and Palliative Treatment Options

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Class of Recommendation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnea</td>
<td>Loop diuretics with or without thiazides, Nitrates, Low-dose opioids, Acupuncture, Oxygen (without hypoxia), Benzodiazepines, Acupuncture/acupressure, Distractive auditory stimuli, Relaxation techniques, Psychotherapy, Fans, Nebulized opioids.</td>
</tr>
<tr>
<td>Pain</td>
<td>Opioids, Acupuncture, Nonsteroidal antiinflammatory drugs.</td>
</tr>
<tr>
<td>Depression</td>
<td>Selective serotonin reuptake inhibitors, serotonpinorepinephrine reuptake inhibitors, tricyclic antidepressants, Exercise training, Psychological interventions: cognitive behavioral therapy, counseling, or supportive therapy, Acupuncture, Exercise training, Exercise, Acupuncture.</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Treat secondary causes (anemia, infection, sleep apnea, etc), Increased rest and reduction of physical activity, Anti-inflammatory agents, L-carnitine, Nutritional supplements or appetite stimulants.</td>
</tr>
</tbody>
</table>

*Based on authors' recommendations, not established specific guidelines. Class I: Conditions for which there is evidence for and/or general agreement that the procedure or treatment is useful and effective. Class II: Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment. Class IIa: the weight of evidence or opinion is in favor of the procedure or treatment. Class IIb: usefulness/efficacy is less well established by evidence or opinion. Class III: Conditions for which there is evidence and/or general agreement that the procedure or treatment is not useful/efficacious and in some cases may be harmful. Insufficient: Insufficient evidence to make recommendation.
in a dying patient. Particular care should be taken to make sure that such dialogue occurs early on, while the patient is still capable of participating in the discussion, and that it is clearly documented in the medical record.99 Unlike defibrillators, cardiac resynchronization therapy has been shown to improve quality of life.100–102 Therefore, it may be appropriate to continue biventricular pacing for patients even when the decision has been made to turn off ICDs.

Ventricular Assist Devices
The Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure trial demonstrated that ventricular assist devices (VADs) improve quality of life and survival compared with inotropes.103 Subsequent analyses demonstrated that VADs improve exercise tolerance, normalize hemodynamics, and improve end-organ dysfunction and emotional well-being.104 Nevertheless, they are associated with high rates of bleeding, infection, and stroke.105,106 These complications are particularly prevalent in the elderly.107 Although patients often experience significant improvement in some of their symptoms, many other symptoms, including physical pain, major depression, and organic mental syndromes, may remain or occur de novo after VAD implantation.108 Patients may also require significantly more support from caregivers. Therefore, palliative care may need to be continued or initiated after VAD placement. Recent estimates suggest that the quality-adjusted life-year cost for the devices is between $36,000 and $60,000.109 The management of VAD patients near the end of life poses unique challenges to the patient, family, and care provider. Patients may have abrupt VAD mechanical dysfunction that leads to a sudden decrease in cardiac output and rapid decompensation. Alternatively, the device may continue to function while the patient develops other complications or pathologies (eg, infectious, embolic, or renal). Machines may continue to work even after the patient is clinically brain dead, or they may prolong the dying process. It is critical that the patient establish advance directives before implantation that outline the conditions under which he or she desires the device to be turned off.

Conclusions: A Mandate for Further Study and Education
Palliative care and hospice have the potential to improve quality of life for heart failure patients, family members, and care providers. In addition, costs decrease significantly for payers, hospitals, patients, and families. Evidence suggests that these options are underused; when they are used, it is often so late in the course of illness that the potential of these options is undermined and their efficacy decreased.

Several strategies may be fruitful in making the implementation of palliation more common. Studies that randomize patients with end-stage heart failure to receive usual care versus obtaining palliative care consultations could help elucidate the effectiveness of palliative care consultations in improving symptoms and patient and family satisfaction with care and decreasing costs. Specific heart failure metrics, including the Minnesota Living With Heart Failure Questionnaire, could be used as well. The addition of palliative care education to the curriculum of fellows training in cardiology would likely increase the implementation of palliation. Given the tremendous physical, psychological, and economic burdens of end-stage heart failure, there is an increasing need for the use of palliation as an integral part of the treatment plan.

Acknowledgments
The authors thank Dr Valentin Fuster for his valuable input during the preparation of this manuscript.

Sources of Funding
Dr Meier is supported by R01 CA 116227 from the National Cancer Institute, as well as by the Robert Wood Johnson, John A. Hartford, Olive Branch, and Donaghue Foundations.

Disclosures
None.

References

Palliative Care in the Treatment of Advanced Heart Failure

Eric D. Adler, Judith Z. Goldfinger, Jill Kalman, Michelle E. Park and Diane E. Meier

Circulation. 2009;120:2597-2606
doi: 10.1161/CIRCULATIONAHA.109.869123

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/120/25/2597