A 35-year-old woman was referred for further cardiovascular assessment after an incidental finding of a systolic murmur and symptoms of exertional chest tightness. On examination, she had an anacrotic pulse with an aortic ejection systolic murmur. Two-dimensional (2D) transthoracic echocardiogram (TTE) demonstrated normal left ventricular (LV) size and systolic function with a thickened and calcified bicuspid aortic valve. The mean gradient was 47 mm Hg, and valve area was 0.8 cm², consistent with severe aortic stenosis. There was mild coarctation of the aorta with a peak velocity of 2.5 m/s. The mitral valve appeared structurally abnormal (Figures 1 and 2 and online-only Data Supplement Movies I and II). However, 2D TTE images were suboptimal. Therefore, 2D transesophageal echocardiography (TEE) was performed. This confirmed a bicuspid aortic valve with severe aortic stenosis and mild aortic regurgitation with no associated aortopathy. The images were suggestive of 2 separate mitral valve orifices (Figure 3 and online-only Data Supplement Movie III) without stenosis (mean gradient, 2 mm Hg) and only trivial mitral regurgitation. Real-time 3-dimensional (3D) TEE was performed with the use of the Philips X72T probe for further clarification. This clearly demonstrated division of the mitral valve into 2 separate orifices, each with its own leaflets and subvalvular apparatus, consistent with a double-orifice mitral valve (DOMV) (Figures 4 and 5 and online-only Data Supplement Movies IV and V) and coexisting bicuspid aortic valve (Figure 6 and online-only Data Supplement Movie VI). The images demonstrated

Figure 1. Two-dimensional TTE short-axis view of the mitral valve. RV indicates right ventricle.

Figure 2. Two-dimensional TTE 2-chamber apical view showing a structurally abnormal mitral valve. LA indicates left atrium.

Figure 3. Two-dimensional TTE 4-chamber view. LV indicates left ventricle.

From the Department of Cardiology, Prince of Wales Hospital (G.A., D.S., G.M., G.C.), and Department of Cardiology, Liverpool Hospital (C.A.), Sydney, Australia.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/cgi/content/full/120/22/e277/DC1.

Correspondence to Dr Greg Cranney, Eastern Heart Clinic, Level 3, Campus Centre Building, Barker St, Randwick, NSW 2031, Australia. E-mail greg.cranney@ehc.com.au

(Circulation. 2009;120;e277-e279.)

© 2009 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.109.883405
a bridge-subtype DOMV with a central bridge of abnormal leaflet tissue connecting the 2 leaflets that divided the orifice into unequal medial and lateral parts. The planimetry area of the 2 orifices with the use of offline advanced quantification software was 1.6 cm² and 2.0 cm² respectively.

DOMV is a rare congenital malformation that may be associated with other anomalies of the heart.1 It is characterized by a mitral valve annulus with accessory bridging fibrous tissue that separates it into 2 anatomically distinct orifices of usually unequal size.

To our knowledge, this is the first report of real-time 3D TEE evaluation of a DOMV. Three-dimensional echocardiography is a novel and rapidly evolving imaging modality that is complementary to 2D imaging in the assessment of cardiovascular function and anatomy. There is evidence that it provides improved accuracy and reproducibility over 2D methods in the assessment of LV volumes, LV function, and the assessment of mitral valves.2

Three-dimensional TTE has been found previously to provide a more reliable assessment of DOMV and incrementally more information than that obtained by 2D echocardiography alone.3,4 However, 3D TTE often is limited by suboptimal image quality, and, in comparison, 3D TEE offers superior resolution of the mitral valve. Three-dimensional TEE clearly demonstrated all components of the mitral valve apparatus and allowed identifi-

Figure 3. Two-dimensional TEE view suggesting the presence of 2 distinct orifices within the mitral valve (arrows). LA indicates left atrium.

Figure 4. Real-time 3D TEE atrial en face “surgical” view of the mitral valve confirming a double-orifice mitral valve as the “central” type with a bridge of abnormal tissue (arrow). ANT indicates anterior leaflet; POST, posterior leaflet; MED, medial orifice; and LAT, lateral orifice.

Figure 5. Real-time 3D TEE LV en face view of the mitral valve. MED indicates medial orifice; LAT, lateral orifice; ANT, anterior leaflet; and POST, posterior leaflet.

Figure 6. Real-time 3D TEE view demonstrating bicuspid aortic valve with thickened, calcified aortic cusps causing moderate to severe aortic stenosis. ANT indicates anterior cusp; POST, posterior cusp.
cation of the specific subtype of DOMV and accurate quantification of the mitral valve area by planimetry.

Disclosures

None.

References

Real-Time 3-Dimensional Transesophageal Echocardiography in the Evaluation of a Patient With Concomitant Double-Orifice Mitral Valve, Bicuspid Aortic Valve, and Coarctation of the Aorta
Gunjan Aggarwal, Dominik Schlosshan, Con Arronis, Gita Mathur and Greg Cranney

Circulation. 2009;120:e277-e279
doi: 10.1161/CIRCULATIONAHA.109.883405

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/120/22/e277

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2009/12/01/120.22.e277.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/