Activin A and Follistatin-Like 3 Determine the Susceptibility of Heart to Ischemic Injury

Yuichi Oshima, MD, PhD; Noriyuki Ouchi, MD, PhD; Masayuki Shimano, MD, PhD; David R. Pimentel, MD; Kyriakos N. Papanicolaou, BSc; Kalyani D. Panse, MSc; Kunihiro Tsuchida, MD, PhD; Enrique Lara-Pezzi, PhD; Se-Jin Lee, MD, PhD; Kenneth Walsh, PhD

Background—Transforming growth factor-β family cytokines have diverse actions in the maintenance of cardiac homeostasis. Activin A is a member of this family whose regulation and function in heart are not well understood at a molecular level. Follistatin-like 3 (Fstl3) is an extracellular regulator of activin A protein, and its function in the heart is also unknown.

Methods and Results—We analyzed the expression of various transforming growth factor-β superfamily cytokines and their binding partners in mouse heart. Activin βA and Fstl3 were upregulated in models of myocardial injury. Overexpression of activin A with an adenoviral vector (Ad-actβA) or treatment with recombinant activin A protein protected cultured myocytes from hypoxia/reoxygenation-induced apoptosis. Systemic overexpression of activin A in mice by intravenous injection of Ad-actβA protected hearts from ischemia/reperfusion injury. Activin A induced the expression of Bcl-2, and ablation of Bcl-2 by small interfering RNA abrogated its protective action in myocytes. The protective effect of activin A on cultured myocytes was abolished by treatment with Fstl3 or by a pharmacological activin receptor-like kinase inhibitor. Cardiac-specific Fstl3 knockout mice showed significantly smaller infarcts after ischemia/reperfusion injury that was accompanied by reduced apoptosis.

Conclusions—Activin A and Fstl3 are induced in heart by myocardial stress. Activin A protects myocytes from death, and this activity is antagonized by Fstl3. Thus, the relative expression levels of these factors after injury is a determinant of cell survival in the heart. (Circulation. 2009;120:1606-1615.)

Key Words: activin A ▪ apoptosis ▪ follistatin-like 3 ▪ myocytes ▪ reperfusion

The transforming growth factor-β (TGF-β) family comprises a large number of multifunctional proteins that can be divided into subfamilies including activins, bone morphogenetic proteins, growth and differentiation factors (GDFs), and TGF-βs. These secreted proteins have diverse roles in cell proliferation, differentiation, apoptosis, and immune responses. TGF-β1, the founding member of the TGF-β superfamily, is a mediator of cardiac hypertrophy and remodeling. TGF-β1 is also expressed in the heart, where it plays a role in the regulation of cardiac myocyte survival and function. Activin A, a member of the TGF-β superfamily, is a potent stimulator of cell proliferation and differentiation. Activin A is expressed in the myocardium and plays a role in the regulation of cardiac growth and function. Activin A is also known to be a potent inhibitor of apoptosis, and its expression is increased in response to various cardioprotective interventions.

Follistatin-like 3 (Fstl3) is an extracellular regulator of activin A protein. Fstl3 binds directly to TGF-β superfamily cytokines to inhibit their biological activities. Recently, Lara-Pezzi et al reported that Fstl3 transcript expression is upregulated in end-stage failing myocardium and its expression is correlated with molecular markers of disease severity. They also reported that transcripts encoding follistatin-like 1 (Fstl1), a distant member of the follistatin family, are upregulated in heart failure and expression is positively correlated with better functional recovery after implantation of a left ventricular assist device. We have shown that Fstl1 is secreted from cardiac myocytes after injury in animal models and that it functions to promote cardiac myocyte survival.

To better understand the regulation of secreted factors from the heart, we performed gene array transcriptome analyses on murine hearts that were subjected to injury and other stimuli. These analyses revealed that members of the follistatin family of secreted factors were upregulated on injury or Akt activation. This suggests that the follistatin family of secreted factors plays a role in the regulation of cardiac myocyte survival and function.

Clinical Perspective on p 1615

The follistatin family proteins act as extracellular antagonists of TGF-β superfamily cytokines. Follistatin and follistatin-like 3 (Fstl3) bind directly to TGF-β superfamily cytokines to inhibit their biological activities. Recently, Lara-Pezzi et al reported that Fstl3 transcript expression is upregulated in end-stage failing myocardium and its expression is correlated with molecular markers of disease severity. They also reported that transcripts encoding follistatin-like 1 (Fstl1), a distant member of the follistatin family, are upregulated in heart failure and expression is positively correlated with better functional recovery after implantation of a left ventricular assist device. We have shown that Fstl1 is secreted from cardiac myocytes after injury in animal models and that it functions to promote cardiac myocyte survival.

To better understand the regulation of secreted factors from the heart, we performed gene array transcriptome analyses on murine hearts that were subjected to injury and other stimuli. These analyses revealed that members of the follistatin family of secreted factors were upregulated on injury or Akt activation. This suggests that the follistatin family of secreted factors plays a role in the regulation of cardiac myocyte survival and function.
Figure 1. Fstl3 and Activin βA are specifically induced after cardiac injury. Expression analysis of activin βA, Fstl3, follistatin, and inhibin α in murine models of myocardial infarction (MI) (A), transverse aortic constriction (TAC) (B), and I/R (IR) (C) is shown. In the myocardial infarction model, samples were taken separately from ischemic zone (infarct area) and nonischemic zone (remote area) 3 days after the onset of myocardial infarction. For the pressure overload model, samples were taken 7 days after transverse aortic constriction surgery. Quantitative real-time polymerase chain reaction was performed to determine the mRNA level of each transcript, and the data were compared with the GAPDH level and normalized to the mean value of controls. n=4 to 6. *P<0.05 vs sham; #P<0.01 vs sham. D, Upregulation of activin A protein after myocardial infarction. The top panel is a Western blot analysis for activin A performed under nonreducing conditions, and the bottom panel is a blot for α-tubulin with the same samples used under reducing conditions. The histogram shows the quantification of the band intensities for activin A compared with that of tubulin. #P<0.01 vs sham. E, Upregulation of activin A and Fstl3 proteins after H/R treatment in NRVM cultures. Representative images of immunoblots of the culture media, 24 hours after addition to cells, and the cell pellet lysates are shown. CTL indicates control.
transgene activation, leading us to hypothesize that there might exist as yet unknown networks of autocrine/paracrine factors that control heart function. In this study, we report that cardiac injuries induce the expression of activin A and its binding partner Fstl3. Activin A was found to protect cardiac myocytes from stress-induced cell death, whereas Fstl3 abolished the prosurvival effect of activin A. We propose that activin A and Fstl3 serve as sensors of cardiac stress and that their relative levels of expression influence cell survival in the injured heart.

Methods

See the online-only Data Supplement for additional details.

Myocyte Cultures of Neonatal Rat Ventricular Myocytes
Primary cultures of neonatal rat ventricular myocytes (NRVMs) were incubated in Dulbecco’s modified Eagle’s medium supplemented with 7% fetal calf serum for 18 to 24 hours after preparation, then with adenoviral vectors at the indicated multiplicity of infection (MOI) for 16 hours in Dulbecco’s modified Eagle’s medium. The media were then replaced with fresh DMEM without adenovirus and incubated for 12 hours before hypoxia/reoxygenation (H/R). In other experiments, serum-deprived NRVMs were incubated with recombinant activin A protein for 8 hours before H/R. A GasPak system (Becton Dickinson) was used to create hypoxic conditions as described previously. For H/R studies, cells were exposed to 12 hours of hypoxia followed by reoxygenation.

Construction of Adenoviral Vectors Expressing Murine Fstl3 and Murine Activin βA
Full-length Fstl3 and activin βA complementary DNAs (cDNAs) were obtained from American Type Culture Collection. Enzymatic restriction sites were added by polymerase chain reaction on both N- and C-terminus, and the full length of Fstl3 and activin βA and the cDNAs were subcloned into an adenovirus shuttle vector. After linearization, the shuttle vectors were cotransformed into competent

Figure 2. Activin A protects cardiac myocytes from H/R-induced injury. A, NRVMs were pretreated with different concentrations of activin A for 8 hours before the exposure to 12 hours of hypoxia followed by 24 hours of reoxygenation (H/R). Cell viability was determined by the MTS assay. Apoptosis indicated by nucleosome fragmentation assay (B) and caspase-3 and -7 activities (C) were measured in NRVMs pretreated with 25 ng/mL of activin A before exposure to H/R. D, Thirty minutes before addition of activin A, NRVMs were pretreated with or without the inhibitor SB431542 (SB). Cell viability was measured by MTS assay after H/R treatment. *P<0.05; #P<0.01.
cells (TOP10; Invitrogen) with the adenoviral backbone plasmid (pAdEasy-1). The recombinant adenoviral DNA with
Fstl3
 or activin/A
H9252
 was extracted from the competent cells and transfected into HEK 293 cells to produce recombinant adenoviral vectors that express
Fstl3
 (Ad-Fstl3) or activin/A
H9252
 (Ad-act/A
H9252
). An adenoviral vector expressing -galactosidase (Ad-/
H9252
-gal) was used as a control. The adenoviral vectors were purified by the CsCl ultracentrifugation method.

Adenovirus-Mediated Overexpression of Activin A in Mice

Eight- to 10-week-old male mice were injected intravenously with adenovirus (Ad-act/A
H9252
 or Ad-/
H9252
-gal; 5.0 × 10
10
 plaque-forming units per mouse) through the jugular vein. Plasma activin A was assayed by Western blot analysis 3 days after adenovirus delivery. At this time point, mice also underwent myocardial ischemia/reperfusion (I/R) injury.

Generation of a Cardiac-Specific Fstl3 Knockout Mice

Mice homozygous for an Fstl3 allele with 2 loxP sites flanking exons 3 through 5 (Fstl3
lox/lox
) were backcrossed and maintained on the C57BL6/J background. Fstl3
lox/lox
 were crossed with -MHC-Cre transgenic mice that are maintained on a C57BL6/J background. Four different primer pairs were used for genotyping polymerase chain reaction. The loxP site in intron 1 was detected with the use of primer 1 (SJL954 TCTGAGAAGAG-GAGGGATTTCAAG) and primer 2 (SJL955 ATTTACACCTAGCACATACTCTG), which amplify a 390-bp fragment for the loxP site, whereas the Fstl3 wild-type allele gives a 330-bp fragment. The loxP site in intron 5 was detected with the use of primer 3 (SJL956 AACCACATCCCAGATCCAGTGCAC) and primer 4 (SJL986 CAGCTATGAGCCTTGTGCATTGCTC), which amplify an ~310-bp fragment for the loxP site and a 270-bp fragment for the wild-type allele. Recombination by Cre leads to an allele that lacks exons 3, 4, and 5 of the Fstl3 gene and is detected with the use of primer pair of 1 and 4, which gives a 357-bp fragment. The -MHC-Cre transgene is detected with the use of the primer pair of -ATGACAGACAGATCCCTCCTATCTCC and -CTCATCAGATCCAGATCCAGTGCAC, which amplifies a 300-bp fragment.

Statistical Analysis

Data are presented as mean ± SEM. Group differences were analyzed by 2-tailed Student t test or ANOVA. To compare multiple groups, the Mann–Whitney U test with Bonferroni correction was used. A value of P < 0.05 was considered statistically significant.

The authors had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the manuscript as written.

Results

Activin and Fstl3 Levels Are Regulated by Stress in the Heart

To better understand the roles of the TGF-β superfamily cytokines in heart, we analyzed transcript expression of family members by quantitative real-time polymerase chain reaction using cDNAs from mouse heart (Figure 1A). These analyses focused on activin/α, its inhibitory binding partners follistatin and Fstl3, and inhibin α. Activin/α showed marked upregulation at 1 and 3 days after left coronary artery...
ligation in the infarct zone and returned to baseline at the 6-day time point. These findings are in general agreement with those of Yndestad et al, who previously reported a 15- to 40-fold induction of activin A in the ischemic regions of heart after left coronary artery ligation in rats. Fstl3 displayed statistically significant upregulation at days 1, 3, and 6 in the infarct and remote regions after left coronary artery ligation. Follistatin upregulation was observed in the infarct zone at the 3- and 6-day time points. No regulation of inhibin, which opposes the action of activin A, was observed in this model. Activin A and Fstl3 were upregulated 10- and 3-fold, respectively, after pressure overload at 1 week after transverse aortic constriction (Figure 1B), whereas the follistatin transcript level did not change, and the inhibin transcript level declined by a factor of 2 (Figure 1B). In an I/R model, Fstl3 expression was upregulated 4-fold at 12- and 24-hour time points after perfusion, whereas levels of activin A increased 2-fold at the 12-hour time point (Figure 1C). Levels of follistatin and inhibin did not change in these assays.

Dimers of activin A are processed to give rise to the physiologically active protein activin A. Activin A levels were measured in hearts 3 days after left coronary artery ligation because the activin A transcript was expressed robustly at this time point. A significant increase in activin A protein could be detected in hearts after infarction (Figure 1D). To document activin A and Fstl3 expression by cardiac myocytes, NRVMs were cultured under normoxic and H/R conditions (Figure 1E). Both proteins could be detected in lysates of the cell pellets and in the conditioned media. Treatment of cultures by H/R led to a 1.9-fold upregulation of activin A and a 1.7-fold upregulation of Fstl3 in the culture media (P<0.05; n=6).

Activin A Protects Cultured Myocytes From Apoptosis

In the noncardiac cell type, activin A has been reported to promote survival or apoptosis. Thus far, the effects of activin A on cardiac myocyte survival have not been reported. To elucidate the functional significance of activin A in cardiac myocytes, serum-deprived NRVMs were exposed to H/R stress in the presence or absence of recombinant human activin A protein and analyzed for markers of apoptotic cell death. As shown in Figure 2A, recombinant activin A protein promoted survival in NRVMs as assessed by an MTS assay. Statistically significant protection against apoptosis was observed when activin A was incubated with NRVMs at a dose
of 25 ng/mL. This level of activin A is similar to doses that exert antiapoptotic actions on other cell types.20 To corroborate these findings, a nucleosome fragmentation assay of NRVM apoptosis was performed. Treatment with 25 ng/mL activin A reduced H/R-induced apoptosis by 62% (Figure 2B). Furthermore, caspase 3/7 activity was increased by the H/R stress, and treatment with activin A protein (25 ng/mL) reduced this activity to near baseline levels (Figure 2C).

Activin A signals through activin receptor-like kinases (ALKs).1 Thus, NRVMs exposed to H/R stress were incubated with SB431542, a specific inhibitor of ALK4, ALK5, and ALK7, before treatment with recombinant activin A. Cell viability was assessed by MTS assay. As shown in Figure 2D, treatment with SB431542 abrogated the protective effect of activin A, whereas the inhibitor had no effect on basal cell viability. These data suggest that extracellular activin A protects cardiac myocytes from stress-induced apoptosis through the activities of ALKs.

To test whether Bcl-2 is involved in the antiapoptotic action of activin A in cardiac myocytes, Bcl-2 protein expression was determined by Western blot analysis. Activin A treatment significantly increased Bcl-2 protein levels in NRVMs (Figure 3A). Transduction of NRVMs with small interfering RNA (siRNA) targeting Bcl-2 reduced Bcl-2 protein expression. Knockdown of Bcl-2 with siRNA blocked the inhibitory effect of activin A on H/R-induced nucleosome fragmentation (Figure 3B). Thus, activin A cytoprotection is mediated by induction of Bcl-2.

Adenovirus-Mediated Expression of Activin A Promotes Myocyte Survival In Vitro and In Vivo
To corroborate and extend the findings obtained with the recombinant human activin A protein, an adenoviral vector that expresses the mouse activin βA gene (Ad-actβA) was generated. As shown in Figure 4A, transduction with Ad-actβA promoted the expression of Bcl-2 protein and increased the phosphorylation of Smad2 in NRVMs. The magnitude of these effects was similar to that observed with the recombinant activin A protein (Figure 3A). Transduction of NRVMs with Ad-actβA suppressed apoptosis induced by H/R as assessed by a nucleosome fragmentation assay (Figure 4B) and an MTS assay of cell viability (Figure 4C).

To examine the consequences of activin A on cardiac myocyte viability in vivo, mice were injected intravenously with ad-actβA or the control vector Ad-βgal. This method of intravenous delivery of adenoviral vectors leads to transduction of the liver but not heart, and secreted adenovirus-encoded proteins can be detected in the serum.10,21 Mice receiving Ad-actβA exhibited detectable activin A protein expression in serum as assessed by Western blot analysis (Figure 5A). In response to myocardial I/R injury, mice treated with Ad-actβA displayed a 53.7% reduction in infarct size. This reduction corresponded to a decrease in the number of terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL)–positive, apoptotic cells in the area at risk of the Ad-actβA–treated group (Figure 5B). Collectively, these data show that activin A protects myocytes from apoptosis in vitro and in vivo and that it minimizes damage from I/R injury in the heart.

Fstl3 Inhibits Activin A–Mediated Protection of NRVMs
An adenoviral vector expressing the mouse Fstl3 gene (Ad-Fstl3) was constructed because this factor is also induced by myocardial injury (Figure 1A to 1C), and it functions as an extracellular binding partner of activin A. Transduction of NRVMs with Ad-Fstl3 abrogated the ability of activin A protein to induce Smad2 phosphorylation (Figure 6A). In contrast, adenovirus-mediated overexpression of Fstl1 had no effect on activin A–induced Smad2 phosphorylation in NRVMs (Figure 6B). Because Fstl3 is an inhibitor of activin A, we examined the effects of adenovirus-mediated induction of Fstl3 on activin A–mediated protection of NRVMs from stress-induced apoptosis. As
shown by nucleosome fragmentation assay, transduction of Ad-Fstl3 abolished the prosurvival actions of activin A on NRVMs exposed to H/R stress (Figure 6C). The ability of Ad-Fstl3 to block activin A–mediated NRVM survival was corroborated by the MTS cell viability assay (Figure 6D).

Figure 6. Fstl3 inhibits activin A action in NRVMs. A and B, NRVMs, transduced with Ad-Fstl3, Ad-Fstl1 or Ad-β-gal (β) at 50 MOI, were stimulated with 25 ng/mL of recombinant activin A for indicated periods of time, and phosphorylation of Smad2 was determined by Western blot analysis. Immunoblots for α-tubulin were performed as a loading control. C and D, NRVMs were transduced with Ad-Fstl3 or Ad-β-gal at an MOI of 50 (C) or 10 (D) and exposed to H/R treatment in the presence or absence of pretreatment with 25 ng/mL of activin A. Apoptosis was examined by nucleosome fragmentation assay (C), and cell viability was assessed by the MTS assay (D).

Ablation of Fstl3 in Cardiac Myocytes Protects the Heart From I/R Injury In Vivo

Cardiac myocyte–specific knockout mice for Fstl3 were generated by crossing Fstl3lox/lox mice with mice expressing Cre recombinase from the α-MHC promoter. Cre–mediated recombination of the Fstl3 allele in the hearts of α-MHC-Cre×Fstl3lox/lox (CKO) mice was confirmed by polymerase chain reaction (Figure I in the online-only Data Supplement). Quantitative real-time polymerase chain reaction analysis on the extracts from whole heart revealed a significant but incomplete reduction of Fstl3 expression in CKO mice (Cre-1/f) compared with wild-type (W-1/f) mice (Figure 7A).

Thus, cardiac myocytes were isolated from adult hearts of both strains of mice and evaluated for Fstl3 expression (Figure 7B). Myocytes isolated from CKO mice were completely void of Fstl3 transcript. Because whole-body Fstl3-deficient mice exhibit mild cardiac hypertrophy,22 we evaluated the ratio of heart weight to body weight in the 2 strains
of mice (Figure 7C). Cardiac myocyte–specific Fstl3 knock-out mice did not show any difference in heart weight compared with wild-type mice. Western immunoblot analysis revealed the upregulation of Bcl-2 protein expression in CKO mice. The upregulation of Bcl-2 expression was also detected by Western immunoblot analysis of isolated cardiac myocytes from CKO hearts.

To examine the functional significance of Fstl3 in myocytes of the heart, CKO and control mice hearts were subjected to I/R injury, and infarct size was analyzed by 2,3,5-triphenyltetrazolium chloride staining. As shown in Figure 8A, CKO hearts displayed smaller infarct zones, whereas the ratio of risk area to left ventricular area did not differ between the 2 groups (not shown). TUNEL analysis of the area at risk revealed fewer apoptotic cells in the Fstl3 CKO mice (Figure 8B).

Discussion

The heart secretes factors to maintain homeostasis and adapt to stress. In the present study, we characterize the function of 2 new members of the cardiac secretome, Fstl3 and activin A. Fstl3 binds to activin A and other members of this family and inhibits their ability to activate signaling within target cells. It has been reported that serum activin A levels and Fstl3 transcript levels are elevated in heart failure, but the regulatory functions of these factors in heart have not been examined previously. In this study, we show that both Fstl3 and Activin A mRNA are markedly upregulated in mouse heart in response to multiple types of injury. Functional analyses in vivo and in vitro showed that activin A is cardioprotective, whereas Fstl3 acts to nullify the protective action of activin A. These data indicate that the balance of expression between these 2 molecules can influence how the heart adapts to stress.

Activin A is involved in numerous biological processes including embryonic development, erythropoiesis, wound healing, cancer-related cachexia, and inflammation. Although it has been demonstrated that activin A is a prosurvival factor for neuronal cells, other studies have demonstrated that activin A is a proapoptotic factor for hematopoietic cells and adrenocortical carcinoma cells. It has also been reported that inhibition of activin A by follistatin attenuates apoptosis induced by carbon tetrachloride injury in liver. Thus, the mode of activin A action is highly dependent on tissue and cell type. In the present study, we present multiple lines of evidence showing that activin A is cardioprotective. In cultured cardiac myocytes subjected to stress, treatment with recombinant activin A protein upregulated Bcl-2 protein expression and reduced caspase activation and cellular apoptosis. Consistent with these results, adenovirus-mediated activin A overexpression promoted Bcl-2 expression and myocyte viability. Adenovirus-mediated expression of activin A also reduced infarct size and the frequency of TUNEL-positive cells in hearts that underwent I/R injury.

The functional significance of Bcl-2 induction by activin A was assessed by siRNA knockdown experiments in vitro. Treatment with siRNA directed at Bcl-2 effectively ablated activin A–stimulated expression of this protein by cultured
myocytes and blocked the cytoprotection actions of activin A. Previous studies have shown that Bcl-2 has roles in promoting cardiac myocyte viability in models of ischemic injury and desmin deficiency–induced cardiomyopathy. It has also been reported that activin A induces both Bcl-2 and Bcl-xL in neuroblastoma and pheochromocytoma cells. However, we did not detect activin A–stimulated Bcl-xL expression in cardiac myocyte cultures (data not shown).

In this study, it is shown that Fstl3 inhibits the protective actions of activin A on cardiac myocytes. Pretreatment with an adenoviral vector expressing Fstl3 abrogates activin A–mediated suppression of NRVM death under conditions of H/R. Furthermore, cardiac myocyte–specific ablation of Fstl3 reduces infarct size and diminishes the frequency of apoptotic myocytes in the area at risk after I/R injury.

We previously showed that Fstl1 is upregulated by cardiac injuries in murine models, and Lara-Pezzi et al reported that the Fstl1 transcript is upregulated in human heart failure. In contrast to Fstl3, Fstl1 protects cardiac myocytes from death both in vitro and in vivo. Also in contrast to Fstl3, it is shown here that Fstl1 does not interfere with activin A–stimulated Smad2 phosphorylation (Figure 6). In contrast, Fstl1 protection of both cardiac myocytes and endothelial cells is dependent on the upregulation of Akt signaling. Currently, there is no evidence to suggest that Fstl1 functions by binding to TGF-β superfamly members.

It was previously reported that whole-body Fstl3 deficiency results in a low degree of cardiac hypertrophy accompanied by mildly elevated blood pressure in old female mice. In the present study, we employed cardiac-specific Fstl3-deficient mice, and no change in ratio of heart weight to body weight was observed between CKO and wild-type mice. Because elevated blood pressure can lead to cardiac hypertrophy, the cardiac phenotype of the whole-body Fstl3 knockout mouse may be caused by the indirect actions of whole-body Fstl3 deficiency on the heart.

Other TGF-β family cytokines reported to be produced by the heart under conditions of stress include myostatin/GDF-8 and GDF-15. Like activin A, these factors regulate Smad signaling and cause cachexia when administered or overexpressed. Both activin A and GDF-15 have been shown to be increased in patients with heart diseases. Collectively, these studies indicate the existence of a broad signaling network involving TGF-β family factors and their extracellular inhibitory proteins that control cardiac adaptation to stress. The expression of these proteins by the damaged heart may also contribute to the systemic wasting response in chronic heart failure.

Conclusions

We show that activin A and its extracellular inhibitory protein Fstl3 are upregulated in murine heart under conditions of stress. Administration or overexpression of activin A protects myocytes from stress in vitro and in vivo. In contrast, Fstl3 overexpression inhibits the myocyte-protective activity of activin A in vitro, and cardiac-specific Fstl3-deficient mice display smaller infarcts and less myocyte apoptosis in response to I/R injury. Thus, we propose that activin A and Fstl3 function in an opposing manner to regulate myocyte survival and that the relative expression levels of these factors influence the adaptive response of the heart to injury.

Sources of Funding

This study was funded by National Institutes of Health grants HL77774, HL86785, AG15052, and HL81587 to K. Walsh. N. Ouchi was supported by American Heart Association grant 0635593T. D.R. Pimentel was supported by National Institutes of Health grant HL71563. Y. Oshima was supported by American Heart Association grant 0625867T. S. Lee was supported by National Institutes of Health grant U54-AI052646. K.D. Panse was supported by an EMBO fellowship (ASTF 53.2009).

Disclosures

None.

References

CLINICAL PERSPECTIVE

The injured heart secretes proteins that influence its function. In this study, we characterize 2 new members of the cardiac “secretome,” activin A and follistatin-like 3 (Fstl3), using genetic gain- and loss-of-function manipulations in mouse models. Activin A and Fstl3 expression was increased in heart after various injuries and in cultured myocytes after hypoxia/reoxygenation. Activin A protected myocytes from cell death, and this protective activity was antagonized by Fstl3, which functions as an extracellular inhibitory protein for activin A. Myocardial ischemia/reperfusion injury was reduced in mice administered activin A. Genetic ablation of Fstl3 in cardiac myocytes also diminished injury in response to ischemia/reperfusion. We speculate that activin A and Fstl3 serve as sensors of cardiac stress and that their relative levels of expression influence the adaptive response of the heart to injury.
Activin A and Follistatin-Like 3 Determine the Susceptibility of Heart to Ischemic Injury

Circulation. 2009;120:1606-1615; originally published online October 5, 2009;
doi: 10.1161/CIRCULATIONAHA.109.872200
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/120/16/1606

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2009/10/05/CIRCULATIONAHA.109.872200.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
Supplemental Material

Supplemental Methods

Reagents. SYBR GREEN was purchased from Applied Biosystems. The adenoviral backbone plasmid pAdEasy-1 was obtained from Qbiogene. Antibodies against phospho-Smad2 (Ser465/467), phospho-Smad1/5/8 (Ser463/465), phospho-Akt1 (Ser473), phospho-AMPK (Thr172) and phospho-ERK (Thr202/Tyr204) were purchased from Cell Signaling Technology. Anti-mouse Fstl-3 and Activin βA antibodies were obtained from R&D Systems. Antibody against alpha-tubulin was purchased from Calbiochem, Bcl2 was from BD Transduction Laboratories and sarcomeric actin was from Sigma. Dulbecco’s modified Eagle’s medium (DMEM) and MEM were purchased from Invitrogen. Liberase blendzyme 4 was obtained from Roche. SB431542 was from Calbiochem. Recombinant human Activin A (rActA) (expressed in CHO cells) and taurine were purchased from Sigma.

RNA isolation, reverse transcriptional PCR, and Quantitative Real-Time PCR. Total RNA preparation from mouse heart was carried out by using RNA isolation kit for fibrous tissue (Qiagen) and preparation from cultured cells was performed by RNA isolation kit (Qiagen) according to manufacturer’s protocols. We synthesized cDNA from 450 ng of total RNA by using ThermoScript RT-PCR Systems (Invitrogen) according to the manufacturer’s instructions. Quantitative Real-Time PCR (QRT-PCR) was carried out on an iCycler (Bio-Rad). SYBR GREEN 1 was used as a double-stranded DNA-specific dye according to the manufacture’s instruction (Applied Biosystems)\(^1\). We designed primers to be suitable for a single QRT-PCR thermal profile (95 °C for 10 min, and 50
cycles of 95 ºC for 30 s and 60 ºC for 1 min). The sequences are as follows:

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forward (F): 5’-TCACCACCATGGAGAAGGC-3’ reverse (R): 5’-GCTAAGCAGTTGGTGTTGCA-3’

ActβA (forward): 5’– TGGTGCCAGTCTAGTGCTTC -3’ R: 5’–CCGTCACTCCATCTTTCTT -3’

Inhibin α F: 5’–TCCTTTTGCTGTTGACCCTA-3’ R: 5’–CCCCAAGGCATCTAGGAATA-3’

Follistatin F: 5’–CGAGGAGGATGTGAACGACAA-3’ R: 5’–GGTCCGCAGTCAGCTGTTGACCCTA-3’

Fstl3 F: 5’–CAACCCCGGCAAGAACT-3’ R: 5’–CTTCCTCTCTCCTTTGTTGTTGACTTTG-3’

The expression levels of examined transcripts were compared to that of GAPDH or 18S and normalized to the mean value of controls. Expression levels were compared to that of GAPDH and normalized to the mean value of controls.

Western immunoblot analysis. Heart tissue was homogenized in lysis buffer (Cell Signaling) containing 1 mM PMSF and protease inhibitors (Pierce). Cultured cells were directly lysed in the lysis buffer to obtain protein samples. Protein concentration was measured using BCA protein assay kit (Pierce). The cell and tissue lysates, culture media or serum were added to equal volumes of 2x sample buffer (BioRad), and separated by SDS-PAGE. For the detection of Activin A and Fstl3, protein from NRVM media was concentrated up to fifty fold by Microcon (Millipore). Mature Activin A protein was subjected to electrophoresis under non-reducing conditions. Proteins were transferred onto PVDF membrane (Amersham). Western blot analysis was performed by probing with the primary antibody followed by incubation with the HRP-conjugated
secondary antibody. The ECL plus system (Amersham) was used to produce chemiluminescent signal.

Detection of nucleosome fragmentation by ELISA. Apoptosis was assessed by enzyme-linked immunosorbent assay (ELISA) based detection of nucleosome fragmentation by Cell Death Detection kit (Roche) as described previously. NRVMs were seeded in 96-well plates, transfected with adenoviral vectors and exposed to H/R. For each assay, at least 8 wells for each experimental group were analyzed. The extent of nucleosome fragmentation of each group was compared to that of control group (e.g. no treatment or Ad-βgal transfected cells maintained at a normoxic condition) and normalized to the mean value of controls.

MTS assay. An MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl) -2-(4-sulfophenyl)-2H-tetrazolium] assay was carried out in NRVMs to evaluate cell viability using CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega). Cells were incubated for two to three hours after addition of the reagent and absorbance was recorded. The relative cell viabilities were calculated as the ratio to that of control group. For each assay, at least 8 wells were measured for each experimental group, and assays were repeated three times.

Measurement of Caspase-3 and -7 activities. Caspase-3 and -7 activities in NRVMs were measured by Apo-ONE Homogeneous Caspase-3/7 Assay (Promega) according to the manufactures protocol. In brief, the buffer and substrate mixture was added into culture dishes and incubated for two hours. A fluorescent signal is detected upon
substrate cleavage by caspase-3 and -7. The excitation wavelength was 485 nm and the emission wavelength was 530 nm. The relative fluorescent intensities were calculated as the ratio to that of control group. For each assay, at least 8 wells were measured for each experimental group, and assays were repeated three times.

Mouse models. Eight to 10 week old male mice were used for ischemia-reperfusion surgery as described previously\(^3\). Following anesthetization (pentobarbital 50 mg/kg i.p.) and intubation, the chest was exteriorized and 8-0 monofilament suture was ligated around the proximal left coronary artery (LCA) using a snare occluder. Ischemia followed by reperfusion was accomplished by tightening the snare occluder for 30 min. Myocardial reperfusion was confirmed by changes in ECG as well as by changes in appearance of the heart from pale to bright red. The suture was left in place and chest was closed. During the surgical procedure, the body temperature was monitored and maintained at 37\(\pm\)1 °C. Twenty four hours after reperfusion, the chest was re-opened and the suture was re-tied. Evans Blue was injected at the aortic root to determine the area at risk (AAR). The heart was then excised and incubated with 2,3,5-triphenyltetrazolium chloride (TTC) for 5 min at 37 °C to determine the infarction area (IA). Left ventricular area (LVA), AAR and IA were determined by computerized planimetry using Image J (Bethesda, Maryland, USA). Tissue were harvested at 24 hours post-reperfusion for analysis of transcript levels. Mouse transverse aortic constriction was carried out as described previously\(^4\). In brief, following anesthetization, the chest was opened and intercostal muscles were dissected to reach to the aortic arch. The aortic arch was tied around a 26-gauge needle by a 7-0 silk suture. Tissue
was harvested at 1 week time point for analysis. In the mouse myocardial infarction model, the LCA was kept occluded and the chest was closed without reperfusion.

TUNEL staining. TUNEL staining on frozen heart sections was performed as described previously\(^5\) with some modifications. Cryo-sections (6 µm thickness) were fixed with 4% paraformaldehyde in PBS, permeabilized with 0.1% Triton X-100 and blocked with 6% skim milk. Anti-sarcomeric actin antibody was used for determination of myocytes followed by TUNEL and nuclear staining as described above. TUNEL positive myocytes were counted in three randomly selected fields of the slide. Each experiment was repeated three times and each tissue section was processed in duplicate.

Isolation of adult mouse ventricular cardiac myocytes. Isolation of adult mouse ventricular cardiac myocytes was performed according to procedures described online from the Alliance for Cell Signaling (AfSC protocols, http://www.signaling-gateway.org/data/Data.html) and O'Connell et al. 2007\(^6\). Briefly, adult WT × Fstl3\(^{\text{flox/flox}}\) and αMHC-Cre × Fstl3\(^{\text{flox/flox}}\) mice were injected with 50 IU of heparin and anesthetized with isoflurane. The heart was immediately extracted and placed into perfusion buffer and cannulated. After perfusion with perfusion buffer, the buffer was switched to the digestion buffer containing 0.25 mg/ml Liberase blendzyme 4, 0.14 mg/ml Trypsin and 12.5 µM CaCl\(_2\). After enzymatic digestion, the heart was disaggregated by forceps in the presence of a stop solution containing 10% Bovine Calf Serum to inactivate the protease. The tissue was further dissociated by gentle pipettings, and cells were collected by centrifugation. Cells were plated on laminin pre-coated 6-well culture plates and allowed to attach for 1 hour. Unattached cells were washed away. Attached rod-
shaped cardiac myocytes were incubated for another 24 hours in culture media (MEM with 0.1 mg/ml of bovine serum albumin, 100 U/ml of penicillin and 2 mM of L-Glutamine) at 37 °C in 2% CO₂ prior to use.
Expression of Cre recombinase and floxed allele in the heart. DNA was isolated from heart, lung, kidney and skeletal muscle in wild-type (WT), Cre-flox/flox (Cre-fl/fl) or WT-fl/fl mice. Cre recombinase and floxed allele were determined by PCR.
Supplemental References

