ADA/ACCF/AHA Scientific Statement

Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials

A Position Statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association

Jay S. Skyler, MD, MACP; Richard Bergenstal, MD; Robert O. Bonow, MD, MACC, FAHA; John Buse, MD, PhD; Prakash Deedwania, MD, FACC, FAHA; Edwin A.M. Gale, MD; Barbara V. Howard, PhD; M. Sue Kirkman, MD; Mikhail Kosiborod, MD, FACC; Peter Reaven, MD; Robert S. Sherwin, MD

Diabetes is defined by its association with hyperglycemia-specific microvascular complications; however, it also imparts a 2- to 4-fold risk of cardiovascular disease (CVD). Although microvascular complications can lead to significant morbidity and premature mortality, by far the greatest cause of death in people with diabetes is CVD.

Results from randomized controlled trials have demonstrated conclusively that the risk of microvascular complications can be reduced by intensive glycemic control in patients with type 1 and type 2 diabetes. In the Diabetes Control and Complications Trial (DCCT), there was an ~60% reduction in the development or progression of diabetic retinopathy, nephropathy, and neuropathy between the intensively treated group (goal A1c, <6.05%; mean achieved A1c, ~7%) and the standard group (A1c, ~9%) over an average of 6.5 years. The relationship between glucose control (as reflected by the mean on-study A1c value) and risk of complications was log-linear and extended down to the normal A1c range (~6%) with no threshold noted.

In the UK Prospective Diabetes Study (UKPDS), participants newly diagnosed with type 2 diabetes were followed up for 10 years, and intensive control (median A1c, 7.0%) was found to reduce the overall microvascular complication rate by 25% compared with conventional treatment (median A1c, 7.9%). Here, too, secondary analyses showed a continuous relationship between the risk of microvascular complications and glycemia extending into the normal range of A1c, with no glycemic threshold.

From the University of Miami, Miami, Fla (J.S.S.); International Diabetes Center at Park Nicollet, Minneapolis, Minn (R.B.); Northwestern University Feinberg School of Medicine, Chicago, Ill (R.O.B.); University of North Carolina, Chapel Hill (J.B.); VA Central California Healthcare System, University of California San Francisco, Fresno (P.D.); University of Bristol, Bristol, UK (E.A.M.G., B.V.H.); MedStar Research Institute, Hyattsville, Md (B.V.H.); American Diabetes Association, Alexandria, Va (M.S.K.); Mid America Heart Institute of Saint Luke’s Hospital and University of Missouri–Kansas City, Kansas City (M.K.); Carl T. Hayden VA Medical Center, Phoenix, Ariz (P.R.); and Yale University School of Medicine, New Haven, Conn (R.S.S.).

The American Diabetes Association, the American College of Cardiology, and the American Heart Association make every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This scientific statement was approved by the American Diabetes Association on September 30, 2008, by the American College of Cardiology Board of Trustees October 2008, and by the American Heart Association Science Advisory and Coordinating Committee on September 17, 2008.

This article has been copublished in Diabetes Care and the Journal of the American College of Cardiology.

Copies: This document is available on the World Wide Web sites of the American Diabetes Association (care.diabetesjournals.org), the American College of Cardiology (www.acc.org), and the American Heart Association (my.americanheart.org). A copy of the statement is available at http://www.americanheart.org/presenter.jhtml?identifier=3003999 by selecting either the “topic list” link or the “chronological list” link (No. LS-1930). To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted at the AHA National Center. For more on AHA statements and guidelines development, visit http://www.americanheart.org/presenter.jhtml?identifier=3023366.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.americanheart.org/presenter.jhtml?identifier=4431. A link to the “Permission Request Form” appears on the right side of the page.

Correspondence to M. Sue Kirkman, MD, American Diabetes Association, 1701 N Beaurregard St, Alexandria, VA 22311. E-mail skirkman@diabetes.org.

© 2009 American Diabetes Association, the American College of Cardiology Foundation, and the American Heart Association, Inc. (Circulation. 2009;119:351-357.)

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.108.191305

351
On the basis of these 2 large controlled trials, along with smaller studies and numerous epidemiological reports, the consistent findings related to microvascular risk reduction with intensive glycemic control have led the American Diabetes Association (ADA) to recommend an A1c goal of <7% for most adults with diabetes, recognizing that more or less stringent goals may be appropriate for certain patients. Whereas many epidemiological studies and meta-analyses have clearly shown a direct relationship between A1c and CVD, the potential of intensive glycemic control to reduce CVD events has been less clearly defined. In the DCCT, there was a trend toward lower risk of CVD events with intensive control (risk reduction, 41%; 95% CI, 10 to 68), but the number of events was small. However, 9-year post-DCCT follow-up of the cohort has shown that participants previously randomized to the intensive arm had a 42% reduction (P=0.02) in CVD outcomes and a 57% reduction (P=0.02) in the risk of nonfatal myocardial infarction (MI), stroke, or CVD death compared with those previously in the standard arm.

The UKPDS of type 2 diabetes observed a 16% reduction in cardiovascular complications (combined fatal or nonfatal MI and sudden death) in the intensive glycemic control arm, although this difference was not statistically significant (P=0.052), and there was no suggestion of benefit on other CVD outcomes such as stroke. However, in an epidemiological analysis of the study cohort, a continuous association was observed such that for every percentage point of lower median on-study A1c (eg, 8% to 7%) there was a statistically significant 18% reduction in CVD events, again with no glycemnic threshold.

Because of ongoing uncertainty regarding whether intensive glycemic control can reduce the increased risk of CVD in people with type 2 diabetes, several large long-term trials were launched in the past decade to compare the effects of intensive and standard glycemic control on CVD outcomes in relatively high-risk participants with established type 2 diabetes. In 2008, 2 of these trials, Action in Diabetes and Vascular Disease–Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) and the Veterans Affairs Diabetes Trial (VADT), were completed and showed no significant reduction in cardiovascular outcomes with intensive glycemic control. A third trial, Action to Control Cardiovascular Risk in Diabetes (ACCORD), terminated its glycemic control study of ACCORD participants at a median A1c of 7.5%. Other prespecified subset analyses showed no significant reduction in CVD events, again with no glycemnic threshold.

Exploratory analyses of the mortality findings of ACCORD (evaluating variables including weight gain, use of any specific drug or drug combination, and hypoglycemia) were unable to identify an explanation for the excess mortality in the intensive arm. In both study arms, participants with severe hypoglycemia had higher mortality than those without severe hypoglycemia. However, there was a complex interaction between hypoglycemia, study arm, and mortality: among participants with at least 1 episode of severe hypoglycemia, mortality was higher in those in the standard treatment arm, whereas among participants with no history of severe hypoglycemia, mortality was higher in those in the intensive treatment arm. Other prespecified subset analyses showed that participants with no previous CVD event and those who had a baseline A1c <8% had a statistically significant reduction in the primary CVD outcome.

The ADVANCE study randomized 11 140 participants at sites in Europe, Australia/New Zealand, Canada, and Asia to a strategy of intensive glycemic control (with primary therapy being the sulfonylurea gliclizide and additional medications as needed to achieve a target A1c of 6.5%) or standard therapy (in which any medication but gliclizide could be used, with the glycemic target set according to “local guidelines”). ADVANCE participants (required to be at least 55 years of age with either known vascular disease or at least 1 other vascular risk factor) were slightly older and of a high CVD risk similar to that in ACCORD participants. However,
they had an average duration of diabetes that was 2 years shorter, lower baseline A1C (median, 7.2%), and almost no use of insulin at enrollment. The median A1c levels achieved in the intensive and standard arms were 6.3% and 7.0%, respectively, and maximal separation between the arms took several years to achieve. Use of other drugs that favorably affect CVD risk (aspirin, statins, ACE inhibitors) was lower in ADVANCE than in ACCORD or VADT.

The primary outcome of ADVANCE was a combination of microvascular events (nephropathy and retinopathy) and major adverse cardiovascular events (MI, stroke, and cardiovascular death). Intensive glycemic control significantly reduced the primary end point (HR, 0.90; 95% CI, 0.82 to 0.98; \(P=0.01 \)), although this was due to a significant reduction in the microvascular outcome (0.86; 95% CI, 0.77 to 0.97; \(P=0.01 \)), primarily development of macroalbuminuria, with no significant reduction in the macrovascular outcome (0.94; 95% CI, 0.84 to 1.06; \(P=0.32 \)). There was no increase in overall or cardiovascular mortality in the intensive compared with the standard glycemic control arms.11

VADT randomized 1791 participants with type 2 diabetes uncontrolled on insulin or maximal-dose oral agents (median entry A1c, 9.4%) to a strategy of intensive glycemic control (goal A1c, <6.0%) or standard glycemic control, with a

| Table. Comparison of the 3 Trials of Intensive Glycemic Control and CVD Outcomes |
|---|-----------------|-----------------|-----------------|
| Participant characteristics | ACCORD | ADVANCE | VADT |
| n | 10 251 | 11 140 | 1791 |
| Mean age, y | 62 | 66 | 60 |
| Duration of diabetes, y | 10 | 8 | 11.5 |
| Sex, male/female, % | 39/61 | 42/58 | 97/3 |
| History of CVD, % | 35 | 32 | 40 |
| BMI, kg/m² | 32 | 28 | 31 |
| Median baseline A1C, % | 8.1 | 7.2 | 9.4 |
| On insulin at baseline, % | 35 | 1.5 | 52 |
| Protocol characteristics | A1c (I vs S),* %| <6.0 vs 7.0–7.9 | >6.0 (action if >6.5) vs planned separation of 1.5 |
| Protocol for glycemic control (I vs S)* | Multiple drugs in both arms | Multiple drugs added to gliclizide vs multiple drugs with no gliclizide | Multiple drugs in both arms |
| Management of other risk factors | Embedded blood pressure and lipid trials | Embedded blood pressure trial | Protocol for intensive treatment in both arms |
| On-study characteristics | Mean blood pressure at study end, mm Hg |
| Median duration of follow-up, y | 3.5 (Terminated early) | 5 | 5.6 |
| Achieved median A1c (I vs S),* % | 6.4 vs 7.5 | 6.3 vs 7.0 | 6.0 vs 8.5 |
| On insulin at study end (I vs S),* % | 77 vs 55 * | 40 vs 24 | 89 vs 74 |
| On TZD at study end (I vs S),* % | 91 vs 58 * | 17 vs 11 | 53 vs 42 |
| On statin at study end (I vs S),* % | 88 vs 88 * | 46 vs 48 | 85 vs 83 |
| On aspirin at study end (I vs S),* % | 76 vs 76 * | 57 vs 55 | 88 vs 86 |
| Smokers at study end, % | 10 | 8 | 8 |
| Mean blood pressure at study end, mm Hg | 126/67 | 136/74 | 127/68 |
| Intensive glycemic control arm | 127/68 | 138/74 | 125/69 |
| Standard glycemic control arm | 5.3 | 2.7 | 21.2 |
| Intensive glycemic control arm | 16.2 | 2.7 | 21.2 |
| Standard glycemic control arm | 5.1 | 1.5 | 9.9 |
| Outcomes | | | |
| Definition of primary outcome | Nonfatal MI, nonfatal stroke, CVD death | Microvascular plus macrovascular (nonfatal MI, nonfatal stroke, CVD death) outcomes | Nonfatal MI, nonfatal stroke, CVD death, hospitalization for heart failure, revascularization |
| HR for primary outcome (95% CI) | 0.90 (0.78–1.04) | 0.9 (0.82–0.98); macrovascular, 0.94 (0.84–1.06) | 0.88 (0.74–1.05) |
| HR for mortality findings (95% CI) | 1.22 (1.01–1.46) | 0.93 (0.83–1.06) | 1.07 (0.81–1.42) |

BMI indicates body mass index; I, intensive glycemic control; S, standard glycemic control; TZD, thiazolidinedione.

*Medication rates for ACCORD are for any use during the study.
planned A_{ic} separation of at least 1.5%. Medication treatment algorithms were used to achieve the specified glycemic goals, with a goal of using similar medications in both groups. Median A_{ic} levels of 6.9% and 8.5% were achieved in the intensive and standard arms, respectively, within the first year of the study. Other CVD risk factors were treated aggressively and equally in both groups, with the trial achieving excellent blood pressure control, high levels of aspirin and statin use, and a high degree of smoking cessation. 12

The primary outcome of VADT was a composite of CVD events (MI, stroke, cardiovascular death, revascularization, hospitalization for heart failure, and amputation for ischemia). During a median 5.6-year follow-up period, the cumulative incidence of the primary outcome was not significantly lower in the intensive arm (HR, 0.88; 95% CI, 0.74 to 1.05; $P=0.12$). There were more CVD deaths in the intensive arm than in the standard arm (38 versus 29; sudden deaths, 11 versus 4), but the difference was not statistically significant. Post hoc subgroup analyses suggested that duration of diabetes interacted with randomization such that participants with duration of diabetes less than ≈ 12 years appeared to have a CVD benefit of intensive glycemic control, whereas those with longer duration of disease before study entry had a neutral or even adverse effect of intensive glycemic control. Other exploratory analyses suggested that severe hypoglycemia within the past 90 days was a strong predictor of the primary outcome and of CVD mortality, with an association of severe hypoglycemia with all-cause mortality apparent only for participants in the standard arm. An embedded ancillary study within the main VADT showed that baseline coronary or aortic calcium scores predicted future CVD events and that intensive glycemic control significantly reduced the primary CVD end point in those with low baseline coronary artery calcium scores but not in those with high baseline scores.

What Are Potential Explanations for the Increased CVD Deaths With Intensive Glycemic Control in ACCORD?

Numerous post hoc analyses have been unable to prove or disprove causes; in fact, the design of the study renders such “proof” elusive. Randomization to the intensive arm was associated with or led to many downstream effects such as higher rates of severe hypoglycemia; more frequent use of insulin, thiazolidinediones, other drugs, and drug combinations; and greater weight gain. Such factors may be associated statistically with the higher mortality rate in the intensive arm but may not be causative. It is biologically plausible that severe hypoglycemia could increase the risk of cardiovascular death in participants with high underlying CVD risk. This might be further confounded by the development of hypoglycemia unawareness, particularly in patients with coexisting cardiovascular autonomic neuropathy (a strong risk factor for sudden death). Death resulting from a hypoglycemic event may be mistakenly ascribed to coronary artery disease, because there may not have been a blood glucose measurement and because there are no anatomic features of hypoglycemia detected postmortem. Other plausible mechanisms for the increase in mortality in ACCORD include weight gain, unmeasured drug effects or interactions, or the “intensity” of the ACCORD intervention (use of multiple oral glucose-lowering drugs along with multiple doses of insulin, frequent therapy adjustments to push A_{ic}, and self-monitored blood glucose to very low targets, and an intense effort to rapidly reduce A_{ic} by $\approx 2\%$ in participants entering the trial with advanced diabetes and multiple comorbidities).

Because the ADVANCE trial did not show any increase in mortality in the intensive glycemic control arm, examining the differences between ADVANCE and ACCORD supports additional hypotheses. ADVANCE participants on average appeared to have earlier or less advanced diabetes, with shorter duration by 2 to 3 years and lower A_{ic} at entry despite very little use of insulin at baseline. A_{ic} was also lowered, even more gradually, in the ADVANCE trial, and there was no significant weight gain with intensive glycemic therapy. Although severe hypoglycemia was defined somewhat differently in the 3 trials, it appears that this occurred in $<3\%$ of intensively treated ADVANCE participants for the entire study duration (median, 5 years) compared with $\approx 16\%$ of intensively treated subjects in ACCORD and 21% in VADT.

It is likely that the increase in mortality in ACCORD was related to the overall treatment strategies for intensifying glycemic control in the study population—not the achieved A_{ic} per se. The ADVANCE study achieved a median A_{ic} in its intensive arm similar to that in the ACCORD study, with no increased mortality hazard. Thus, the ACCORD mortality findings do not imply that patients with type 2 diabetes who can easily achieve or maintain low A_{ic} levels with lifestyle modifications with or without pharmacotherapy are at risk and need to “raise” their A_{ic}.

Why Did None of the Trials Show a Significant Benefit of Intensive Glycemic Control on CVD in Type 2 Diabetes—in Contrast to Many Epidemiological Studies and the DCCT Follow-Up Study?

Although randomized controlled trials often confirm hypotheses grounded in observational evidence or physiological studies of surrogate end points, this is certainly not the first time that such trials have failed to do so. The results of ACCORD, ADVANCE, and VADT highlight the critical need for randomized controlled trials with meaningful clinical outcomes such as in these trials, to help answer major clinical questions.

In the 3 glucose-lowering trials, other CVD risk factors were treated to a moderate or high degree, and likely as a result of this, all had lower rates of CVD in the standard arm than originally predicted. The evidence for CVD prevention by statin therapy, blood pressure treatment, aspirin therapy in high-risk participants, and other interventions is robust. In type 2 diabetes, in which other CVD risk factors are highly prevalent, the additive benefits of intensive glycemic control might be difficult to demonstrate except in even larger or longer trials. It is likely that a real benefit of glucose lowering on CVD in type 2 diabetes, even if it could be proven, is modest compared with and incremental to treatment of other CVD risk factors.
Additionally, the 3 trials compared treatments to A1c levels in the “flatter” part of the observational glycemia-CVD risk curves (median A1c, 6.4% to 6.9% in the intensive arms compared with 7.0% to 8.4% in the standard arms). Their results should not be extrapolated to imply that there would be no cardiovascular benefit of glucose lowering from very poor control (eg, A1c >9%) to good control (eg, A1c <7%).

All 3 trials were carried out in participants with established diabetes (mean duration, 8 to 11 years) and either known CVD or multiple risk factors, suggesting the presence of established atherosclerosis. Subset analyses of the 3 trials suggested a significant benefit of intensive glycemic control on CVD in participants with shorter duration of diabetes, lower A1c at entry, and/or absence of known CVD. The finding of the DCCT follow-up study, that intensive glycemic control initiated in relatively young participants free of CVD risk factors was associated with a 57% reduction in major CVD outcomes, supports the above hypothesis. Of note, the benefit on CVD in the DCCT–Epidemiology of Diabetes Interventions and Complications (EDIC) required 9 years of follow-up beyond the end of the DCCT to become statistically significant.

A recent report13 of 10 years of follow-up of the UKPDS cohort describes, for the participants originally randomized to intensive glycemic control compared with those randomized to conventional glycemic control, long-term reductions in MI (15% with sulfonylurea or insulin as initial pharmacotherapy and 33% with metformin as initial pharmacotherapy; both statistically significant) and in all-cause mortality (13% and 27%, respectively; both statistically significant). These findings support the hypothesis that glycemic control early in the course of type 2 diabetes may have CVD benefit. As is the case with microvascular complications, it may be that glycemic control plays a greater role before macrovascular disease is well developed and a minimal or no role when it is advanced.

People with type 1 diabetes, in whom insulin resistance does not predominate, tend to have lower rates of coexisting obesity, hypertension, and dyslipidemia than those with type 2 diabetes, and yet are also at high lifetime risk of CVD.14 It is possible that CVD is more strongly glycemia mediated in type 1 diabetes and that intervening on glycemia would ameliorate CVD to a greater extent in type 1 than in type 2 diabetes.

Finally, the inability of ACCORD, ADVANCE, and VADT to demonstrate a significant reduction in CVD with intensive glycemic control could also suggest that current strategies for treating hyperglycemia in patients with more advanced type 2 diabetes may have counterbalancing consequences for CVD (such as hypoglycemia, weight gain, or other metabolic changes). Results of long-term CVD outcome trials using specific antihyperglycemic drugs, intensive lifestyle therapy (such as the Action for Health in Diabetes [Look AHEAD] study), bariatric surgery, or other emerging therapies may shed light on this issue.

What Are the Implications of These Findings for Clinical Care?
The benefits of intensive glycemic control on microvascular and neuropathic complications are well established for both type 1 and type 2 diabetes. The ADVANCE trial has added to that evidence base by demonstrating a significant reduction in the risk of new or worsening albuminuria when median A1c was lowered to 6.3% compared with standard glycemic control achieving an A1c of 7.0%. The lack of significant reduction in CVD events with intensive glycemic control in ACCORD, ADVANCE, and VADT should not lead clinicians to abandon the general target of an A1c <7.0% and thereby discount the benefit of good control on serious and debilitating microvascular complications.

The ADA’s Standards of Medical Care in Diabetes5 and the AHA and ADA’s scientific statement on prevention15 advocate controlling nonglycemic risk factors (through blood pressure control, lipid lowering with statin therapy, aspirin therapy, and lifestyle modifications) as the primary strategies for reducing the burden of CVD in people with diabetes. The lower-than-predicted CVD rates in ACCORD, ADVANCE, and VADT, as well as the recent long-term follow-up of the Steno-2 multiple risk factor intervention,16 provide strong confirmation of the concept that comprehensive care for diabetes involves treatment of all vascular risk factors—not just hyperglycemia.

The evidence for a cardiovascular benefit of intensive glycemic control remains strongest for those with type 1 diabetes. However, subset analyses of ACCORD, ADVANCE, and VADT suggest the hypothesis that patients with shorter duration of type 2 diabetes and without established atherosclerosis might reap cardiovascular benefit from intensive glycemic control. Conversely, it is possible that potential risks of intensive glycemic control may outweigh its benefits in other patients such as those with a very long duration of diabetes, known history of severe hypoglycemia, advanced atherosclerosis, and advanced age/fragility. Certainly, providers should be vigilant in preventing severe hypoglycemia in patients with advanced disease and should not aggressively attempt to achieve near-normal A1c levels in patients in whom such a target cannot be achieved reasonably easily and safely.

The evidence obtained from ACCORD, ADVANCE, and VADT does not suggest the need for major changes in glycemic control targets but, rather, additional clarification of the language that has consistently stressed individualization:

- Microvascular disease: lowering A1c to below or approximately 7% has been shown to reduce microvascular and neuropathic complications of type 1 and type 2 diabetes. Therefore, the A1c goal for nonpregnant adults in general is <7%. ADA, A-level recommendation; ACC/AHA, Class I recommendation (Level of Evidence: A).*
- Macrovascular disease: in type 1 and type 2 diabetes, randomized controlled trials of intensive versus standard glycemic control have not shown a significant reduction in CVD outcomes during the randomized portion of the trials. However, long-term follow-up of the DCCT and UKPDS cohorts suggests that treatment to A1c targets below or near 7% in the years soon after the diagnosis of diabetes is associated with long-term reduction in risk of macrovascular disease. Until more evidence becomes available, the general goal of <7% appears reasonable. ADA, B-level

*See Appendix for description of ACC/AHA Evidence Grading Schema.
recommendation; ACC/AHA, Class IIb recommendation (Level of Evidence: A).10

For some patients, individualized glycemic targets other than the above general goal may be appropriate:

- Subgroup analyses of clinical trials such as the DCCT and UKPDS and the microvascular evidence from the ADVANCE trial suggest a small but incremental benefit in microvascular outcomes with \(A_g \) values closer to normal. Therefore, for selected individual patients, providers might reasonably suggest even lower \(A_g \) goals than the general goal of \(<7\%\) if it can be achieved without significant hypoglycemia or other adverse effects of treatment. Such patients might include those with short duration of diabetes, long life expectancy, and no significant cardiovascular disease. ADA, B-level recommendation; ACC/AHA, Class IIa recommendation (Level of Evidence: C).*

- Conversely, less stringent \(A_g \) goals than the general goal of \(<7\%\) may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced microvascular or macrovascular complications, or extensive comorbid conditions or those with long-standing diabetes in whom the general goal is difficult to attain despite diabetes self-management education, appropriate glucose monitoring, and effective doses of multiple glucose-lowering agents, including insulin. ADA, C-level recommendation; ACC/AHA, Class IIa recommendation (Level of Evidence: C).*

For primary and secondary CVD risk reduction in patients with diabetes, providers should continue to follow the evidence-based recommendations for blood pressure treatment, including lipid lowering with statins, aspirin prophylaxis, smoking cessation, and healthy lifestyle behaviors delineated in the ADA Standards of Medical Care in Diabetes6 and the AHA/ADA guidelines for primary CVD prevention.15

The recommendations in this statement were originally developed by the American Diabetes Association using ADA’s evidence grading schema. The American College of Cardiology Foundation and the American Heart Association applied the ACC/AHA practice guideline evidence-grading schema as defined below to these recommendations for the convenience of their readership. Some but not all of these recommendations—though approved by the ACCF and AHA in this scientific statement—are incorporated into the formal ACC/AHA guidelines to date. Future updates of ACC/AHA guidelines may include these recommendations as deemed appropriate by the relevant ACC/AHA writing committees.

ACC/AHA Classification of Recommendations

Class I: Conditions for which there is evidence for and/or general agreement that a given procedure or treatment is beneficial, useful, and effective.

Class II: Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.

Class IIa: Weight of evidence/opinion is in favor of usefulness/efficacy.

Class IIb: Usefulness/efficacy is less well established by evidence/opinion.

Class III: Conditions for which there is evidence and/or general agreement that a procedure/treatment is not useful/effective and in some cases may be harmful.

ACC/AHA Level of Evidence

- Level of Evidence A: Data derived from multiple randomized clinical trials or meta-analyses.
- Level of Evidence B: Data derived from a single randomized trial or nonrandomized studies.
- Level of Evidence C: Only consensus opinion of experts, case studies, or standard-of-care.

Acknowledgments

The authors have disclosed the following financial dualities of interest. (*Fees of $10,000 per year or more.) Additionally, participation in the ACCORD, ADVANCE, or VADT is acknowledged. Dr Skyler has received research support from Bayhill Therapeutics, Osiris Therapeutics Inc, and Pfizer Pharmaceuticals Inc; is a board member of and holds stock in Amylin Pharmaceuticals* and DexCom Corp*; is on the speakers’ bureau for Novo Nordisk* and sanofi-aventis; is an advisor for and holds stock in AtheroGenics Inc, Ideal Life, MannKind Corp, and Medingo Ltd; and is an advisor for Bayer Diabetes Care, Bristol-Myers Squibb, CPEX Pharmaceuticals, CV Therapeutics, Daiichi Sankyo, Eli Lilly & Co, Halozyme Therapeutics, Novartis, Novo Nordisk*, Nutrition 21*, Paton Medical Devices, Pfizer Pharmaceuticals Inc, sanofi-aventis, Tandem Diabetes Care, Tolerx, Transition Therapeutics, Valeritas LLC, and Veroscience LLC. Dr Bergenstal participates in clinical research or has served on a scientific advisory board for Amylin, Merck, Pfizer, ResMed, Valeritas, Eli Lilly, Novo Nordisk, sanofi-aventis, MannKind, Intuity, Roche, LifeScan, Abbott, Bayer, and Medtronic. Dr Bergenstal receives no personal compensation for these activities; all contracts are through the nonprofit Park Nicollet Institute. Dr Bergenstal holds stock in Merck through a family inheritance and is an officer within the American Diabetes Association.

Dr Bonow is a consultant to Edwards Lifesciences.

The University of North Carolina has contracts for research or consulting by Dr Buse (no funds to Dr Buse) with Amylin Pharmaceuticals, BD Research Laboratories, Bristol-Myers Squibb, Eli Lilly & Co, GlaxoSmithKline, Hoffman LaRoche, Johnson & Johnson Products LLC, LifeScan Inc, Medtronic (MiniMed), Merck & Co, Novartis, Novo Nordisk, Pfizer, and sanofi-aventis. Dr Buse is an ACCORD investigator and vice chairman of the ACCORD Executive Committee.

Dr Deedwania reports no financial dualities.

Dr Gale reports no financial dualities.

Dr Howard is a consultant for Merck and the Egg Nutrition Council; has received research support by donation of drugs from Pfizer, Merck, and Schering-Plough; is a speaker for Schering-Plough; and is a member of the Data Safety Monitoring Committee for VADT.

Dr Kirkman reports no financial dualities and was a VADT investigator until March 2007.

Dr Kosiborod has served on the advisory board of sanofi-aventis.

Dr Reaven has received research funding from Takeda and Amylin, has received speaker fees from Merck and Takeda, and is a VADT investigator and principal investigator of an ancillary study to VADT.

Dr Sherwin is the data safety monitoring board chair for MannKind* and Novartis* and has served on advisory boards for

*See Appendix for description of ACC/AHA Evidence Grading Schema.
References

Jay S. Skyler, Richard Bergenstal, Robert O. Bonow, John Buse, Prakash Deedwania, Edwin A.M. Gale, Barbara V. Howard, M. Sue Kirkman, Mikhail Kosiborod, Peter Reaven and Robert S. Sherwin

Circulation. 2009;119:351-357; originally published online December 17, 2008;
doi: 10.1161/CIRCULATIONAHA.108.191305
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/119/2/351

An erratum has been published regarding this article. Please see the attached page for:
/content/119/25/e605.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/

In the Acknowledgments on page 356, Dr Richard Bergenstal’s disclosure read, “Dr Bergenstal reports no financial dualities and is an ACCORD investigator.” It should have read, “Dr Bergenstal participates in clinical research or has served on a scientific advisory board for Amylin, Merck, Pfizer, ResMed, Valeritas, Eli Lilly, Novo Nordisk, sanofi-aventis, MannKind, Intuity, Roche, LifeScan, Abbott, Bayer, and Medtronic. Dr Bergenstal receives no personal compensation for these activities; all contracts are through the nonprofit Park Nicollet Institute. Dr Bergenstal holds stock in Merck through a family inheritance and is an officer within the American Diabetes Association.”

This correction has been made to the current online version of the article, which is available at http://circ.ahajournals.org/cgi/content/full/119/2/351.

DOI: 10.1161/CIRCULATIONAHA.109.192588