A 73-year-old woman who had undergone hysterectomy and radiotherapy 17 years previously for uterine leiomyosarcoma presented to the emergency department with new-onset exertional shortness of breath of 4-days duration. On admission, she was dizzy and tachypneic at rest. Chest auscultation revealed an apical diastolic murmur, gallop, and bilateral rales, and bilateral pleural effusion and interstitial edema were noticed in the chest x-ray film. In order to rule out pulmonary embolism, a thoracic angio–computed tomography (CT) scan was performed showing enlarged right paratracheal lymph nodes and a left atrial mass extending to the left ventricle (Figure 1). Transthoracic echocardiography confirmed the presence of a large mass in the left atrium prolapsing across the mitral valve into the left ventricle during early diastole and returning to the left atrium during early systole, thus reminiscent of chewing gum. The mass caused moderate-to-severe obstruction to the left ventricular inflow tract: a mean transvalvular diastolic gradient of 10 mm Hg and maximum transvalvular diastolic gradient of 15 mm Hg were documented (Figure 2). Because the absence of atrial fibrillation or other procoagulant clinical conditions raised the probability of atrial thrombi, and also because of the homogeneous echostructure, regular shape, and smooth borders of the mass, atrial myxoma was the first presumptive diagnosis, and the patient underwent urgent cardiac surgery. Before the operation, a coronary angiography was performed showing a single significant stenosis in the left anterior descending artery. During surgery, intraoperative transesophageal echocardiogram monitoring was undertaken, which suggested that the mass might emerge to the left atrium from the right inferior pulmonary vein (Figure 3 and online-only Data Supplement Movies I through III). This fact was confirmed by visual inspection, and the mass was resected using a left atrium–based approach. Its maximum diameter was 8.5 cm (Figure 4).

Pathological analyses supplied the final diagnosis of actin-vimentin–positive fusocellular sarcoma (leiomyosarcoma). Before discharge, a new thoracic CT scan was performed to complete the study (Figure 5), which demonstrated a necrotic area in the right inferior lobe, occlusion of the right inferior bronchus, and abdominal and thoracic metastatic dissemination. The patient was referred for oncological therapy. Given that primary cardiac leiomyosarcoma was exceptionally well...
described, venous metastatic dissemination emerging from the remote uterine malignant leiomyosarcoma was the most probable hypothesis to explain this rare finding.

At the time of primary diagnosis, leiomyosarcoma often shows advanced local invasion or even metastasis. Almost all malignant tumors are sarcomas and occur preferentially in the right side of the heart, with the exception of leiomyosarcoma and cardiac myxoma, which occur in the left atrium. The preferential left atrial location and the frequently myxoid appearance of leiomyosarcomas makes them difficult to differentiate preoperatively from atrial myxomas. Treatment of cardiac leiomyosarcomas consists of radical surgical resection followed by adjuvant radiation, chemotherapy, or both. Leiomyosarcomas originating from vascular and cardiac tissues may have a poor prognosis, with a mean survival after surgery and adjuvant therapies of 6.8 months.

Disclosures

None.

References

Figure 3. Intraoperative transesophageal echocardiogram suggesting that the mass might emerge to the left atrium from the right inferior pulmonary vein.

Figure 4. Macroscopic image of the mass with a maximum diameter of 8.5 cm.

Figure 5. Postoperative thoracic CT scan demonstrating a necrotic area in the right inferior lobe, occlusion of the right inferior bronchus, and abdominal and thoracic metastatic dissemination.
Chewing Gum Inside the Heart
Diego Pérez-Díez, Francisco Estévez-Cid, Eduardo Barge-Caballero and Javier Pérez-López

Circulation. 2009;119:e525-e526
doi: 10.1161/CIRCULATIONAHA.108.815696
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/119/18/e525

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2009/05/04/119.18.e525.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/