Mineralocorticoid Modulation of Cardiac Ryanodine Receptor Activity Is Associated With Downregulation of FK506-Binding Proteins

Ana María Gómez, PhD; Angélica Rueda, PhD; Yannis Sainte-Marie, PhD; Laetitia Pereira, PhD; Spyros Zissimopoulos, PhD; Xinsheng Zhu, PhD; Roxane Schaub, MD; Emeline Perrier, PhD; Romain Perrier, PhD; Céline Latouche, MS; Sylvain Richard, PhD; Marie-Christine Picot, MD, PhD; Frederic Jaisser, MD, PhD; F. Anthony Lai, PhD; Héctor H. Valdivia, MD, PhD; Jean-Pierre Benitah, PhD

Background—The mineralocorticoid pathway is involved in cardiac arrhythmias associated with heart failure through mechanisms that are incompletely understood. Defective regulation of the cardiac ryanodine receptor (RyR) is an important cause of the initiation of arrhythmias. Here, we examined whether the aldosterone pathway might modulate RyR function.

Methods and Results—Using the whole-cell patch clamp method, we observed an increase in the occurrence of delayed afterdepolarizations during action potential recordings in isolated adult rat ventricular myocytes exposed for 48 hours to aldosterone 100 nmol/L, in freshly isolated myocytes from transgenic mice with human mineralocorticoid receptor expression in the heart, and in wild-type littermates treated with aldosterone. Sarcoplasmic reticulum Ca\(^{2+}\) load and RyR expression were not altered; however, RyR activity, visualized in situ by confocal microscopy, was increased in all cells, as evidenced by an increased occurrence and redistribution to long-lasting and broader populations of spontaneous Ca\(^{2+}\) sparks. These changes were associated with downregulation of FK506-binding proteins (FKBP12 and 12.6), regulatory proteins of the RyR macromolecular complex.

Conclusions—We suggest that in addition to modulation of Ca\(^{2+}\) influx, overstimulation of the cardiac mineralocorticoid pathway in the heart might be a major upstream factor for aberrant Ca\(^{2+}\) release during diastole, which contributes to cardiac arrhythmia in heart failure. (Circulation. 2009;119:2179-2187.)

Key Words: aldosterone ■ calcium ■ ryanodine receptor ■ hormones ■ ion channels ■ arrhythmia

During the past decade, research has focused on the actions of aldosterone in target organs beyond the kidney, expanding the role of the aldosterone pathway in cardiovascular pathogenesis. Indeed, mineralocorticoid receptors (MRs), which mainly underlie aldosterone action, have been detected in a range of nonrenal tissues, including the brain, blood vessels, and heart, which suggests a broader pattern of biological activity for aldosterone than previously anticipated. The pivotal role of aldosterone, causing sodium retention with expansion of the extracellular volume that results in deterioration of hemodynamic responsiveness and a fall in cardiac output, has long been recognized in heart failure (HF).

Most fatal arrhythmias in experimental HF are initiated by nonreentrant mechanisms that arise from abnormal ventricular automaticity or triggered activity. The latter consists of either early afterdepolarizations (EADs) that occur in the plateau phase of the action potential (AP) or delayed afterdepolarizations (DADs) that occur at repolarized membrane potentials. EADs typically occur in the setting of prolonged repolarization due to especially an increased risk of arrhythmic death. Interestingly, major clinical trials involving MR antagonists have shown significant benefits on risk of cardiovascular events, in particular sudden death in HF. A pertinent question, therefore, is how activation of cardiac MR participates in life-threatening arrhythmias.

Clinical Perspective p 2187

Most fatal arrhythmias in experimental HF are initiated by nonreentrant mechanisms that arise from abnormal ventricular automaticity or triggered activity. The latter consists of either early afterdepolarizations (EADs) that occur in the plateau phase of the action potential (AP) or delayed afterdepolarizations (DADs) that occur at repolarized membrane potentials. EADs typically occur in the setting of prolonged repolarization due to

Received July 16, 2007; accepted March 3, 2009.

From INSERM, U637 (A.M.G., A.R., L.P., E.P., R.P., S.R., J.-P.B.), Université Montpellier, France; INSERM, U772 (Y.S.-M., C.L., F.J.), Collège de France, Paris, France; Wales Heart Research Institute (S.Z., F.A.L.), Cardiff University School of Medicine, Cardiff, United Kingdom; Department of Physiology (X.Z., H.H.V.), University of Wisconsin Medical School, Madison, Wis; and Département de l’Information Médicale (R.S., M.-C.P.), Hôpital Lapeyronie, CHU Montpellier, France.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.108.805804/DC1.

Correspondence to Jean-Pierre Benitah, Laboratoire de physiopathologie cardiovasculaire, INSERM U637, CHU Arnaud de Villeneuve, 34295 Montpellier, France. E-mail jean-pierre.benitah@inserm.fr

© 2009 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.108.805804
alterations in ionic currents and to reactivation of the Ca\(^{2+}\) current (\(I_{\text{Ca}}\)). DADs are caused by membrane depolarization initiated by spontaneous Ca\(^{2+}\) release from the sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR). We have accumulated evidence, both ex vivo and in vivo, that modulation of Ca\(^{2+}\) influx is a central factor in the cardiac action of the aldosterone pathway\(^{10-14}\) and might be involved in EAD-related fatal ventricular tachyarrhythmia.\(^{14}\) Moreover, enhanced diastolic leak of Ca\(^{2+}\) via RyRs generates DADs and is a fundamental mechanism underlying several genetic or acquired arrhythmias.\(^{15,16}\) Therefore, we tested whether activation of the aldosterone pathway modulates diastolic RyR activity in heart.

Methods

All experiments were performed according to European Union Council Directives (86/609/EEC) for the care of laboratory animals. A detailed Methods section can be found in the online-only Data Supplement.

Cell Isolation and Incubation

Isolated ventricular myocytes from adult male Wistar rats (250 to 350 g; Elevage Janvier, Le Genest Saint Isle, France) were incubated for 48 hours, with or without D-aldosterone 100 nmol/L (Sigma, Saint Quentin Fallavier, France). In some experiments, RU28318 10 \(\mu\)mol/L was added to aldosterone.\(^{10,11}\)

Human MR Transgenic Mice and In Vivo Aldosterone Exposure

Cardiac-specific expression of human MR (hMR) was obtained by crossing a tetO-hMR mouse strain with an \(\alpha\)-MHC-tTA transactivator mouse strain.\(^{14}\) Littermate wild-type, gender-matched mice (WT) were purchased from Charles River Laboratories (Kingston, NY) and housed under standard conditions. To induce hMR expression, WT mice were crossed with a tetO-hMR mouse strain with an \(\alpha\)-MHC-tTA transactivator mouse strain.\(^{14}\) Mice were treated with 6\(\mu\)g of D-aldosterone per gram of body weight via subcutaneous injection. The whole-cell patch-clamp method was used in the current-clamp configuration to record APs with solutions and protocol as described previously.\(^{11}\)

Spontaneous Local SR Ca\(^{2+}\) Release: Ca\(^{2+}\) Sparks

Fluo-3-AM–loaded cells were imaged in Tyrode solution (in mmol/L: NaCl 130, NaH\(_2\)PO\(_4\) 0.4, NaHCO\(_3\) 5.8, CaCl\(_2\) 1, MgCl\(_2\) 0.5, KCl 5.4, glucose 22, HEPES 25, insulin 0.01, pH 7.4) with a confocal microscope in line-scan mode.\(^{11}\)

Cell Lysate and SR-Enriched Membrane Fraction (SR Fraction)

Cell lysates were prepared with homogenization buffer (in mmol/L: sucrose 300, NaF 20, HEPES 20, aprotonin 5.2 \(\times\) 10\(^{-7}\), benzamidine 0.5, leupeptin, 0.012, PMSF 0.1, pH 7.2) with a Potter-Elvehjem homogenizer and spun at 2000 \(g\) for 10 minutes. SR fractions were isolated by ultracentrifugation at 40,000 \(g\) for 30 minutes at 4°C.\(^{17}\) Protein concentration of the supernatant fraction was assessed.\(^{17}\)

Single-Channel Recordings

Analysis of RyR single-channel activity was done by fusing SR vesicles into planar lipid bilayers with Cs\(^+\) as a charge carrier.\(^{17}\) Only bilayers that contained a single channel were used. Channel activity was always tested for sensitivity to EGTA, which was added in the cis chamber at the end of each experiment.

Reverse-Transcription Polymerase Chain Reaction Analysis

Total RNA was extracted with Trizol (Invitrogen, Cergy Pontoise, France). First-strand cDNA was synthesized after DNase treatment (DNasefree, Ambion, Courtaboeuf, France) with 1 \(\mu\)g of total RNA, random hexamers (Amer sham, Biosciences Europe GMBH, Orsay, France), and Superscript II reverse transcriptase (Invitrogen). Transcript levels were analyzed in triplicate by real-time polymerase chain reaction with an iCycler iQ apparatus (Bio-Rad, Marnes la Coquette, France) with a qPCR Core Kit for SYBR Green I (Eurogentec, Brussels, Belgium) that contained 500 nmol/L of specific primers (Data Supplement, Table I) and 3 \(\mu\)L of diluted template cDNA. Relative expression of FK506-binding proteins (FKBPs) and RyR was normalized by the geometric average of relative quantities for reference genes. Serial dilutions of pooled cDNA were used in each experiment to assess the efficiency of the polymerase chain reaction.

Immunoblots

Immunoblots were prepared from cell lysates with anti-FKBPI2/12.6 (1:1000, Santa-Cruz Biotechnology Inc, Santa Cruz, Calif), anti-RyR (1:3000, Affinity BioReagents, Golden, Colo), and anti-actin (1:20,000, Sigma) antibodies. FKBPI2/12.6–RyR interaction was assessed on SR fractions with anti-FKBPI2/12.6 (1:200) and anti-RyR (1:1000) antibodies from Affinity BioReagents. Immunoblots of RyR phosphorylation were performed with anti–RyR-PS2809 (1:5000) antibody from Badrilla (Leeds, West Yorkshire, United Kingdom) and anti–RyR-PS2815 (1:5000) antibody generously provided by Dr A.R. Marks (Columbia University, New York, NY).

Statistical Analysis

Preliminary descriptive analyses include frequencies for categorical variables and mean±SD for continuous variables. A conditional hierarchical linear model was used to test group differences (SAS/UNIX statistical software, SAS Institute, Cary, NC). Differences between groups were assessed with an analysis of variance (ANOVA) (SAS/UNIX statistical software, SAS Institute, Cary, NC). In some cases, multiple comparisons were performed with a Tukey’s honestly significant difference test. Data are presented as mean±SEM and were compared with Student’s \(t\) test (for 2 groups) or ANOVA (for >2 groups, followed by a post hoc pairwise Tukey’s honestly significant difference test).

Results

Aldosterone Pathway Increases Occurrence of DADs

During AP recordings, at 0.1-Hz cycle length in ventricular myocytes isolated from transgenic mice expressing hMR in the heart (hMR mice; Figure 1A), we observed oscillations in membrane potential after completion of the driven AP (Figure 1A, middle). Eventually, the DAD was large enough to reach the threshold to trigger spontaneous AP (Figure 1A, right). The occurrence of DADs was greatly enhanced by activation of the aldosterone pathway (Figure 1B). Ex vivo, after 48 hours’ exposure of isolated rat ventricular myocytes to aldosterone 100 nmol/L, the occurrence of DADs increased compared with...
control myocytes kept 48 hours in the absence of aldosterone. Likewise, in vivo, increases of DAD occurrence appeared after 3-week minipump infusion of aldosterone in WT mice or in hMR mice compared with untreated WT littermates.

Modulation of Ca\(^{2+}\) Sparks by Aldosterone Pathway

DADs are commonly initiated by nonelectrically driven, spontaneous Ca\(^{2+}\) release from the SR via the RyRs.\(^8\) We thus examined the properties of RyRs in situ by visualizing spontaneous Ca\(^{2+}\) sparks, which reflect brief and local Ca\(^{2+}\) release events that occur when RyRs open.\(^8,9\) Figure 2A shows line-scan images of cells isolated from WT, aldosterone-treated, and hMR mice. Either elevated circulating aldosterone or cardiac hMR expression resulted in an \(\sim1.6\)-fold increase of Ca\(^{2+}\) spark frequency (supplemental Table II; Figure 2B). No differences in mean values for Ca\(^{2+}\) spark amplitude (Figure 2C) or rise time (Figure 2D) were seen among the 3 groups. As seen in Figure 2A, in addition to classic Ca\(^{2+}\) sparks characterized by a brief, localized increase in the fluorescence signal (a half-time of decay of \(\sim30\) ms and a diameter of \(\sim2\) \(\mu\)m),\(^8,9\) we also observed the appearance of widened (\(>4\) \(\mu\)m) and long-lasting Ca\(^{2+}\) sparks.
release events (>80 ms). A mixed-effects model revealed increases of both averaged Ca\(^{2+}\) spark full widths and full durations at half-maximal amplitude in aldosterone-treated and hMR mice (supplemental Table II), which might reflect differences in population proportions. The distributions of full width and full duration at half maximum were empirically fitted to bimodal gaussian functions (Figure 2E and 2F). The distributions of full width at half maximum showed a prominent mode near 2.8 \(\mu\)m and a second minor mode near 4.3 \(\mu\)m, regardless of the conditions; however, the proportion of events that showed a larger width was greater in aldosterone-treated and hMR mice than in WT mice (Table). Moreover, events that lasted >50 ms were more frequent in aldosterone-treated and hMR mice than in WT mice. Distributions of log(full duration at half maximum) were fitted by 2 gaussian distributions with 2 distinct peaks at \(\approx 32\) and 87 ms, but the frequencies of long-lasting signals were greater in aldosterone-treated and hMR mice than in WT mice (Table). No correlation between Ca\(^{2+}\) spark spatio-temporal characteristics was observed. This is consistent with the occurrence of 3 different populations of Ca\(^{2+}\) sparks, the redistribution of which to long-lasting and more widespread populations was increased by activation of the cardiac aldosterone pathway.

Although the effects of aldosterone in vivo are presumably due to its direct cardiomyocyte effect, aldosterone might cause release of second messengers from noncardiac cells that can affect Ca\(^{2+}\) sparks. To exclude this possibility, we examined the properties of spontaneous Ca\(^{2+}\) sparks of isolated rat ventricular

![Figure 3](http://circ.ahajournals.org/)

Figure 3. Ex vivo aldosterone exposure promotes the occurrence of widespread and long-lasting Ca\(^{2+}\) sparks. A through C, Representative spark images and spatiotemporal profiles from a 48-hour aldosterone-treated cell showing that spontaneous Ca\(^{2+}\) sparks can be short (A), large (B), or long (C). The distance along the cell is represented vertically, and the time is represented horizontally. D and E, Probability density function (PDF) of full width (FWHM) and full duration (FDHM) at half-maximal amplitude after 48 hours’ incubation under conditions of control (cont; red open bars) and 100-nmol/L aldosterone without (Aldo; blue bars) and with (Aldo + RU; blue open bars) 10 \(\mu\)mol/L RU28318. Histograms were fitted by the sum of 2 gaussian distributions. F through H, Bar graphs of mean\(\pm\)SEM values for Ca\(^{2+}\) spark frequency (F), amplitude (F/F\(_0\); G), and rise time (H). In F, n is the cell number, whereas in G and H, it is the number of Ca\(^{2+}\) sparks. **\(P<0.005\).
myocytes kept 48 hours with or without aldosterone 100 nmol/L. Three different populations of Ca$_{2+}$/H$_{11001}$ sparks were observed (Figure 3): The normal Ca$_{2+}$/H$_{11001}$ sparks were narrow and brief (Figure 3A); the second population was substantially wider in space but only slightly longer in duration (Figure 3B); and the third population had the same width as the normal population but was much longer in duration (Figure 3C). Analysis of the distributions of full width at half maximum (Figure 3D) and full duration at half maximum (Figure 3E) showed that ex vivo aldosterone exposure increased the occurrence of both wider and longer populations (Table; supplemental Table II). In addition, we observed a 1.9-fold increase in Ca$_{2+}$/H$_{11001}$ spark frequency (supplemental Table II; Figure 3F), whereas mean Ca$_{2+}$/H$_{11001}$ spark amplitude (Figure 3G) and rise time (Figure 3H) were not affected. Coincubation with a specific MR antagonist, RU28318, prevented aldosterone-induced changes in Ca$_{2+}$/H$_{11001}$ spark properties (Figure 3).

Aldosterone Effects on Ca$_{2+}$/H$_{11001}$ Sparks Might Arise From Modulation of RyR Intrinsic Properties

The open probability of RyRs is influenced by the amount of Ca$_{2+}$/ stored in the SR. A potential increase of SR Ca$_{2+}$/ load by aldosterone could therefore underlie the observed effects on Ca$_{2+}$/ sparks. SR Ca$_{2+}$/ load was estimated by rapid caffeine application (10 mmol/L) in the same intact cells used for Ca$_{2+}$/ sparks. No difference (P>0.05) was observed in hMR mice (peak ratio of fluorescence intensity [F/F$_{0}$] 4.0±0.1, n=56) or aldosterone-treated mice (3.8±0.2, n=43) compared with WT mice (4.1±0.1, n=29). In addition, no difference in caffeine-evoked Ca$_{2+}$/ transients was noted after ex vivo aldosterone exposure (3.7±0.2 and 4.0±0.2 in control [n=13] and aldosterone-treated [n=13] myocytes, respectively; P>0.05). These results are consistent with the absence of alteration in Ca$_{2+}$/ spark amplitude and suggest that aldosterone does not modulate RyR activity (and hence, Ca$_{2+}$/ sparks) by altering SR content.

Ca$_{2+}$/ sparks result from the opening of clusters of RyRs; thus, increased Ca$_{2+}$/ spark frequency might result from increased RyR expression. Immunoblot analysis of cell lysates showed similar RyR amounts; after normalization against control, ratios of RyR to actin levels were 1±0.3 (n=8), 0.95±0.3 (n=4), and 0.82±0.3 (n=4) in WT, WT plus aldosterone, and hMR mice, respectively (P>0.05) and 1±0.2 (n=8) and 0.94±0.2 (n=4) in rat ventricular myocytes kept 48 hours without and with aldosterone.

Figure 4. Single RyR channels reconstituted in lipid bilayers display 3 different kinetic behaviors: (A) Short, (B) burst, and (C) long openings. Each panel shows representative examples of single-channel behaviors of RyR reconstituted from the same SR-enriched membrane fraction of rat ventricular myocytes incubated 48 hours in the presence of aldosterone. Top, 2-minute and 500-ms section of the recording on an expanded time scale of single-channel traces recorded at 25 mV with channel openings (o) in the upward direction; Bottom, current-voltage relationship of the corresponding incorporated RyR. D, Bar graph plots the percentage of the occurrence of modal behaviors of reconstituted RyR channels from SR fractions of cells kept 48 hours with (Aldo, shaded bars, n=15) and without aldosterone (cont, open bars, n=11). **P<0.005.
Figure 5. Downregulation of FKBP12 and FKBP12.6 expression after activation of cardiac aldosterone pathway. A–C, Representative immunoblots and quantification of (A) FKBP12/12.6 protein levels in cardiac cell lysates (normalized to the corresponding actin level and to respective controls) and (B) FKBP12/12.6 and RyR content in SR-enriched membrane fractions (cumulative data presented are derived from 4 different heart preparations, each immunoblotted 4 times, and are illustrated after normalization against the WT, non-treated sample). C, Pooled data represent ratios of RyR-P2815 and RyR-P2809 to RyR from SR-enriched membrane fractions normalized (Continued)
sterone, respectively \((P>0.05)\). RyR expression of isolated rat cardiomyocytes kept 48 hours with or without aldosterone, examined by \(^{3}H\)ryanodine binding to SR fractions, indicated unchanged high-affinity binding site for ryanodine \((K_{i} values in \text{nmol/L}: 1.5\pm0.2 \text{ and } 1.8\pm0.4 \text{ after 48 hours}^{*} \text{ incubation with} [n=6]) \text{ and without aldosterone} [n=6], \text{ respectively}; \text{ } P>0.05\) and similar expression levels of RyR after aldosterone exposure \((maximal receptor density 0.24\pm0.04 \text{ and } 0.29\pm0.03 \text{ pmol/mg protein, respectively}; \text{ } P>0.05)\).

These results show that activation of the aldosterone pathway in cardiomyocytes altered Ca\(^{2+}\) spark properties without modifying SR Ca\(^{2+}\) content or RyR expression. Therefore, aldosterone modulation of Ca\(^{2+}\) sparks might arise from changes in the intrinsic activity of the RyR complex. As an index, we fused SR fractions from control and aldosterone-treated rat cardiomyocytes into planar lipid bilayers to record single-channel activity of RyR. In addition to classic bimodal gating,\(^{20}\) characterized by sequences of flickering openings with low \((Figure 4A)\) and high \((Figure 4B)\) open probability, clearly distinct, long, relatively stable openings with similar unitary current amplitude were observed \((Figure 4C)\). Measurements from holding potentials from \(-35 \text{ to } 35 \text{ mV} \text{ showed that current}-\text{voltage relationships had similar conductances of } 639, 632, \text{ and } 640 \text{ pS (Figures 4A, 4B, and 4C, respectively). These results suggest that all recorded channel activity corresponded to RyRs; however, although the burst and long-lasting modes were observed in channels with and without aldosterone treatment, these modes occurred more frequently after aldosterone exposure (Figure 4D).}

FKBP12/12.6 Downregulation by Mineralocorticoid Pathway

Taken together, the present results indicate that aldosterone through MR increases the likelihood that RyRs will open abnormally during diastole, which might reflect changes in intrinsic properties of the RyR. Activity of RyRs is tightly regulated by several accessory proteins that form a macromolecular signaling complex with RyR.\(^{15,16}\) Among these ancillary proteins, FKB12 and FKB12.6 have been involved in the incidence of subsets of cardiac Ca\(^{2+}\) sparks with longer duration and wider spatial spread, along with increased frequency.\(^{21–23}\) Therefore, we assessed the expression of FKB12/12.6 protein levels. Compared with the respective controls, immunoblot analysis of cell lysates showed decreases in the amount of FKB12/12.6 relative to actin levels after in vivo or ex vivo aldosterone exposure and in hMR mice \((Figure 5A)\). The RyR-FKB12/12.6 association was assessed indirectly by measurement of the ratio of FKB12/12.6 to RyR detected in the SR fractions.\(^{24–26}\) Immunoblot analysis indicated that the relative amount of FKB12/12.6 to RyR was decreased in the hearts of hMR mice or WT mice treated with aldosterone compared with control WT \((Figure 5B)\). Because RyR phosphorylation could influence the FKB12/12.6-RyR association,\(^{15,16}\) we examined RyR phosphorylation status after activation of the mineralocorticoid pathway. RyR contains multiple phosphorylation sites, including RyR-Ser2815 \((phosphorylated \text{ by CaMKII})^{27}\) and RyR-Ser2809 \((phosphorylated \text{ by both CaMKII and PAK).}^{28}\)

Using 2 different phosphospecific antibodies \((RyR-PS2815 \text{ and RyR-PS2809}) \text{ on SR fractions, we observed no difference in the ratio of phosphorylated RyR to total RyR among groups (Figure 5C). To distinguish FKB12 versus FKB12.6 expression, real-time quantitative polymerase chain reaction was used to assess mRNA levels with specific primers. At the mRNA level, decreased expression of both FKB12 and FKB12.6 was observed in the 3 models studied compared with respective controls (Figure 5D), whereas mRNA levels of RyR were not altered (data not shown).}

Discussion

Long-term aldosterone exposure ex vivo or in vivo, or cardiac hMR expression in transgenic mice, increases the occurrence of DADs, in line with abnormal diastolic openings of RyR, which are associated with downregulation of FKB12 and FKB12.6. Although the link might be circumstantial, several lines of evidence suggest that overstimulation of the cardiac mineralocorticoid pathway may be a major upstream factor for aberrant Ca\(^{2+}\) release during diastole and may contribute to cardiac arrhythmia in HF.

Numerous experimental and clinical studies indicate that the aldosterone pathway participates in cardiac alterations associated with hypertension, HF, diabetes mellitus, and other pathologies.\(^{1,3–6,12,14}\) Notably, inappropriate activation of cardiac MR is a likely participant in the development of poor outcomes for patients with HF, especially those associated with cardiac arrhythmia.\(^{5,6}\) Interestingly, hMR mice showed high mortality and an increased occurrence of arrhythmia.\(^{14}\) One of the possible cellular mechanisms for those arrhythmias is triggered activity caused by EADs and DADs, both of which are commonly associated with intracellular Ca\(^{2+}\) mishandling. We previously reported that along with AP lengthening, EADs occur in hMR mice.\(^{14}\) The incidence of EADs was 1%, 11%, and 14% in ventricular myocytes isolated from WT, aldosterone-treated, and hMR littermate mice, respectively. In addition, we observed that 10% of rat ventricular myocytes incubated for 48 hours with aldosterone displayed EADs, whereas none were observed in control. Here, we found that the incidence of DAD was approximately 2-fold higher, thus constituting a substantial mechanism for aldosterone pathway–induced arrhythmias.

Although many Ca\(^{2+}\)-handling proteins are involved in DAD-related arrhythmias, abnormal opening of the RyR during diastole is an essential component.\(^{7,8}\) We show here that the aldosterone pathway increased the occurrence and changed the spatiotemporal properties of spontaneous Ca\(^{2+}\) sparks. Similar alterations were found either ex vivo by incubation of adult cardiac myocytes with aldosterone or in

![Figure 5](http://circ.ahajournals.org/)

Figure 5 (Continued). to respective controls from WT (open bars), aldosterone-treated WT (WT+Aldo, hatched bar), and hMR (solid bars) mice and in rat ventricular myocytes incubated 48 hours with (+Aldo, solid bar) or without (cont, open bar) aldosterone 100 nmol/L. D, Real-time reverse-transcription polymerase chain reaction analysis of cardiac tissue content of FKB12 and FKB12.6. β2-Microglobulin, GAPDH, HPRT, and UBC were used as reference genes, and relative mRNA levels were normalized to the geometric average of relative quantities for reference genes. \(^{*}P<0.05.\)
vivo in mouse hearts, either after chronic delivery of aldosterone or after hMR expression. These consistent findings suggest that direct activation of cardiac MR by aldosterone modifies the Ca\(^{2+}\) spark phenotype, independent of other compensatory changes in vivo. Indeed, the ex vivo effects of aldosterone are prevented by a specific MR antagonist. In addition, hMR mice have increased aldosterone receptor expression, presumably due to physiological aldosterone levels, as assessed by prevention of phenotype effects with MR antagonist. Moreover, MR antagonists also prevent other aldosterone-induced cardiac effects.10,11,13

Although we cannot exclude that the effects might be secondary to other modulations in myocyte Ca\(^{2+}\) handling, several lines of evidence suggest that activation of MR by aldosterone directly affects RyR activity. The increase in Ca\(^{2+}\) spark frequency is not due to an increase in SR Ca\(^{2+}\) load but rather might reflect a modulation of the intrinsic properties of the RyR complex. In addition to the increase in Ca\(^{2+}\) spark frequency, we observed a redistribution of Ca\(^{2+}\) sparks to long-lasting and broader populations. These “abnormal” Ca\(^{2+}\) sparks were also seen in control conditions but at a much lower frequency. Others have also found Ca\(^{2+}\) sparks that are longer or wider than the classic Ca\(^{2+}\) sparks in control conditions.18,21,29–31 The incidence of wide (>2 μm) and long (60 to 80 ms) Ca\(^{2+}\) sparks is increased in left ventricular hypertrophy in the dog without alteration in Ca\(^{2+}\) spark amplitude.32 Here, aldosterone exposure or cardiac hMR expression increased the proportions of long and wide Ca\(^{2+}\) sparks from a range of 4% to 6% to a range of 9% to 19% and from a range of 4% to 6% to a range of 16% to 30%, respectively, which constitutes a substantial effect. This indicates that aldosterone does not induce a new kind of Ca\(^{2+}\) spark but modifies the activity of functional release units.

Along with this alteration, we observed a significant downregulation of FKB12 and FKB12.6 expression without variation in the density of RyRs. Even if other alterations contributed to the observed modifications of Ca\(^{2+}\) spark characteristics, no other RyR-associated proteins have been shown to induce similar modulations to FKBPs. FKB12/12.6 binding to RyRs modulates the Ca\(^{2+}\)-flux properties of the channel complex; in particular, it regulates RyR open probability and stability at rest20,33,34 (but see direct effects of aldosterone). The increase in Ca\(^{2+}\) handling, several lines of evidence suggest that activation of MR by aldosterone directly affects RyR activity. The increase in Ca\(^{2+}\) spark frequency is not due to an increase in SR Ca\(^{2+}\) load but rather might reflect a modulation of the intrinsic properties of the RyR complex. In addition to the increase in Ca\(^{2+}\) spark frequency, we observed a redistribution of Ca\(^{2+}\) sparks to long-lasting and broader populations. These “abnormal” Ca\(^{2+}\) sparks were also seen in control conditions but at a much lower frequency. Others have also found Ca\(^{2+}\) sparks that are longer or wider than the classic Ca\(^{2+}\) sparks in control conditions.18,21,29–31 The incidence of wide (>2 μm) and long (60 to 80 ms) Ca\(^{2+}\) sparks is increased in left ventricular hypertrophy in the dog without alteration in Ca\(^{2+}\) spark amplitude.32 Here, aldosterone exposure or cardiac hMR expression increased the proportions of long and wide Ca\(^{2+}\) sparks from a range of 4% to 6% to a range of 9% to 19% and from a range of 4% to 6% to a range of 16% to 30%, respectively, which constitutes a substantial effect. This indicates that aldosterone does not induce a new kind of Ca\(^{2+}\) spark but modifies the activity of functional release units.

Along with this alteration, we observed a significant downregulation of FKB12 and FKB12.6 expression without variation in the density of RyRs. Even if other alterations contributed to the observed modifications of Ca\(^{2+}\) spark characteristics, no other RyR-associated proteins have been shown to induce similar modulations to FKBPs. FKB12/12.6 binding to RyRs modulates the Ca\(^{2+}\)-flux properties of the channel complex; in particular, it regulates RyR open probability and stability at rest20,33,34 (but see also Xiao et al15). FKB12.6 removal by pharmacological approaches22,36,37 or in transgenic animal models,23 and conversely, adeno- viral short-term FKB12.6 overexpression,21,38 modulated Ca\(^{2+}\) spark frequency and the occurrence of longer and wider Ca\(^{2+}\) sparks in a manner similar to that observed here. We showed that activation of the cardiac aldosterone pathway produced a decreased expression of FKBPs. In addition, we assessed the RyR-FKB12.6 association in hMR transgenic and WT mice treated with aldosterone. The present results suggest that in mouse hearts, activation of the aldosterone pathway results in substantially reduced RyR-FKB12.6 interaction, which could be the cause of the observed RyR-mediated Ca\(^{2+}\) leak. These effects are not associated with alteration of RyR phosphorylation status but might reflect a genomic regulation of FKB12/12.6 by the cardiac aldosterone pathway, as evidenced by the decrease in mRNA levels of FKB12 and FKB12.6. Partial loss of FKB12.6 from RyR in HF has been shown to cause diastolic Ca\(^{2+}\) leak, which may result in a greater tendency for DAD to occur and consequent triggered arrhythmias.15,16,23,39–45 In addition, myocardial FKB12.6 overexpression prevents triggered arrhythmias in normal hearts, probably by reducing diastolic SR Ca\(^{2+}\) leakage.46 Beyond the controversial hypothesis that excess RyR activity due to hyperphosphorylation reduces RyR affinity for FKBPs, most of the studies showed a reduction of FKBP protein level in HF.23,39–45 Thus, we suggest that activation of the aldosterone pathway might be an essential step in the cascade of molecular events leading to FKBP deficiency that causes RyR Ca\(^{2+}\) leakage and triggers malignant cardiac arrhythmias in HF. Taken together, the present findings may explain in part why the use of MR antagonists in addition to optimal medical therapy is associated with improved survival and fewer sudden cardiac deaths in patients.

Sources of Funding

This work was supported by Agence Nationale de la Recherche (project No. A05071FS/AVP05080/PSA), Institut National de la Santé et de la Recherche Médicale (INSERM), the British Heart Foundation (PG05077), and the European Union (FP6: Life Science Genomics and Biotechnology for Health, #CT 2005 No. 018802, CONTICA).

Disclosures

None.

References

Mineralocorticoid Modulation of Cardiac Ryanodine Receptor Activity Is Associated With Downregulation of FK506-Binding Proteins

Circulation. 2009;119:2179-2187; originally published online April 13, 2009;
doi: 10.1161/CIRCULATIONAHA.108.805804

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/119/16/2179

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2009/04/24/CIRCULATIONAHA.108.805804.DC1
SUPPLEMENTAL METHODS

FK506 binding protein level in cell lysates.

Cell lysate protein (75 µg) was fractionated on 20 % SDS-PAGE gels, transferred onto nitrocellulose membranes (1 h at 100 V, 0.45 µm Hybond ECL, GE Healthcare Bio-Sciences Corp, NJ, USA) and probed with anti-FKBPP12/12.6 serum (Santa Cruz Biotechnology) diluted 1:200 in PBST buffer (in mmol/L: KH₂PO₄ 3, Na₂HPO₄ 10, NaCl 150, 0.1% Tween 20, pH 7.2-7.4) with 1 % bovine serum albumin (BSA). Membranes were blocked overnight with 3 % BSA in PBST buffer before primary antibody addition. Membranes were incubated 2 hour with secondary peroxidase-conjugate goat antiserum (diluted 1:15,000 in PBST, Sigma). Signals were developed by chemiluminiscence (Supersignal West Pico Chemiluminescent substrate, Pierce Biotechnology). The relative amount of protein on the blots was determined by densitometry using KodakID Software (v. 3.635, Molecular Imaging Systems). Actin signals were detected in the same blots with anti-actin serum (Sigma) and used as loading controls.

RyR-FKBPP12/12.6 association on SR fractions.

SR fractions (50 µg) were resuspended in SDS-PAGE loading buffer (60 mmol/L Tris, 2% SDS, 10% glycerol, 5mmol/L EDTA, 2% β-mercaptoethanol, 0.01% bromophenol blue, pH 6.8), heated at 85°C for 5min, and proteins were separated in a 4% SDS-PAGE gel strengthened with 0.5% agarose (for RyR analysis), or a 15% SDS-PAGE gel (for FKBPP analysis). Proteins from 4% gels were electrophoretically transferred to a polyvinylidene difluoride membrane (Immobilon-P, Millipore) using a semi-dry transfer system (Trans-Blot SD, Bio-Rad) in transfer buffer (48mmol/L Tris, 39mmol/L glycine, 0.0375% SDS) at 22V for 4 hours. Proteins from 15% gels were transferred to PVDF membrane using a mini-wet blot transfer system (Bio-Rad) in buffer (26mmol/L Tris, 192mmol/L glycine, 20% methanol) at 200 mA for 1 hour. Primary antibodies were applied overnight at 4°C: FKBPP12/12.6
antibody at 1:200 dilution (Affinity BioReagents), RyR antibody at 1:1000 dilution (rabbit polyclonal antibody raised to RyR residues 4454-4474). Immunoreactive protein bands were visualized by enhanced chemiluminescence detection (ECL, GE Healthcare). Densitometric analysis was performed using a GS-700 scanner (Bio-Rad) and Quantity One software (Bio-Rad).

RyR phosphorylation.

75 µg of protein were fractionated on 7.5 % SDS-PAGE gels, transferred onto PVDF membranes (2 h at 100 V, 0.45 µm Amersham). Then membranes were probed successively (after successive membrane stripping in 1mol/L Glycine solution [pH 7.2]) with anti-RyR (C3–33, 1:3000 diluted in PBST solution, Affinity BioReagents), anti–RyR-PS2809 (1:5000, Badrilla) and anti–RyR-PS2815 (1:5000) antibodies generously provided by Dr A.R. Marks (Columbia University, New York) diluted in TBST solution (in mmol/L Tris-HCl 50, NaCl 150, 0.1% Tween 20, pH 7.4). Antibodies were revealed with secondary peroxidase-conjugate mouse or rabbit antiserum (1:15,000, Calbiochem).

Ca²⁺ sparks analysis.

Ca²⁺ sparks were recorded in intact myocytes loaded with fluorescent Ca²⁺ dye (Fluo-3 AM) Spontaneous Ca²⁺ sparks were obtained in quiescent cells. SR Ca²⁺ load was estimated by rapid caffeine (10 mmol/L) application. Images were obtained with a confocal microscopy (Meta Zeiss LSM 510, objective w.i. 63x, n.a. 1.2) by scanning the cell with an Argon laser every 1.54 ms; fluorescence was excited at 488 nm and emissions were collected at >505 nm. Image analyses were performed by homemade routines using IDL software (Research System Inc.). Images were corrected for the background fluorescence. The fluorescence values (F) were normalized by the basal fluorescence (F₀) in order to obtain the fluorescence ratio (F/F₀).
The probability density functions $P_Df(a) = \frac{N(a)}{N_{total}} \Delta$, where $N(a)$ is the histogram distribution of Ca$^{2+}$ spark parameter a, N_{total} is the total number of Ca$^{2+}$ sparks and Δ is the binwidth, were modelled as a mixture of Gauss distributions according to:

$$
\sum_{i=1}^{l} \frac{P_i}{\sqrt{2\pi} \sigma_i} e^{-\frac{1}{2} \left(\frac{x-\mu_i}{\sigma_i} \right)^2} \quad \text{and} \quad \sum_{i=1}^{l} P_i = 1
$$

where P_i is the proportion, μ_i the mean and σ_i the standard deviation of individual distribution.

Goodness of fits were always examined by χ^2 test (Σ (observed-expected)2/expected) and in all the cases >0.05, indication of the absence of major discrepancy between distributions and fits.

For Ca$^{2+}$ spark duration, analysis was conducted on log-transformed FDHM and the results are presented after back transformation, using the delta method ($\sigma_i*10^{\text{mean}^2})^{1/2}$ for conversion of σ_i.
SUPPLEMENTAL TABLES

Table S1. Primers used in real-time RT-PCR assays

<table>
<thead>
<tr>
<th>Gene</th>
<th>Oligonucleotide sequence</th>
<th>Mice</th>
<th>Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKBP12</td>
<td>F-5’-ACTAGGCAAGCAGGAGGTGA-3’</td>
<td>F-5’-ACTAGGCAAGCAGGAGGTGA-3’</td>
<td>R-5’-CATAGGCAAGGAGGTGA-3’</td>
</tr>
<tr>
<td></td>
<td>R-5’-CTCCATAGGCAAGGTCCAGAGAT-3’</td>
<td>R-5’-CATAGGCAAGGAGGTGA-3’</td>
<td>R-5’-CATAGGCAAGGAGGTGA-3’</td>
</tr>
<tr>
<td>FKBP126</td>
<td>F-5’-AGAAGGCACAGCCAGATGA-3’</td>
<td>F-5’-AGAAGGCACAGCCAGATGA-3’</td>
<td>R-5’-AAAGATGAGGGTGGCATTTG-3’</td>
</tr>
<tr>
<td></td>
<td>R-5’-AAAGATGAGGGTGGCATTTG-3’</td>
<td>R-5’-AAAGATGAGGGTGGCATTTG-3’</td>
<td>R-5’-AAAGATGAGGGTGGCATTTG-3’</td>
</tr>
<tr>
<td>RyR</td>
<td>F-5’-CTTCATGATGCGCTTCAAGAG-3’</td>
<td>F-5’-CTTCATGATGCGCTTCAAGAG-3’</td>
<td>R-5’-CTTCATGCTCGCAGTACCACA-3’</td>
</tr>
<tr>
<td></td>
<td>R-5’-CCACACGCAACTTTTCTTCTT-3’</td>
<td>R-5’-CCACACGCAACTTTTCTTCTT-3’</td>
<td>R-5’-CCACACGCAACTTTTCTTCTT-3’</td>
</tr>
<tr>
<td>β2-µG</td>
<td>F-5’-TTCTATATCTATCTGCGCTCCAGCTGAA-3’</td>
<td>F-5’-TTCTATATCTATCTGCGCTCCAGCTGAA-3’</td>
<td>R-5’-TTCTATATCTATCTGCGCTCCAGCTGAA-3’</td>
</tr>
<tr>
<td></td>
<td>R-5’-CCACACGCAACTTTTCTTCTT-3’</td>
<td>R-5’-CCACACGCAACTTTTCTTCTT-3’</td>
<td>R-5’-CCACACGCAACTTTTCTTCTT-3’</td>
</tr>
<tr>
<td>GAPDH</td>
<td>F-5’-AATGGTGAAGGCTCGGTGATG-3’</td>
<td>F-5’-AATGGTGAAGGCTCGGTGATG-3’</td>
<td>R-5’-AATGGTGAAGGCTCGGTGATG-3’</td>
</tr>
<tr>
<td></td>
<td>R-5’-GAAGATGATGATGAGGCTTCTCC-3’</td>
<td>R-5’-GAAGATGATGATGAGGCTTCTCC-3’</td>
<td>R-5’-GAAGATGATGATGAGGCTTCTCC-3’</td>
</tr>
<tr>
<td>HPRT</td>
<td>F-5’-CTCAACTTAACTGGAAAGAATGTG-3’</td>
<td>F-5’-CTCAACTTAACTGGAAAGAATGTG-3’</td>
<td>R-5’-CTCAACTTAACTGGAAAGAATGTG-3’</td>
</tr>
<tr>
<td></td>
<td>R-5’-CTTCCTTCAACCAGCAAAGCT-3’</td>
<td>R-5’-CTTCCTTCAACCAGCAAAGCT-3’</td>
<td>R-5’-CTTCCTTCAACCAGCAAAGCT-3’</td>
</tr>
<tr>
<td>UBC</td>
<td>F-5’-AGCCAGTGTTACCACCAAG-3’</td>
<td>F-5’-AGCCAGTGTTACCACCAAG-3’</td>
<td>R-5’-AGCCAGTGTTACCACCAAG-3’</td>
</tr>
<tr>
<td></td>
<td>R-5’-ACCCAAAGAAGCGAACAGG-3’</td>
<td>R-5’-ACCCAAAGAAGCGAACAGG-3’</td>
<td>R-5’-ACCCAAAGAAGCGAACAGG-3’</td>
</tr>
</tbody>
</table>

F and R, foward and reverse primers, respectively. Reference genes: β2-µG, β2-microglobulin, GAPDH, Glyceraldehyde 3-phosphate dehydrogenase, HPRT, Hypoxanthine-guanine phosphoribosyltransferase, UBC, ubiquitin C.
Table S2. Parameter estimates from mixed-effect models with random effects for animals and cells.

<table>
<thead>
<tr>
<th></th>
<th>Ca2+ spark frequency</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Least Squares</td>
<td>Mean</td>
<td>95% confidence interval</td>
<td>P-value vs. respective control</td>
</tr>
<tr>
<td>Aldo in vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>1.03</td>
<td>0.86 to 1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT+Aldo</td>
<td>1.82</td>
<td>1.51 to 2.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hMR</td>
<td>1.79</td>
<td>1.49 to 2.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Type 3 test</td>
<td></td>
<td></td>
<td></td>
<td>P=0.0347</td>
<td></td>
</tr>
<tr>
<td>Aldo ex vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>0.70</td>
<td>0.55 to 0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo</td>
<td>1.50</td>
<td>1.17 to 1.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo+RU</td>
<td>0.61</td>
<td>0.46 to 0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Type 3 test</td>
<td></td>
<td></td>
<td></td>
<td>P=0.0056</td>
<td></td>
</tr>
<tr>
<td>Ca2+ spark full width at half maximal amplitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(µm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo in vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>2.68</td>
<td>2.60 to 2.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT+Aldo</td>
<td>2.79</td>
<td>2.71 to 2.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hMR</td>
<td>3.02</td>
<td>2.93 to 3.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Type 3 test</td>
<td></td>
<td></td>
<td></td>
<td>P=0.0253</td>
<td></td>
</tr>
<tr>
<td>Aldo ex vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>2.55</td>
<td>2.44 to 2.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo</td>
<td>2.88</td>
<td>2.77 to 2.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo+RU</td>
<td>2.53</td>
<td>2.40 to 2.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Type 3 test</td>
<td></td>
<td></td>
<td></td>
<td>P=0.0091</td>
<td></td>
</tr>
<tr>
<td>Ca2+ spark full duration at half maximal amplitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo in vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>31.62</td>
<td>28.48 to 35.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT+Aldo</td>
<td>33.25</td>
<td>29.93 to 36.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hMR</td>
<td>39.02</td>
<td>35.20 to 43.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Type 3 test</td>
<td></td>
<td></td>
<td></td>
<td>P=0.0655</td>
<td></td>
</tr>
<tr>
<td>Aldo ex vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>37.12</td>
<td>33.60 to 41.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo</td>
<td>43.98</td>
<td>40.03 to 48.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldo+RU</td>
<td>34.20</td>
<td>30.57 to 38.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Type 3 test</td>
<td></td>
<td></td>
<td></td>
<td>P=0.0345</td>
<td></td>
</tr>
</tbody>
</table>