Carbon monoxide (CO) poisoning is a leading cause of toxicological morbidity and mortality. We recently reported 37% of patients with moderate to severe CO poisoning suffered myocardial injury. In follow-up, 24% of patients died at a median of 7.6 years, a mortality rate 3 times higher than expected compared with age- and sex-specific US mortality rates. Myocardial injury was the major predictor of mortality: 38% of patients who sustained myocardial injury died compared with 15% without myocardial injury. The precise mechanisms responsible for the increase in mortality remain unclear, but cardiovascular death was more common (44% versus 18%) among patients who initially sustained myocardial injury.

We report a case of myocardial fibrosis after severe CO poisoning detected by cardiac MRI. A previously healthy 63-year-old woman presented to an outside hospital with severe CO poisoning. She was comatose, with an initial carboxyhemoglobin level of 28.6%. Baseline troponin I (0.09 ng/mL) and creatine kinase–MB (7.7 ng/mL) were normal, but serial cardiac biomarkers were not obtained. Admission ECG showed sinus tachycardia with ventricular bigeminy and diffuse ST-depression consistent with ischemia. Her clinical course was complicated by neurological dysfunction. At 4-month follow-up, the ECG and echocardiogram were normal (left ventricular ejection fraction 65% without wall-motion abnormalities). Cardiac adenosine MRI showed no rest or stress-induced myocardial perfusion defects but revealed inferolateral midwall myocardial fibrosis (not in the typical distribution of a coronary artery) that spared the endocardium (Figure).

This is the first report of myocardial fibrosis from CO poisoning detected by MRI. Midwall myocardial fibrosis has been reported in dilated cardiomyopathy of unclear origin. In a series of 63 patients, 18 (28%) had midwall enhancement. In a follow-up of 101 consecutive patients with dilated cardiomyopathy, midwall fibrosis (present in 35% of patients) predicted a combined end point of all-cause mortality and cardiovascular hospitalization, as well as sudden cardiac death. Myocardial fibrosis has also been demonstrated in hypertrophic cardiomyopathy and has been linked to known markers for sudden cardiac death, although the independent prognostic value of MRI has yet to be determined. In our case, myocardial fibrosis was present in the setting of a completely normal echocardiogram, which suggests the utility of obtaining cardiac MRI in patients with moderate to severe CO poisoning. The incidence and prognostic significance of myocardial fibrosis after CO poisoning are unclear but deserve further study and may provide a link to adverse long-term outcome for a subset of patients.

Disclosures
None.

References

From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital and Departments of Medicine and Cardiology, University of Minnesota, Minneapolis, Minn.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/cgi/content/full/118/7/792/DC1.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.107.750778
Myocardial Fibrosis From Severe Carbon Monoxide Poisoning Detected by Cardiac Magnetic Resonance Imaging
Timothy D. Henry, John R. Lesser and Daniel Satran

Circulation. 2008;118:792
doi: 10.1161/CIRCULATIONAHA.107.750778
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/118/7/792

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2008/11/06/118.7.792.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/