Phosphorylation of LKB1 at Serine 428 by Protein Kinase C-ζ Is Required for Metformin-Enhanced Activation of the AMP-Activated Protein Kinase in Endothelial Cells

Zhonglin Xie, MD, PhD; Yunzhou Dong, PhD; Roland Scholz, BS; Dietbert Neumann, PhD; Ming-Hui Zou, MD, PhD

Background—Metformin, one of most commonly used antidiabetes drugs, is reported to exert its therapeutic effects by activating AMP-activated protein kinase (AMPK); however, the mechanism by which metformin activates AMPK is poorly defined. The objective of the present study was to determine how metformin activates AMPK in endothelial cells.

Methods and Results—Exposure of human umbilical vein endothelial cells or bovine aortic endothelial cells to metformin significantly increased AMPK activity and the phosphorylation of both AMPK at Thr172 and LKB1 at Ser428, an AMPK kinase, which was paralleled by increased activation of protein kinase C (PKC)-ζ, as evidenced by increased activity, phosphorylation (Thr410/403), and nuclear translocation of PKC-ζ. Consistently, either pharmacological or genetic inhibition of PKC-ζ ablated metformin-enhanced phosphorylation of both AMPK-Thr172 and LKB1-Ser428, suggesting that PKC-ζ might act as an upstream kinase for LKB1. Furthermore, adenoviral overexpression of LKB1 kinase-dead mutants abolished but LKB1 wild-type overexpression enhanced the effects of metformin on AMPK in bovine aortic endothelial cells. In addition, metformin increased the phosphorylation and nuclear export of LKB1 into the cytosols as well as the association of AMPK with LKB1 in bovine aortic endothelial cells. Similarly, overexpression of LKB1 wild-type but not LKB1 S428A mutants (serine replaced by alanine) restored the effects of metformin on AMPK in LKB1-deficient HeLa-S3 cells, suggesting that Ser428 phosphorylation of LKB1 is required for metformin-enhanced AMPK activation. Moreover, LKB1 S428A, like kinase-dead LKB1 D194A, abolished metformin-enhanced LKB1 translocation as well as the association of LKB1 with AMPK in HeLa-S3 cells. Finally, inhibition of PKC-ζ abolished metformin-enhanced communoprecipitation of LKB1 with both AMPKα1 and AMPKα2.

Conclusions—We conclude that PKC-ζ phosphorylates LKB1 at Ser428, resulting in LKB1 nuclear export and hence AMPK activation. (Circulation. 2008;117:952-962.)

Key Words: diabetes mellitus ■ endothelium ■ metabolism ■ molecular biology

Metformin is one of the most widely used antidiabetic agents for type 2 diabetes mellitus. In the UK Prospective Diabetic Study, metformin significantly reduced the incidence of death and cardiovascular events in obese type 2 diabetic patients compared with patients treated with other glucose-lowering reagents but with the same glycemic control, suggesting that metformin may have unique protective effects against diabetes-related cardiovascular complications. In addition, metformin is shown to improve vascular endothelial function in diabetic humans. Although it has been in clinical use for decades, the precise mechanism of action of metformin has yet to be established. Recent studies have demonstrated that metformin activates AMP-activated protein kinase (AMPK) in vitro and in vivo. Furthermore, evidence has shown that clinically relevant concentrations of metformin activated AMPK in cultured endothelial cells and aortas in vivo and ascribed the beneficial effects of metformin on vascular function to AMPK activation. In addition, activation of AMPK by metformin is required for decreased glucose production and increased fatty acid oxidation in hepatocytes and for increased glucose uptake in skeletal muscle.

Clinical Perspective p 962

AMPK is a serine/threonine kinase and an evolutionary conserved regulator of the cellular response to low energy. It is activated when nutrient supply is limited, ATP generation is impaired, or cellular energy demand is increased. AMPK has a critical role in many metabolic processes, and, once activated, AMPK phosphorylates a number of proteins that result in increased glucose uptake and
metabolism as well as fatty acid oxidation. In addition, AMPK simultaneously inhibits hepatic lipogenesis, cholesterol synthesis, and glucose production and is also responsible for increased fatty acid oxidation in response to the adipocyte-derived hormones leptin \(^{16,17}\) and adiponectin. \(^{18}\) Phosphorylation of Thr172 in the activation loop of the catalytic α subunit is a prerequisite of significant kinase activity, and an increase in AMP/ATP ratios further allosterically stimulates the enzyme, resulting in 1000-fold activation.

Recently, at least 2 upstream kinases, LKB1 and calcium/calmodulin-dependent kinase (CaMKK)-β, have been identified as AMPK kinases. \(^{19–24}\) LKB1, a 50-kDa serine/threonine kinase, was originally identified as the product of the gene mutated in the autosomal dominantly inherited Peutz-Jeghers cancer syndrome. \(^{25}\) In resting cells, LKB1 is reported to be predominantly located in the nucleus, \(^{26–28}\) and, like AMPK, LKB1 forms a heterotrimeric complex with regulatory proteins termed STRAD and MO25, which are required for its activation and cytosolic localization. \(^{29}\) LKB1 has been shown to mediate Thr172 phosphorylation of AMPK both in vitro and in intact cells. \(^{19,21,23}\)

The mechanism by which metformin activates AMPK remains controversial, although earlier studies \(^{30,31}\) demonstrate that metformin might activate AMPK by decreasing cellular energy by acting as an inhibitor of complex I of the respiratory chain. However, several recent studies \(^{32,33}\) argue against this notion because in these studies metformin activates AMPK without affecting the AMP/ATP ratio. Interestingly, metformin neither activates AMPK in a cell-free assay nor influences the phosphorylation of AMPK by LKB1 in vitro. Furthermore, it was found that in cell lines such as HeLa-S3 cells and A549 cells, which lack LKB1 expression, or in LKB1 \(^+/−\) mouse embryonic fibroblasts, AMPK could not be activated by a variety of agonists and stresses, including metformin. \(^{19,23}\) Mice lacking LKB1 expression have significantly inhibited AMPK activity and blunted increases in glucose transport caused by electrically stimulated muscle contraction and the AMPK-activating compound 5-aminimidazole-4-carboxamide 1β-β-ribofuranoside (AICAR) and phenformin. \(^{34}\) Importantly, with the use of mice that have LKB1 deleted in liver, it has been reported that metformin required LKB1 in the liver to lower blood glucose. \(^{35}\) Although these studies have established the critical role of LKB1 in AMPK activation, none of these studies have elucidated the upstream signaling that controls LKB1-dependent AMPK activation. In the present study, we have found that metformin activates AMPK by activating PKC-ζ-dependent LKB1 phosphorylation at Ser428, a site that is required for LKB1 nuclear export into the cytosol and its association with AMPK.

Methods

A full description of methods, including methods such as protein kinase assays for PKC-ζ, AMPK, and LKB1, immunocytochemical staining of LKB1, and preparation of subcellular fractions, can be found in the online-only Data Supplement.

Cell Culture and Treatment

Human umbilical vein endothelial cells (HUVEC) were cultured in medium 200 supplemented with low-serum growth supplements.

Bovine aortic endothelial cells (BAEC) were maintained in endothelial basal medium with 2% serum and growth factors before use. After they reached confluence, BAEC were serum deprived overnight before the experiments. HeLa-S3 and A549 cells were grown in F-12K medium supplemented with 10% serum. All culture media were supplemented with penicillin (100 U/mL) and streptomycin (100 μg/mL). The cells were treated with 1 mmol/L metformin for 1 hour after adenosine infection or pretreatment with protein kinase inhibitor.

Plasmid Transfection and Adenovirus Infection

Site-directed mutagenesis of LKB1 was performed as described previously. \(^{36}\) Mutations were confirmed by DNA sequencing, and plasmid DNA was extracted on a large scale with the use of Qiagen EndoFree plasmid maxi kit (catalogue No. 12362) and transfected into HeLa-S3 with the use of the Lipofectamine 2000 kit from Invitrogen (catalogue No. 11668-019), according to the instructions provided by the supplier. Twenty-four hours after transfection, the cells were treated with metformin (1 mmol/L) or vehicle for 1 hour. Both LacZ expression vector and untreated cells were used as control.

BAEC or HUVEC were infected with adenosine expressing a wild-type PKC-ζ (PKC-ζ-WT) or a dominant negative mutant PKC-ζ (PKC-ζ-DN). A replication-defective adenoviral vector expressing green fluorescence protein (ad-GFP) was used as control. The AMPK-DN adeno viral vector was constructed from AMPK-α2 bearing a mutation altering lysine 45 to arginine (K45R) as described previously. \(^{10,11}\) Cells were infected with the adenosine virus at a multiplicity of infection of 100 in serum-free medium overnight. Cells were then washed and incubated in fresh medium without serum for an additional 18 to 24 hours before experimentation. Under these conditions, infection efficiency was typically >75% as determined by GFP expression.

Statistical Analysis

Values are expressed as mean±SE. All of the data were analyzed with a 1-way ANOVA followed by Bonferroni post hoc analyses, except for those obtained from the time course, which were analyzed with repeated-measures ANOVA. A P value of <0.05 is considered statistically significant.

The authors had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the manuscript as written.

Results

Metformin Induces AMPK and Acetyl Coenzyme A Carboxylase Phosphorylation

Because AMPK activation requires the phosphorylation of Thr172 in the activation loop of α1 and α2 subunits, \(^{37,38}\) AMPK activity was determined in Western blots by monitoring the phosphorylation of both AMPK at Thr172 and its best-characterized downstream kinase, acetyl coenzyme A carboxylase (ACC) at Ser79, by using specific antibodies. AMPK activation was further confirmed by AMPK activity assayed as \(^{39}\)P incorporation into SAMS (HMRSAAMSGLH VKRR) peptides. Confluent HUVEC and BAEC were treated with metformin (1 mmol/L) for 1 hour. As shown in Figure 1A, metformin markedly increased the detection of AMPK-Thr172 and ACC at Ser79 in both HUVEC and BAEC, respectively. Because metformin activated AMPK in both BAEC and HUVEC at a similar potency, we performed most of the experiments in BAEC.

Inhibition of PKC-ζ Attenuates Metformin-Enhanced AMPK-Thr172 Phosphorylation

We have previously shown that inhibition of PKC-ζ attenuates ONOO−-enhanced AMPK activation in BAEC. \(^{40}\) To
establish PKC-ζ as a mediator for metformin-induced activation of AMPK, we first determined whether PKC-ζ-specific pseudosubstrate peptide (PKC-ζ-PS), a synthetic peptide that selectively inhibits PKC-ζ without affecting other PKC isoforms, altered the effects of metformin on AMPK-Thr172 and ACC-Ser79 phosphorylation. As depicted in Figure 1B, PKC-ζ-PS significantly ablated metformin-enhanced phosphorylation of both AMPK-Thr172 (n=5; \(P<0.01\)) (Figure 1B and 1C) and ACC-Ser79 (Figure 1B). The inhibitory effect of PKC-ζ-PS was also confirmed by the suppression of AMPK activity. As depicted in Figure 1D, PKC-ζ-PS dose-dependently suppressed metformin-enhanced AMPK activity (Figure 1D), as assayed by the SAMS peptides.

Additional evidence for PKC-ζ-dependent AMPK activation was obtained from genetic inhibition of PKC-ζ. As depicted in Figure 1E and 1F, adenoviral overexpression of either GFP, PKC-ζ-DN, or PKC-ζ-WT did not alter the basal levels of AMPK in BAEC. However, overexpression of PKC-ζ-DN, but not GFP, abolished the effects of metformin on both AMPK and ACC, whereas overexpression of PKC-ζ-WT significantly enhanced metformin-enhanced phosphorylation of both AMPK-Thr172 and ACC-Ser79 (Figure 1E and 1F) and AMPK activity (Figure 1G).

Activation of PKC-ζ by Metformin

We next determined whether metformin activated PKC-ζ in BAEC. The phosphorylation of PKC-ζ at Thr410/403 by upstream kinases such as phosphoinositide 3-kinase (PI-3 kinase)/PKB/PDK-1 axis and translocation of PKC-ζ from the cytosol into cytoplasmic membrane are considered critical steps in the activation of PKC-ζ. Thus, PKC-ζ phosphorylation was monitored in total cell lysates in Western blots by using specific antibodies. As shown in Figure 2A, metformin increased PKC-ζ Thr410/403 phosphorylation without altering PKC-ζ expression. Inhibition of PKC-ζ with PKC-ζ-PS abolished metformin-induced PKC-ζ phosphorylation (Figure 2A), indicating a specific inhibition by PKC-ζ-PS.

We next assayed PKC-ζ activity by using \(^{32}\)P incorporation in PKC-ζ-specific peptides. As expected, overexpression of PKC-ζ-DN, but not GFP, attenuated PKC-ζ activity, whereas overexpression of PKC-ζ-WT increased PKC-ζ activity in BAEC (Figure 2B). In agreement with increased PKC-ζ phosphorylation at Thr410/403 (Figure 2A), metformin significantly increased PKC-ζ activity in BAEC or BAEC infected with GFP. Overexpression of PKC-ζ-DN abolished metformin-enhanced PKC-ζ activation, whereas PKC-ζ-WT increased PKC-ζ activity (Figure 2B). These results implied that metformin activated PKC-ζ.

The translocation of PKC-ζ is considered a critical step in PKC-ζ activation. Exposure of BAEC to metformin significantly increased the presence of PKC-ζ in membrane fractions but lowered the amount of PKC-ζ in the cytosol (Figure 2C and 2D). In parallel, metformin also increased the translocation of PKC-ζ from the cytosol into the nuclei (Figure 2E and 2F). The purity of these subcellular fractions was confirmed by using antibodies against specific protein marker enzymes of the cytosol (lactate dehydrogenase), plasma membrane (alkaline phosphatase), or nucleus (histone H2AX), respectively. The nuclear histone H2AX was detected only in the nuclear fraction but not in cytosolic or membrane fractions (Figure 2G). Lactate dehydrogenase was detected only in the cytosolic fraction, whereas alkaline phosphatase was found only in the membrane fraction (Figure 2G). Thus, metformin caused cellular redistribution of PKC-ζ from the cytosol to nuclei and membranes.

Protein Kinase A and p90 Ribosomal S6 Kinase Are Not Required in Metformin-Enhanced AMPK Activation

Because both protein kinase A (PKA) and p90 ribosomal S6 kinase (RSK) are reported to phosphorylate LKB1 at Ser428, we next determined whether PKA or RSK was involved in metformin-enhanced phosphorylation of AMPK-Thr172 or LKB1-Ser428. As depicted in Figure 3A and 3B, administration...
of either H89 (10 μmol/L), a selective PKA inhibitor, or SL0101 (10 μmol/L), a selective RSK inhibitor, did not alter metformin-enhanced phosphorylation of AMPK-Thr172 or LKB1-Ser428 (Figure 3A and 3B). In contrast to increased PKC-ζ phosphorylation, metformin affected neither PKA catalytic subunit (PKAc) phosphorylation at Thr197 nor RSK3 phosphorylation at Thr356/Ser360 (Figure 3C), suggesting that metformin had no effect on PKA or RSK. Further evidence comes from coimmunoprecipitation experiments. As shown in Figure 3D, LKB1 was coimmunoprecipitated with PKC-ζ but not with either PKA or RSK. Furthermore, metformin markedly increased the coimmunoprecipitation of LKB1 with PKC-ζ (Figure 3D), which was sensitive to PKC-ζ inhibition (Figure 3D), suggesting that PKC-ζ activity was required for the association of PKC-ζ with LKB1. Indeed, alteration of PKC-ζ activity by overexpression of either PKC-ζ-DN or PKC-ζ-WT did not alter the phosphorylation of PKAc or RSK (Figure 3E), suggesting that the effect of PKC-ζ was independent of PKA or RSK in BAEC. Taken together, these data suggest that PKC-ζ plays a role in metformin-enhanced AMPK activation and LKB1 phosphorylation in BAEC.

Figure 2. Metformin increases PKC-ζ phosphorylation and the translocation of PKC-ζ from cytosol to the membrane. Confluent BAEC were exposed to metformin (1 mmol/L, 1 hour), and the translocation of PKC-ζ and PKC-ζ phosphorylation was assayed as described in Methods. A, Metformin (Met) increased the phosphorylation of PKC-ζ in BAEC. The blot is representative of 3 blots obtained from 3 independent experiments. Con indicates control. B, PKC-ζ activity was determined as described in Methods (n=4). *P<0.05 (compared with control [Con]), †P<0.05 (metformin-treated vs metformin plus adenovirus), #P<0.05 (PKC-ζ-WT vs metformin plus WT adenovirus). C and D, Metformin increases the translocation of PKC-ζ to the membrane (n=4). *P<0.05 (control vs metformin-treated). E and F, Metformin increases the translocation of PKC-ζ from cytosol into the nucleus. The blot is a representative of 3 blots from 3 individual experiments (n=5). *P<0.05 (control vs metformin-treated). G, Analysis of the purity of subcellular fractions. The subcellular fractions were prepared as described in Methods. Marker enzymes were detected by Western blot with the use of specific antibodies.

Figure 3. Neither PKA nor RSK is involved in metformin-enhanced AMPK activation in BAEC. A and B, Confluent BAEC were pretreated with protein kinase inhibitors for 30 minutes followed by treatment with metformin (1 mmol/L) for 1 hour, the cells were lysed, and phosphorylation of AMPK and LKB1 was detected by Western blot. The blot is a representative of 3 different experiments. *P<0.05 compared with respective control (Con). C, BAEC were treated with metformin (Met) (1 mmol/L) for 1 hour, cell lysate was prepared, and the phosphorylation of PKC-ζ, PKAc, and RSK3 was detected by Western blotting. The blot is representative of 3 blots obtained from 3 different experiments. D, LKB1 was immunoprecipitated, and PKC-ζ, PKAc, and RSK3 were detected by Western blotting. The blot is representative of 3 different experiments. E, Confluent BAECs were transfected with PKC-ζ-DN and PKC-ζ-WT adenovirus for 48 hours and treated with metformin for 1 hour. The cells were lysed and analyzed by Western blotting. The blot is a representative of 3 blots obtained from 3 individual experiments.
together, these results suggest that metformin-enhanced phosphorylation of LKB1 and AMPK was PKC-dependent but independent of PKA or RSK.

Metformin-Enhanced AMPK Activation Requires LKB1

At least 2 upstream kinases, including LKB1 and CaMKK-β, have been identified as AMPK kinases.19–24 We next determined whether metformin required LKB1 to activate AMPK in BAEC. As depicted in Figure 4A and 4B, overexpression of the kinase-dead LKB1 mutant LKB1-D194A abolished metformin-enhanced phosphorylation of both AMPK-Thr172 and ACC-Ser79 in BAEC. In contrast, overexpression of LKB1-WT enhanced the effects of metformin on the phosphorylation of both AMPK and ACC. Because overexpression of GFP did not alter the effect of metformin, these results suggested that LKB1 was required for metformin-enhanced AMPK activation in endothelial cells.

Metformin-Enhanced LKB1-Ser428 Phosphorylation Is PKC-dependent

We have previously demonstrated that ONOO- enhances the phosphorylation of LKB1 at Ser428 via PKC-ζ.36 We next determined whether metformin altered the phosphorylation of LKB1 at Ser428. As depicted in Figure 4C and 4D, metformin significantly increased the phosphorylation of LKB1 at Ser428. Overexpression of PKC-ζ-DN, which ablated metformin-enhanced AMPK activation (Figure 1E through 1G), abolished metformin-enhanced LKB1-Ser428 phosphorylation (Figure 4C and 4D). Conversely, overexpression of GFP or PKC-ζ-WT did not suppress metformin-enhanced LKB1-Ser428 phosphorylation (Figure 4C and 4D). However, alteration of PKC activity by overexpression of PKC-ζ-DN or PKC-ζ-WT did not alter LKB1 activity (Figure 4E). In addition, consistent with our previous results,34,36,41,42 metformin did not alter LKB1 activity in the cells infected with either PKC-ζ-DN or PKC-ζ-WT (Figure 4E). Thus, changes of AMPK-Thr172 phosphorylation cannot be attributed to altered kinase activity of LKB1.

Metformin-Enhanced PKC-ζ Phosphorylation Occurs Before the Phosphorylation of Both LKB1 and AMPK

We next determined the time course of metformin-enhanced phosphorylation of PKC-ζ, LKB1, and AMPK. As shown in Figure 4F and 4G, metformin significantly increased the
PKC-ζ phosphorylation within 1 minute. The phosphorylation of LKB1-Ser428 was significantly elevated \(\approx 10 \) minutes after metformin treatment, whereas a significant increase of AMPK-Thr172 phosphorylation was observed at 30 minutes and reached a peak at 60 minutes (Figure 4F and 4G). These data suggest a chronology of events, with metformin rapidly activating first PKC (Thr410/403), then LKB1 (Ser428), and finally AMPK (Thr172).

Metformin Triggers LKB1 Translocation From Nucleus Into Cytoplasm

Earlier works had indicated that LKB1 is localized mainly in the nucleus, whereas AMPK is localized mainly in the cytoplasm. LKB1 must be exported from the nucleus into cytosols where AMPK is located. We first used immunohistochemical staining to assay whether metformin altered the subcellular localization of LKB1 in HUVEC because all commercially available antibodies against LKB1 could not be used in BAEC. As expected, LKB1 was found mainly in the nucleus of nonstimulated HUVEC (Figure 5A). In metformin-treated HUVEC, LKB1 was detected mainly in the cytosols. Metformin-enhanced LKB1 nuclear export was further confirmed by Western blot analysis of LKB1 in subcellular fractions. As shown in Figure 5B and 5C, metformin significantly increased the protein amount of LKB1 in the cytosol, whereas it was markedly reduced in the nucleus of HUVEC (Figure 5A through 5C). Similarly, LKB1 was predominantly located in the nuclear fractions in BAEC. Exposure of BAEC to metformin reduced the amount of LKB1 in the nuclear fraction, whereas it increased the amount of LKB1 in the cytosols (data not shown). Interestingly, the signals corresponding to LKB1-Ser428 phosphorylation were significantly increased in both cytosol and nuclei of metformin-treated BAEC, whereas the reduced nuclear LKB1 protein content after metformin treatment (Figure 5A through 5C) corresponded to a relatively high LKB1-Ser428 signal (Figure 5D and 5E). These data suggest that LKB1 phosphorylation might occur in the nucleus, resulting in LKB1 translocation from nuclear to cytoplasmic locations.

Mutation of LKB1 Serine 428 With Alanine Prevents Metformin-Enhanced LKB1 Translocation

We next determined how metformin increased LKB1 translocation. With the use of site-directed mutagenesis techniques, Ser428 of LKB1 was mutated into alanine (LKB1-S428A, loss of function). In addition, Asp194 of LKB1, which is essential for LKB1 activity, was also replaced with alanine, resulting in a kinase-dead LKB1 mutant (LKB1-D194A). These plasmids were transfected into LKB1-deficient A549 cells. After transfection, the subcellular distributions of LKB1 were detected using a mouse anti-His Tag antibody. As expected, A549 transfected with Lac-Z did not react with an anti-His Tag antibody (data not shown). Like LKB1 in HUVEC, LKB1 was found mainly in the nucleus of A549 transfected with LKB1 WT, S428A mutants, or D194A mutants (Figure 6A). Metformin markedly increased LKB1 staining in the cytosol of A549 transfected with LKB1-WT but not in A549 transfected with either LKB1-D194A or LKB1-S428A mutants (Figure 6A). Western blot analysis of LKB1 in the subcellular fractions confirmed that LKB1-WT or LKB1 mutants were all nuclear proteins and that metformin significantly increased the amount of cytosolic LKB1 in A549 cells transfected with LKB1-WT but not LKB1 mutants (Figure 6B). These results suggest that the Ser428 phosphorylation of LKB1 as well as LKB1 activity was required for metformin-enhanced nuclear export.

Mutation of Ser428 Into Alanine Abolishes Metformin-Enhanced AMPK Activation

Because LKB1-Ser428 mutation altered its subcellular localization, we next determined whether Ser428 mutation of LKB1 also altered metformin-enhanced AMPK activation. As shown in Figure 7A and 7B, metformin did not activate AMPK in the nuclei of A549 transfected with LKB1-D194A or LKB1-S428A mutants, whereas it significantly increased AMPK phosphorylation in the cytosols (Figure 7B). Western blot analysis of AMPK in the subcellular fractions confirmed that AMPK-WT or AMPK mutants were all nuclear proteins and that metformin increased AMPK phosphorylation in the cytosol of A549 transfected with AMPK-WT but not in A549 transfected with AMPK-D194A or AMPK-S428A mutants (Figure 7B). These results suggest that the Ser428 phosphorylation and LKB1 activity were required for metformin-enhanced AMPK activation.
AMPK in either HeLa-S3 or HeLa-S3 transfected with either LacZ or the D194A mutant of LKB1, confirming the essential role of LKB1 in metformin-enhanced AMPK activation. Conversely, transfection of LKB1-WT significantly increased the phosphorylation of AMPK and ACC in HeLa-S3 cells transfected with WT LKB1 (Figure 7A and 7B). Interestingly, the point mutation of LKB1-Ser428 into alanine, like the kinase-inactive mutant D194A, abolished metformin-enhanced phosphorylation of AMPK. Similarly, overexpression of LKB1-S428A and LKB1-D194A mutants ablated peroxynitrite (ONOO⁻, 100 μmol/L)-enhanced phosphorylation of AMPK, whereas the mutation of Ser428 into aspartic acid (LKB1-S428D), which mimics phosphorylation of Ser428, increased AMPK phosphorylation. Consequently, association of LKB1 with AMPK was immunoprecipitated from BAEC and stained with AMPK (Figure 7E), suggesting that PKC-ζ enhanced the association of LKB1 with AMPK.

We next investigated whether mutations of LKB1-Ser428 into alanine altered the interaction of AMPK and LKB1 in HeLa-S3 cells. Metformin increased the association of AMPK and LKB1 in HeLa-S3 cells transfected with WT LKB1 but not in HeLa-S3 transfected with LacZ or LKB1 mutants (Figure 7F), implying that LKB1-Ser428 phosphorylation is required for metformin-enhanced AMPK activation.

Discussion

In the present study, we have established that LKB1-Ser428 phosphorylation by atypical PKC-ζ plays an essential role in metformin-enhanced AMPK activation. LKB1-Ser428 phosphorylation is required for both its nuclear export of LKB1 into cytosols, in which it forms an active complex with STRAD and MO25 and consequent AMPK phosphorylation. Because various stimuli increased the phosphorylation of LKB1 at Ser428/431 might increase LKB1 activity by 10%. However, such rather small increases of LKB1 activity would only partly explain the strongly elevated AMPK activity after metformin treatment, therefore emphasizing the importance of the nucleocytoplasmic redistribution of LKB1 that is expected to increase AMPK activation in the cytosol.

Mutation of Ser428 Into Alanine Abolishes Metformin-Enhanced Association of LKB1 With AMPK

We have previously shown that ONOO⁻ activates AMPK by increasing the association of LKB1 and AMPK. In addition, we found that PKC-ζ coimmunoprecipitated with LKB1 and metformin increased the association of LKB1 with PKC-ζ. We next determined whether phosphorylation of LKB1-Ser428 by PKC-ζ contributed to metformin-enhanced association of AMPK with LKB1 and therefore whether LKB1 was immunoprecipitated from BAEC and stained with AMPK in Western blots. As shown in Figure 7E, metformin showed significantly increased coimmunoprecipitation of LKB1 with AMPKα1 or AMPKα2. Importantly, inhibition of PKC-ζ blunted metformin-enhanced association of LKB1 with AMPK (Figure 7E), suggesting that PKC-ζ enhances the association of LKB1 with AMPK.
have provided evidence that metformin induced AMPK activation by phosphorylating LKB1 at Ser428, which results in translocation of LKB1 from the nucleus to the cytosol and increased association of LKB1 with AMPK. The key findings can be summarized as follows: metformin increases LKB1 phosphorylation at Ser428, induces LKB1 translocation from nucleus to cytoplasm, and enhances coimmunoprecipitation of LKB1 with AMPK. Mutation of Ser428 into alanine prevented translocation of LKB1 from the nucleus to the cytoplasm and abolished metformin-enhanced association of LKB1 with AMPK, thus abolishing AMPK activation. The LKB1-S428A mutation did not affect normal nuclear localization of LKB1 or prevent LKB1 translocation to the cytoplasm after metformin treatment, suggesting that phosphorylation at Ser428 is essential for LKB1 translocation to the cytoplasm and abolishes metformin-enhanced association of LKB1 with AMPK. Metformin increased the coimmunoprecipitation of LKB1 with LKB1 WT but not with LKB1 mutant. The blot is a representative of 3 blots from 3 independent experiments.

Ser431A mutants. E, Metformin increases the association of LKB1 and AMPK. LKB1 was immunoprecipitated from BAEC, and AMPK was detected in Western blots. Inhibition of PKC-ε attenuated metformin-enhanced association of LKB1 with AMPK. The blot is a representative of 5 blots from 5 independent experiments. F, Mutation of Ser428 of LKB1 into alanine (S428A) abolishes metformin-enhanced coimmunoprecipitation of LKB1 with AMPK. Metformin increased the coimmunoprecipitation of LKB1 with LKB1 WT but not with LKB1 mutant. The blot is a representative of 3 blots from 3 independent experiments.

mimic phosphorylation did not significantly affect the cellular localization or catalytic activity of LKB1 in vitro. The reasons for the discrepancy are unknown and might be related to the species differences (human versus mouse) or cell types. In vivo, LKB1 forms a heterotrimeric complex with 2 proteins termed STRAD and MO25. STRAD is an LKB1-specific adaptor and substrate; when binding to the kinase domain of LKB1, STRAD enhances LKB1 activity >100-fold and anchors LKB1 in the cytosol. MO25 stabilizes the binding of STRAD to LKB1 and cooperates with STRAD to localize LKB1 in the cytoplasm of cells. In addition, LKB1 can also be localized in the cytoplasm of cells through an interaction with a cytosolic protein called LIP1 (LKB1 interacting protein-1). It is reported that in muscle-specific LKB1 knockout mice, AICAR, phenformin, or muscle contraction did not increase AMPK activity in the skeletal muscle, indicating that LKB1 is the major upstream kinase of AMPK. However, these 3 treatments failed to increase LKB1 activity. In our study, we found that metformin increased AMPK phosphorylation and activity. Although it did not change LKB1 activity to a great extent, metformin markedly enhanced LKB1 phosphorylation at Ser428; mutation of Ser428 into alanine prevented translocation of LKB1 from nucleus to cytoplasm and abolished metformin-enhanced association of AMPK with LKB1, thus abrogating AMPK activation. Theses results demonstrate that the phosphorylation of LKB1 at Ser428 plays a crucial role in AMPK activation by altering its cellular location or by enabling it to interact with regulatory proteins or protein substrates. In addition, the active form of LKB1 might be as important as Ser428 phosphorylation because the mutation of LKB1 D194...
AMPK activation by other stimuli (Z.X., unpublished data, 2008). Because other kinases, including cAMP-dependent PKA and p90 RSK, are reported to phosphorylate LKB1 at Ser428, the Ser428 phosphorylation of LKB1 might be a common pathway for AMPK activation triggered by signaling pathways other than the c-Src/PI-3 kinase axis (Figure 8).

To summarize, we provide evidence that PKC-ζ plays a critical role in regulating AMPK activity. Our data suggest that metformin-induced AMPK activation requires LKB1 and demonstrate that phosphorylation of Ser428 of LKB1 could affect cellular location of LKB1 and its interaction with AMPK. We conclude that PKC-ζ can regulate AMPK activity by increasing LKB1 phosphorylation, resulting in LKB1 nuclear export and consequent AMPK Thr172 phosphorylation by LKB1. In addition, the Ser428 phosphorylation of LKB1 might be a common pathway for AMPK activation triggered by signal pathways, including PI-3 kinase/PKC-ζ axis, PKA, and RSK.

Sources of Funding
This work was supported by National Institutes of Health grants (HL079584, HL080499, HL074399), a research award from the American Diabetes Association, a research award from the Juvenile Diabetes Research Foundation, a grant from the Oklahoma Center for the Advancement of Science and Technology, and funds from the Paul H. Doris Eaton Travis Chair in Endocrinology of the University of Oklahoma Health Sciences Center (all to Dr Zou). Part of the work was also supported by National Institutes of Health grant 1P20RR024215-01 (Drs Xie and Zou) and a Scientist Development Grant of the American Heart Association (Dr Xie). The work was further supported by the Helmut Horten Foundation (to Dr Neu mann) and European Union FP6 contract LSHM-CT-2004-005272 (EXGENESIS).

Disclosures
None.

References

Figure 8. LKB1 nuclear export is required for metformin-enhanced AMPK activation. In the resting state, LKB1 is mainly located in the nucleus, whereas LKB1 activity required that adaptors proteins MO25 and STRAD as well as AMPK-α1 (the major isof orm of AMPK catalytic units in endothelial cells) be located in the cytosol. Metformin (or ONOO−) activates PI-3 kinase, resulting in PDK-1/2 phosphorylation. PDK-1/2 phosphorylates PKC-ζ, resulting in the translocation of the latter into nucleus as well as cytoplasmic membrane. In the nucleus, activated PKC-ζ phosphorylates LKB1 at serine 428 and likely other sites. Phosphorylated LKB1 is exported from the nucleus via an unknown mechanism into the cytosol. LKB1 is subsequently bound to the preexisting adaptors proteins (STRAD and MO25), which recruit and phosphorylate AMPK at Thr172. AMPK is likely also activated by other stimuli, which either activate PKC-ζ or increase LKB1-Ser428 phosphorylation (PKA or RSK90).

Overall, our results suggest that the PI-3 kinase-PDK1/2-PKC-ζ pathway plays a critical role in metformin-enhanced AMPK activation.

into alanine prevented the translocation of the enzyme. Because LKB1 S431A mutants expressed a 10% reduction of LKB1 activity, whereas PKC-ζ caused a 10% increase of LKB1 activity, metformin-enhanced AMPK activity is likely via the nucleocytoplasmic redistribution rather than an increase of LKB1 activity as a result of LKB1-Ser428 phosphorylation. Moreover, it remains to be determined whether other sites are required for LKB1 translocation.

We have previously reported10,11,51,52 that activation of PI-3 kinase by metformin or ONOO− might enhance AMPK activity by increasing the association of LKB1 with AMPK. Indeed, inhibition of c-Src or PI-3 kinase activity by pharmacological inhibition or dominant negative mutants abolishes metformin- or ONOO−-enhanced AMPK activation in endothelial cells.10,11,53,54 In the present study, we not only confirm and extend these observations by demonstrating that PKC-ζ, a member of the PI-3 kinase AGC family, plays a critical role in metformin-induced AMPK activation. Indeed, it has been shown that some AMPK agonists, such as AICAR and dinitrophenol, increase PKC-ζ activity in isolated extensor digitorum longus muscle and L6 myotubes.36 In type 2 diabetic patients, metformin increases PKC-ζ activity accompanied by increased AMPK activity.36 We have also demonstrated that PKC-ζ phosphorylates LKB1 at Ser428 in both in vitro assays and in cultured cells, including endothelial cells, pericytes, adipocytes, and cultured vascular smooth muscle cells.36 Furthermore, inhibition of PKC-ζ attenuates

CLINICAL PERSPECTIVE

Metformin is one of most commonly used drugs for the treatment of type II diabetes mellitus. Unlike traditionally used glucose-lowering reagents, such as sulfonylureas or insulin, metformin improves cardiovascular functions and reduces cardiovascular risks in diabetes. Earlier studies from us and others found that clinically relevant concentrations of metformin activated the AMP-activated protein kinase (AMPK); these studies ascribed the beneficial effects of metformin on vascular function to AMPK activation. The present study was designed to elucidate the mechanism by which metformin activates AMPK. Exposure of cultured endothelial cells to metformin significantly increased the phosphorylation of both AMPK at Thr172 and LKB1 at Ser428, an AMPK kinase, which was paralleled by increased activation of protein kinase C (PKC)-ζ, as evidenced by increased activity, phosphorylation, and nuclear translocation of PKC-ζ. Consistently, either pharmacological or genetic inhibition of PKC-ζ ablated metformin-enhanced phosphorylation of both AMPK at Thr172 and LKB1 at Ser428. Our data suggest that the Ser428 phosphorylation of LKB1 by PKC-ζ is required for metformin-triggered AMPK activation.
Phosphorylation of LKB1 at Serine 428 by Protein Kinase C-ζ Is Required for Metformin-Enhanced Activation of the AMP-Activated Protein Kinase in Endothelial Cells
Zhonglin Xie, Yunzhou Dong, Roland Scholz, Dietbert Neumann and Ming-Hui Zou

Circulation. 2008;117:952-962; originally published online February 4, 2008; doi: 10.1161/CIRCULATIONAHA.107.744490

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/117/7/952

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2008/02/04/CIRCULATIONAHA.107.744490.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/
Phosphorylation of LKB1 at Serine 428 by Protein Kinase C-ζ Is Required for Metformin-Enhanced Activation of the AMP-Activated Protein Kinase in Endothelial Cells

Zhonglin Xie, MD PhD, Yunzhou Dong, PhD, Roland Scholz, BS, Dietbert Neumann, PhD, and Ming-Hui Zou, MD PhD

Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland

Supplemental Materials

Human umbilical vein endothelial cells (HUVEC) were obtained from Cascade biologics (Portland, OR). Bovine aortic endothelial cells (BAEC) and cell culture media were obtained from Cambrex Bio Science Walkersville, Inc. (Walkersville, MD). HeLa-S3 and A549 cells were from ATCC (Manassas, VA). The SAMS peptide, PKC-ζ peptides, LKB1-specific peptide (LKB1tide) and human LKB1 were purchased from Upstate Biotechnology, Inc. (Lake Placid, NY). Antibodies against phospho-AMPK (Thr172), AMPKα, phospho-LKB1 (Ser428), phospho -PKC-ζ (Thr410/403), catalytic subunit of PKA (PKAc), phospho-PKAc (Thr197), RSK1/RSK2/RSK3, and phospho-RSK3 (Thr356/Ser360) were obtained from Cell Signaling Inc. (Beverly, MA). Antibodies against PKC-ζ and LKB1 were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA), and antibodies against AMPKα1, AMPKα2 and H2AX were from Bethyl Laboratories, Inc. (Montgomery, TX). Anti-human alkaline phosphatase/ALPL antibody was from R&D Systems (Minneapolis, MN). Anti-lactate dehydrogenase antibody was
from Rockland Inc. (Gilbertsville, PA). Protein A Sepharose™ CL-48 was from Amersham Biosciences (Uppsala, Sweden). Cell permeable myristoylated PKC-ζ pseudosubstrate (PS) was from Biosource International (Camarillo, CA). Other chemicals and organic solvents of the highest grade were obtained from Sigma.

Methods

Immunoprecipitation and Western Blotting: The proteins were immunoprecipitated with specific antibodies and Western blotted onto nitrocellulose membranes, and detected by specific antibodies, as described previously. The intensity (area x density) of the individual bands on Western blots was measured by densitometry (model GS-700, Imaging Densitometer; Bio-Rad). The background was subtracted from the calculated area.

LKB1 Activity Assay: LKB1 was immunoprecipitated from non-treated (control) or treated cells with an antibody against LKB1 (Santa Cruz, catalogue number Sc-5638, D-19) overnight at 4°C in the presence of protein A-G agarose. LKB1 activity present in the immunoprecipitates was determined by its ability to activate recombinant AMPK as described previously. Briefly, LKB1 immunoprecipitates were incubated with recombinant AMPK (α1β1γ1, 20 µg/ml) prepared as described previously in reaction buffer for 30 min at 37°C. Following brief centrifugation, LKB1 activity in the supernatants was measured using the AMPK-dependent ³²P incorporation into SAMS peptide assay as described above. LKB1-MO25α-STRADα complexes were bacterially
expressed and purified up to the Heparin-ste7. The LKB1 S431A mutant was constructed by site-directed mutagenesis and sequence was verified by DNA sequencing.

AMPK Activity Assay: Total AMPK was immunoprecipitated from 500 µg protein using an antibody against AMPK\(\alpha\), and AMPK activity was assessed by determining the incorporation of \(^{32}\text{P}\) into the synthetic SAMS peptide as described2,8.

Protein Kinase C-\(\zeta\) activity: PKC-\(\zeta\) was first immunoprecipitated by PKC-\(\zeta\)-specific antibody and PKC-\(\zeta\) activity was assayed by PKC-\(\zeta\)-specific peptides, as described previously9.

Immunocytochemical staining of LKB1: The HUVEC and A549 cells transfected with LKB1 wild type and mutated plasmids were cultured on coverslips and then fixed with 4% paraformaldehyde. After blocking, the HUVEC were incubated with a goat anti-LKB1 antibody (Santa Cruz, Biotechnology, INC., Santa Cruz, CA) overnight. Since all tested commercially available antibodies against LKB1 did not work in A549 cells and LKB1 plasmids encoded an N-terminal His Tag, the LKB1 in A549 were detected by using a mouse anti-His Tag antibody (Upstate Cell Signaling Solutions, Temecula, CA). After three washes, the slides were incubated with a FITC-conjugated donkey anti-rabbit and a FITC-conjugated donkey anti-mouse antibody (Jackson ImmunoResearch Lab, Inc., West Grove, PA), respectively, at a dilution of 1:150 for 1h. The slides were then rinsed, counter-stained with 4'-6-diamidino-2-phenylindole (DAPI), mounted in
Vectashield™ mounting media (Vector Laboratories, Burlingame, CA), and viewed on a SLM 510 laser scanning confocal microscope (Carl Zeiss Meditec, Inc., Jena, Germany).

Preparation of sub-cellular fractions: Cellular cytosolic, membrane and nuclear fractions were prepared as described previously10,11.

Statistical Analysis: Values are expressed as mean ± S.E.. All of the data were analyzed with a one-way analysis of variance (ANOVA) followed by Bonferroni post hoc analyses, except for those obtained from the time-course, which were analyzed with repeated-measures ANOVA. A p value of <0.05 is considered statistically significant.

References

