Vitamin D Supplementation and Cardiovascular Disease Risk

Erin D. Michos, MD; Roger S. Blumenthal, MD

Many studies, but not all, have shown that low bone density is associated with increased cardiovascular disease (CVD) risk. Vitamin D deficiency is common in the elderly and is associated with osteoporosis; however, the association of endogenous 25-OH vitamin D (25-OH D) levels with CVD events is controversial. CVD rates are higher during winter seasons and at increased geographic latitudes where average serum vitamin D levels are lowest. Low 25-OH D levels have been found in stroke and heart failure patients. Moreover, 25-OH D deficiency is associated with hypertension, obesity, glucose intolerance, and the metabolic syndrome, which may be responsible, at least in part, for its association with increased CVD risk.

Although vitamin D supplementation improves bone strength, elevated serum vitamin D levels may be associated with lower levels of vascular calcification. In subjects at moderately high risk for coronary heart disease, endogenous serum vitamin D levels were inversely correlated with the extent of coronary artery calcification as determined by cardiac computed tomography. Vitamin D also has intriguing antiinflammatory properties that have potential therapeutic benefit in several autoimmune diseases and allograft rejection. In 2 small clinical trials, vitamin D supplementation lowered C-reactive protein levels. Additionally, 1,25(OH)2D induces relaxation of vascular smooth muscle cells and downregulation of renin production by the kidneys. Finally, the observation of reduced mortality risk with 1,25(OH)2D supplements among patients with renal failure supports a possible CVD protective role of vitamin D. Accordingly, it is reasonable to hypothesize that vitamin D supplementation may lower CVD risk.

In this issue of Circulation, Hsia et al present the results from the Women’s Health Initiative (WHI), the first large randomized clinical trial evaluating vitamin D supplementation and CVD risk. This study of 36,282 postmenopausal women randomized to placebo or calcium carbonate 500 mg with 25-OH D, 200 IU twice daily reported no treatment effect on coronary or cerebrovascular risk over a 7-year period. Although the findings alleviated concerns that calcium and vitamin D supplementation taken to improve bone health may cause adverse CVD consequences, they have dampened enthusiasm about decreasing CVD risk with supplementation.

Several possibilities may explain the discrepancies between the earlier observational studies and the WHI study. First, as discussed in the present study, the investigators may have used an inadequate dose of vitamin D. The current recommended daily allowance is 200 IU for adults 20 to 50 years of age, 400 IU for adults 51 to 69 years of age, and 600 IU for adults ≥70 years. However, the average older adult needs at least 800 IU vitamin D daily to achieve a serum 25-OH D concentration sufficient to maximally suppress parathyroid hormone levels, and older adults with dark skin and limited sun exposure may require ≥2000 IU daily. Although full-body sun exposure provides 10,000 IU vitamin D per day, nowadays most people spend little time in the sun. Thus, some experts argue that the current recommended daily allowance recommendations for 25-OH D are woefully inadequate. Schleithoff et al reported that patients with heart failure treated with 2000 IU/d vitamin D experienced a reduced serum concentration of tumor necrosis factor (an inflammatory cytokine) and an increased concentration of interleukin-10 (antiinflammatory cytokine). Witte et al, using smaller doses of vitamin D (400 IU/d), were unable to demonstrate a beneficial effect on the levels of cytokines in patients with heart failure. Thus, treatment with vitamin D doses higher than the recommended daily allowance may be required to reduce CVD risk.

Second, placebo-treated patients in the WHI trial were allowed to take calcium and/or vitamin D supplements, which may have led to attenuation of the effect of the active treatment. In fact, mean vitamin D consumption at baseline was 368±266 IU/d in the placebo group.

Third, only patients at high risk for suffering a CVD event or those with vitamin D deficiency may benefit from vitamin D supplementation. Hsia et al reported that women with higher body mass index and multiple coronary heart disease risk factors had a lower risk for CVD events with calcium/vitamin D supplementation than with placebo. Individuals with obesity have reduced endogenous vitamin D levels; thus, increasing vitamin D levels in these patients may be beneficial, as opposed to individuals whose serum vitamin D level is normal. Unfortunately, the prevalence of vitamin D deficiency in the WHI patients is unknown because serum levels were not assessed before treatment. Additional studies are needed to determine whether patients with vitamin D defi-
ciency experience a reduction in CVD events with supple-
ment therapy.

Finally, although there may be an association between low
25-OH D levels, subclinical atherosclerosis, and CVD risk
factors, vitamin supplementation may not alter this process.
The absence of an improvement in clinical outcomes with
supplementation may be similar to that observed with homocys-
tetine, in which altering the serum concentration with folate and B vitamins does not lower CVD risk. Likewise, the
results from this vitamin D clinical trial echo similar studies
regarding supplementation with the antioxidant vitamins A, C, and E and beta-carotene; the association with reduced
CVD risk seen in observational studies failed to be demon-
strated in randomized clinical trials.

Nevertheless, several interesting observations emerge from
the study by Hsia et al. First, vitamin D supplementation was
associated with a smaller increase in low-density lipoprotein
cholesterol, waist circumference, and weight over time com-
pared with placebo but a slightly greater increase in blood
pressure. Second, women with self-reported statin use were at
lower risk for stroke if assigned to calcium/vitamin D supple-
mant. This finding deserves further study because it has been hypothesized that statins may activate vitamin D
receptors.19 Third, most of the women enrolled in the study
were white (83%), and whether vitamin D supplementation
may beneficially affect CVD risk in black and Hispanic
women, who generally have significantly lower levels of
endogenous 25-OH D levels than white women, is
unknown.20

The WHI study findings make it less likely that we will
eventually improve CVD outcomes with vitamin D supple-
mants. Nevertheless, the potential association of low vitamin
D levels with inflammation and CVD risk is provocative, and
questions remain as to whether supplementation at higher
doses may be required to lower future cardiovascular risk.

Disclosures

Dr Blumenthal has received clinical research support from Merck,
Pfizer, and General Electric that is not relevant to the content of this
editorial. Dr Michos reports no conflicts.

References

1. Von der Recke P, Hansen MA, Hassager C. The association between low
1999;106:273–278.
2. Samelson EJ, Kiel DP, Broe KE, Zhang Y, Cupples LA, Hannan MT,
Wilson PW, Levy D, Williams SA, Vaccarino V. Metacarpal cortical area
and risk of coronary heart disease: the Framingham study. Am J Epi-
Serum 25-hydroxyvitamin D3 levels are elevated in South Indian patients
infarction is inversely associated with plasma 25-hydroxyvitamin D3
5. Zittermann A, Schleithoff SS, Koerfer R. Putting cardiovascular disease
and vitamin D insufficiency into perspective. Br J Nutr. 2005;94:
483–492.
6. Poole KE, Loveridge N, Barker PJ, Halsall DJ, Rose C, Reeve J,
Warburton EA. Reduced vitamin D in acute stroke. Stroke. 2006;37:
243–245.
7. Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Koerfer R,
Stehe. Low vitamin D status: a contributing factor in the pathogenesis
8. Hypponen E, Power C. Vitamin D status and glucose homeostasis in the
2244–2246.
10. Watson KE, Abrolat ML, Malone LL, Hoeg JM, Doherty T, Detrano R,
Demer LL. Active serum vitamin D levels are inversely correlated with
11. Mathieu C, A dorini L. The coming of age of 1,25 dihydroxyvitamin D3
analogs as immunomodulatory agents. Trends Mol Med. 2002;8:
174–179.
12. Timms PM, Mannan N, Hitman GA, Noonan K, Mills PG,
Syndercombe-Court D, Aganna E, Price CP, Boucher BJ. Circulating
MMP9, vitamin D and variation in the TIMP-1 response with VDR
genotype: mechanisms for inflammatory damage in chronic disorders?
Pourez L, Bouillon R. Bone turnover in prolonged critical illness: effect
14. Teng M, Wolf M, Ofstun MN, Lazarus JM, Hernan MA, Camargo CA,
Thadhani R. Activated injectable vitamin D and hemodialysis survival: a
15. Hsia J, Heiss G, Ren H, Allison M, Dolan NC, Greenland P, Heckbert SR,
Johnson KC, Manson JE, Sidney S, Trevisan M; for the Women’s Health
Initiative Investigators. Calcium/vitamin D supplementation and cardio-
16. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concen-
Koerfer R. Vitamin D supplementation improves cytokine profiles in
patients with congestive heart failure: a double-blind, randomized,
18. Witte KK, Nikitin NP, Parker AC, von Haehling S, Volk HD, Anker SD,
Clark AL, Chlad JD. The effect of micronutrient supplementation on
quality of life and left ventricular function in elderly patients with chronic
19. Grimes DS. Are statins analogues of vitamin D? Lancet. 2006;368:
83–86.
20. Zadhish A, Tareen N, Pan D, Norris K, Martins D. The prevalence of
hypovitaminosis D among US adults: data from the NHANES III. Ethn

Key Words: Editorials ■ calcium ■ cardiovascular diseases ■ prevention
■ risk factors ■ vitamin D
Vitamin D Supplementation and Cardiovascular Disease Risk
Erin D. Michos and Roger S. Blumenthal

Circulation. 2007;115:827-828
doi: 10.1161/CIRCULATIONAHA.106.686238

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/115/7/827

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/