Degenerating Heart Valves
Fill Them up With Filamin?

Konstantinos Charitakis, MD; Craig T. Basson, MD, PhD

The intellect is always fooled by the heart.
- La Rochefoucauld

Myxoid valvular heart dystrophies are a frequent cause of valvular diseases. They affect approximately 3% of the population and are the most common cause of isolated mitral regurgitations that require surgical repair.1,2 These valvular diseases are a heterogeneous group of disorders and include isolated nonsyndromic valvular diseases, such as idiopathic mitral valve prolapse and the X-linked myxomatous valvular dystrophy (XMVD), and syndromic entities, such as Marfan syndrome. In this issue of Circulation, Kyndt et al3 report their surprising finding that specific mutations in filamin A (FLNA), a gene previously associated primarily with neurological and skeletal disorders, actually cause XMVD.

XMVD is a rare form of inherited nonsyndromic valvular dystrophy that was identified more than 30 years ago by Monteleone and Fagan.4 Initial reports suggested that only men could be affected, but a subsequent study revealed that the disease has heterogeneous presentations and that women can have milder manifestations.5 Histologically, the valves classically display abnormalities of myxomatous degeneration, with fragmentation of collagen bundles within the valve fibrosa and accumulation of proteoglycan and secondary calcification. The clinical spectrum of XMVD ranges from isolated mild valve defects to severe multivalvular lesions, but XMVD usually affects the mitral and/or aortic valve. The result is mitral valve prolapse and mitral and/or aortic regurgitation. Affected individuals are usually asymptomatic until valvular lesions progress to significant hemodynamic impairment and heart failure. Complications can include endocarditis, spontaneous chordal rupture, and sudden death.5,6

Mutations of fibrillin and collagen genes have been correlated with syndromic cases of myxoid valvular heart dystrophies (eg, as part of Marfan and Ehlers–Danlos syndromes),7,8 but until now, no specific gene had been identified for nonsyndromic valvular dystrophies. Idiopathic mitral valve prolapse exhibits an autosomal dominant inheritance with reduced penetrance and variable expressivity. It has been linked to 3 different loci, at 16p11-p12, 11p15.4, and, recently, 13q31-32.9,10,11 In 1998, Kyndt et al12 mapped XMVD to chromosome Xq28 in a large French family. In this issue of Circulation, Kyndt et al3 identify FLNA mutations in 4 unrelated families with XMVD. Their demonstration that FLNA mutations can cause nonsyndromic myxomatous valvular dystrophy provides novel insight into the origins of cardiovascular defects.

Filamins (A, B, and C) were first described as nonmuscle actin-binding proteins. They are large cytoplasmic proteins consisting of an amino-terminal actin-binding domain and a rodlike domain of 24 repeated antiparallel beta-sheets interrupted by 2 flexible loops that form hinge structures. More than 30 different proteins have been reported to interact with the filamins, suggesting that filamins have a wide role as structural components of the cytoskeleton. Through interactions with both actin and membrane proteins, filamins link the cytoskeleton to the plasma membrane and are believed to be essential in cell motility and membrane stability.

Many of the filamin A interacting proteins are receptors for critical cellular signaling molecules. For instance, the transforming growth factor-β (TGF-β) receptor–activated Smads and the dopamine receptor interact with filamin A. Thus, FLNA is implicated in the regulation of different cellular signaling pathways. FLNA gene defects have previously been associated with developmental disorders of the brain and skeleton.13,14

FLNA mutations were initially identified in patients with an X-linked brain malformation called periventricular heterotopia (PH). In PH, neurons fail to migrate to the correct cortical site during early brain development. The cardinal clinical manifestation is epilepsy presenting during the second decade of life. Perhaps foretelling the new findings of Kyndt et al,3 some women with PH also exhibit congenital cardiovascular abnormalities such as persistent ductus arteriosus and aortic aneurysms. PH is largely diagnosed in women who give birth to few male offspring and who experience miscarriages. This observation suggests X-linked dominant inheritance with prenatal lethality of the hemizygous males. Although FLNA missense mutations can be seen, PH is generally believed to reflect loss of function of one FLNA allele with decreased FLNA dosage.15,16

Interestingly, missense mutations clustered in a unique FLNA domain cause a spectrum of distinct phenotypes that comprise a series of syndromes referred to as otopalatodigital syndrome types 1 and 2, frontometaphyseal dysplasia, and...
of the gene, and each replaces a nonpolar amino acid with a polar one within the first, fourth, or fifth repeats. The authors suggest that this change in polarity could cause a significant change in the structural conformation of the beta-pleated sheets of the FLNA protein and could impair binding with other protein partners. On the other hand, the 1944 bp FLNA deletion that Kyndt et al. identified produces a truncated protein that lacks the repeats 5 to 7. Although the number of affected individuals in the relevant family is small, it is interesting to note that the newly produced, truncated FLNA protein causes a polypevalval phenotype in the 2 affected individuals. Further analyses of these patients will highlight the differences in disease severity produced by FLNA-point mutations versus this deletion.

Given that many proteins bind filamin A, it seems reasonable to hypothesize that specific disease phenotypes are driven by the effect of individual FLNA mutations on interactions with different protein partners during embryonic development. To fully appreciate the requirements for filamin A in cardiac valvular morphogenesis, it will be necessary to define the protein(s) that interact with filamin A during cardiogenesis and to dissect the contribution of repeats 1 to 7 in these interactions. During heart valve formation, a subset of endothelial cells overlying the future valve site are programmed to delaminate, differentiate, and migrate into cardiac jelly through a process referred to as endothelial–mesenchymal transformation. Locally expanded swellings of cardiac jelly and mesenchymal cells (referred to as cardiac cushions) undergo extensive remodeling to form the heart valves. Several ligands and signaling pathways are implicated in this process, including vascular endothelial growth factor, NfATc1, Notch, Wnt/beta catenin, BMP, TGF-β, ErbB, and NFI/Ras. TGF-β interacts with several of these other pathways to induce endothelial–mesenchymal transformation of epithelial cells during normal embryonic development of the heart. Filamin A coordinates localization and activation of TGF-β receptor–activated Smads, particularly Smad2, to act as a positive regulator of TGF-β signaling. One potential mechanism underlying cardiac valvular dysmorphology could involve dysregulated/disrupted interaction of Smads with filamin A and inhibition of endothelial–mesenchymal transformation via perturbation of the TGF-β signaling.

As previously noted, women with PH can be afflicted with cardiac defects such as persistent ductus arteriosus and aortic aneurysms. Men with PH are rare but can exhibit severe, usually lethal, vascular malformations. Given the identification of TGF-β receptor mutations in some aneurysm syndromes, and the association of Smads with filamin A, the TGF-β pathway is an attractive candidate for inducing both valvular and vascular malformations. The dosage of filamin A and TGF-β activity may require precise regulation. Myxomatous mitral valves found in fibrillin-1–deficient mice (which model Marfan syndrome) display excessive TGF-β activation and upregulated expression of FLNA. It remains to be seen whether the mutations described by Kyndt et al. activate or inactivate filamin A–mediated signaling.

Future research on filamin A and TGF-β signaling holds great promise for deciphering valvular diseases. On the basis of genetic analyses of TGF-β signaling disorders, clinical
trials are now beginning to test new pharmacological inter-
ventions for aortic aneurysms. The opportunity to integrate
filamin A and events in the cytoskeleton with the TGF-β
signaling pathway may present exciting new therapeutic
targets for patients with valvular diseases.

Disclosures

None.

References

1. Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL,
Lehman B. Benign EJ. Prevalence and clinical outcome of mitral-valve
2. Waller BF, Morrow AG, Maron BJ, Del Negro AA, Kent KM, McGrath
FJ, Wallace RB, McIntosh CL, Roberts WC. Etiology of clinically
isolated, severe, chronic, pure mitral regurgitation: analysis of 97 patients
over 30 years of age having mitral valve replacement. Am Heart J.
Toquet C, Roy E, McGregor L, Lynch SA, Newbury-Ecob R, Tran V,
Young I, Trochu J-N, Le Marec H, Schott J-J. Mutations in the gene
encoding filamin A as a cause for familial cardiac valvular dystrophy.
Circulation. 2007;115:40–49.
4. Monteleone PL, Fagan LF. Possible X-linked congenital heart disease.
5. Trochu JN, Kyndt F, Schott JJ, Gueffet JP, Probst V, Benichou B, Le
Marec H. Clinical characteristics of a familial inherited myxomatous
valvular dystrophy mapped to Xq28. J Am Coll Cardiol. 2000;35:
1890–1897.
6. Towbin JA. Toward an understanding of the cause of mitral valve
7. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM,
Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G,
Meyers DA, Francomano CA. Marfan syndrome caused by a recurrent de
Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syn-
9. Disse S, Abergel E, Berrebi A, Houet AM, Le Heuzey JY, Diebold B,
Guize L, Carpenterie A, Corvol P, Jeunemaitre X. Mapping of a first locus
for autosomal dominant myxomatous mitral-valve prolapse to chromo-
RA, Slagenhaupt SA. A locus for autosomal dominant mitral valve
prolapse on chromosome 11p15.4. Am J Hum Genet. 2003;72:
1551–1559.
Slagenhaupt SA, Levine RA. New locus for autosomal dominant mitral
valve prolapse on chromosome 13: clinical insights from genetic studies.
12. Kyndt F, Schott JJ, Trochu JN, Baranger F, Herbert O, Scott V,
Fressinaud E, David A, Moisan JP, Boulhour JB, Le Marec H, Benichou
B. Mapping of X-linked myxomatous valvular dystrophy to chromosome
13. Feng Y, Walsh CA. The many faces of filamin: a versatile molecular
scaffold for cell motility and signalling. Nat Cell Biol. 2004;6:
1034–1038.
with Smads and regulates transforming growth factor-β signalling. J Biol
15. Fox JW, Lamperti ED, Eksigolu YZ, Hong SE, Feng Y, Graham DA,
Scheffer IE, Dobyns WB, Hiroa BA, Radtke RB, Berkovic SF, Hutton-
locher PR, Walsh CA. Mutations in filamin 1 prevent migration of
16. Sheen VL, Dixon PH, Fox JW, Hong SE, Kinton L, Sisodiya SM, Duncan
DS, Dubeau F, Scheffer IE, Schachter SC, Wilner A, Henchy R, Crino P,
Kamu K, DiMario F, Berg M, Kuzniecky R, Cole AJ, Bromfield E,
Biber M, Schomer D, Whelos J, Silver K, Mochida GH, Berkovic SF,
Andermann F, Andermann E, Dobyns WB, Wood NW, Walsh CA.
Mutations in the X-linked filamin 1 gene cause periventricular nodular
heterotopia in males as well as in females. Hum Mol Genet. 2001;10:
1775–1783.
17. Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S,
Jackson DJ, Cross SH. Cardiac malformations and midline skeletal defects
18. Armstrong EJ, Bischoff J. Heart valve development: endothelial cell
19. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Panu H,
De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE,
Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron
DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC. Aneurysm
20. Ng CM, Cheng A, Myers LA, Martinez-Muirillo F, Jie C, Bedja D,
Gabrielson KL, Haasloden JM, Mecham RP, Judge DP, Dietz HC. TGF-
β-dependent pathogenesis of mitral valve prolapse in a mouse model of

Key Words: Editorials | valves | mitral valve | heart diseases
Degenerating Heart Valves: Fill Them up With Filamin?
Konstantinos Charitakis and Craig T. Basson

Circulation. 2007;115:2-4
doi: 10.1161/CIRCULATIONAHA.106.663237

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/115/1/2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/