Reducing Delay in Seeking Treatment by Patients With Acute Coronary Syndrome and Stroke

A Scientific Statement From the American Heart Association Council on Cardiovascular Nursing and Stroke Council

Debra K. Moser, DNSc, RN, FAHA; Laura P. Kimble, PhD, RN, FAHA; Mark J. Alberts, MD, FAHA; Angelo Alonzo, PhD; Janet B. Croft, PhD; Kathleen Dracup, DNSc, RN, FAHA; Kelly R. Evenson, PhD; Alan S. Go, MD; Mary M. Hand, MSPH, RN, FAHA; Rashmi U. Kothari, MD, FAHA; George A. Mensah, MD, FAHA; Dexter L. Morris, PhD, MD; Arthur M. Pancioli, MD, FAHA; Barbara Riegel, DNSc, RN, CS, FAHA; Julie Johnson Zerwic, PhD, RN, FAHA

Abstract—Patient delay in seeking treatment for acute coronary syndrome and stroke symptoms is the major factor limiting delivery of definitive treatment in these conditions. Despite decades of research and public education campaigns aimed at decreasing patient delay times, most patients still do not seek treatment in a timely manner. In this scientific statement, we summarize the evidence that (1) demonstrates the benefits of early treatment, (2) describes the extent of the problem of patient delay, (3) identifies the factors related to patient delay in seeking timely treatment, and (4) reveals the inadequacies of our current approaches to decreasing patient delay. Finally, we offer suggestions for clinical practice and future research. (Circulation. 2006;114:168-182.)

Key Words: AHA Scientific Statements | acute coronary syndrome | stroke | delivery of health care

Despite major advances in identifying effective treatments for heart attack and stroke, there are substantial difficulties in applying these treatments to care. The weak link in the chain of events leading to prompt and effective treatment is patient delay in seeking care. More than 50% of the 1.2 million people who suffer an acute myocardial infarction (AMI) or coronary death each year in the United States die in an emergency department (ED) or before reaching a hospital within an hour of symptom onset.1 About 700,000 individuals will have a stroke each year, 167,000 of those who have strokes will die, and more will suffer a major disability.1 Of the stroke deaths that occur each year, about half occur before the patient reaches the hospital.2 Many of these deaths and significant disability could be prevented if patients received earlier treatment.1,3

Although the benefits of early treatment of heart attack and stroke are clear, only a minority of eligible patients receive optimally timed treatment for their symptoms because of delay in seeking care. The development and use of appropriate interventions to decrease treatment-seeking delay by patients could produce important gains in reducing death and disability from heart attack and stroke. Unfortunately, efforts to date to develop effective interventions have met with disappointing results.4–6 Accordingly, the purpose of this statement is to summarize the evidence that demonstrates the benefits of early treatment,1,2 describes the extent of the problem of patient delay,3 identifies the factors related to patient delay in seeking timely treatment,4 and reveals the inadequacies of our current approaches to decreasing patient delay.4 Finally, we offer suggestions for clinical practice and future research.

Benefits of Early Treatment

The burden of cardiovascular disease is growing worldwide. Ischemic heart disease is the No. 1 cause of death in the
United States and other developed countries and is projected to emerge as the No. 1 cause of death worldwide by the year 2020.1,7 Stroke is the No. 3 cause of death and a major cause of disability.1

Delay to treatment for acute coronary syndromes (ACS) and stroke is a major contributor to the morbidity burden of cardiovascular disease because a significant number of individuals who delay seeking care develop potentially preventable complications.8–10 The disability associated with stroke and with heart failure after AMI is largely a consequence of infarct size, and lack of timely treatment is a major determinant of increased infarct size in both AMI and stroke.8,11,12 Unfortunately, most individuals who experience symptoms delay substantially before seeking treatment.13–27

Acute Coronary Syndrome

Institution of definitive treatment for ACS should begin within 1 hour of symptom onset. This goal is based on data that demonstrate that increased morbidity and mortality are associated with increased time from symptom onset to treatment.9,11,16,28–31 Delay has been an important predictor of patient morbidity and mortality outcomes in numerous clinical trials of reperfusion therapy.9,11,29,32,33 Survival rates are improved by up to 50% if reperfusion is achieved within 1 hour of symptom onset and by 23% if it is achieved within 3 hours of symptom onset.34 In one trial, delaying treatment by 30 minutes reduced average life expectancy by 1 year.35 In another recent study of 565 patients undergoing angioplasty for AMI, those who received the first balloon inflation within 60 minutes of arrival at the hospital had a 30-day mortality rate of 1.0%, but for every 15 minutes longer than 1 hour the odds of death increased 1.6 times.11

Delay also affects morbidity. A shorter interval between symptom onset and treatment is associated with better cardiac function.34,36 The level of cardiac function is the best predictor of morbidity, as well as of mortality.35,37,38 Thus, early treatment with reperfusion, as well as with other agents such as angiotensin-converting enzyme inhibitors, β-blockers, and aspirin, can reduce mortality and morbidity.

Acute Ischemic Stroke

Delivering the earliest possible definitive treatment for acute ischemic stroke is a major goal of clinicians caring for stroke patients. In the United States, the use of fibrinolytics for ischemic stroke received Food and Drug Administration approval on June 18, 1996. Subsequent trials demonstrated that shorter time to fibrinolysis substantially improved clinical outcome in acute ischemic stroke patients. National Institute for Neurological Disorders and Stroke trials demonstrated that treatment within 3 hours of symptom onset is beneficial for patients with acute ischemic stroke.39 Even within the 3-hour window, benefit from fibrinolysis decreases as time from symptom onset increases (Figure).40 An analysis of 6 large, randomized, controlled trials of intravenous fibrinolysis corroborated these findings and indicated that the optimal administration time is within 90 minutes of symptom onset.41

Delay Phases

Different treatment-seeking delay phases have been defined and evaluated for ACS, and the study of stroke care could benefit from a similar approach. These phases include the time intervals from (1) symptom onset to the decision to seek medical attention, (2) from the decision to seek medical attention to first medical contact, and (3) from first medical contact to hospital arrival. Transportation to the hospital consumes only a very small proportion of prehospital delay.42–45 Once patients arrive for care, the in-hospital phase of delay to treatment is small compared with the other phases.46 The longest phase of delay continues to be the time from symptom recognition to the decision to seek care, and it is in this phase that the most improvement could be achieved.

Acute Coronary Syndrome

The delay in seeking treatment for ACS has changed little in recent decades, despite increased public awareness of the benefits of reperfusion therapy.15,47 In the United States, median delay time from symptom onset to hospital arrival ranges from 1.5 to 6.0 hours.9,14,42,48 Data from the Atherosclerosis Risk in Communities Study indicate no improvement in delay from 1987 through 2000: 49.5% of patients delayed >4 hours.49 Even delay times at the short end of the time-to-treatment spectrum show that at least 50% of patients delay ≥1.5 hours in seeking treatment, putting them outside the time frame to receive optimum benefit from reperfusion.
Prehospital delay time is also a significant problem worldwide.13–15 For example, in one study conducted in Australia, median delay time was 6.4 hours.13 In many European countries such as Britain and Sweden, prehospital delay times are notably longer than those reported in the United States.50

Acute Ischemic Stroke

A comprehensive review of studies published from January 1981 to March 2000, focusing on delay in seeking treatment among acute ischemic stroke patients, revealed findings of prehospital delay that were similar to those for ACS patients. In the majority of studies reviewed, median delay time ranged from 3 to 6 hours.1,51 Despite this, the primary focus of healthcare professionals and researchers to date has been on reducing in-hospital treatment delays (such as by developing stroke protocols, stroke teams, and optimizing referral patterns).52

Who Delays and Why?

More than 100 studies have been conducted over the past 3 decades to identify characteristics predictive of increased patient delay in response to symptoms of ACS and acute ischemic stroke.42,51,53 Most investigators have concentrated on examining the relationship of sociodemographic and clinical factors to delay.54 This is important work because these variables are essential to any understanding of how different social groups react to symptoms and for identifying high-risk groups needing educational and clinical intervention.55 Although the literature on factors related to delay in seeking treatment for ACS symptoms is more extensive and in depth than that for acute ischemic stroke, few investigators in either area have examined the impact of social, cognitive, and emotional factors on delay.56,57 Table 1 summarizes the significant trends in past research.

Table 1: Factors That Affect Prehospital Delay in Patients With ACS and Ischemic Stroke Symptoms

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect on Delay in ACS</th>
<th>Effect on Delay in Acute Ischemic Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographic characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older age</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Female sex</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Lower educational level</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Black or Latino race</td>
<td>Increase</td>
<td>Increase</td>
</tr>
<tr>
<td>Low socioeconomic status</td>
<td>Increase</td>
<td>Increase or no difference</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of angina</td>
<td>Increase</td>
<td>Not studied</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td>No difference or increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>History of atrial fibrillation</td>
<td>Not studied</td>
<td>No difference</td>
</tr>
<tr>
<td>Smoking</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>Increase</td>
<td>No difference</td>
</tr>
<tr>
<td>Prior stroke or transient ischemic attack</td>
<td>Not studied</td>
<td>Decrease</td>
</tr>
<tr>
<td>Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living alone or being alone at symptom onset</td>
<td>Increase</td>
<td>Increase</td>
</tr>
<tr>
<td>Consultation with physician</td>
<td>Increase</td>
<td>Increase</td>
</tr>
<tr>
<td>Consultation with a family member versus a nonrelative</td>
<td>Increase</td>
<td>Increase</td>
</tr>
<tr>
<td>Consultation with a nonrelative</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
<tr>
<td>Cognitive and emotional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge of symptoms or risk factors</td>
<td>No difference</td>
<td>No difference</td>
</tr>
<tr>
<td>Appraisal of symptoms as not being serious or urgent</td>
<td>Increase</td>
<td>Increase</td>
</tr>
<tr>
<td>Waiting for symptoms to go away</td>
<td>Increase</td>
<td>Not studied</td>
</tr>
<tr>
<td>Concern about troubling others</td>
<td>Increase</td>
<td>Not studied</td>
</tr>
<tr>
<td>Fearing the consequences of seeking help</td>
<td>Increase</td>
<td>Not studied</td>
</tr>
<tr>
<td>Being embarrassed about seeking help</td>
<td>Increase</td>
<td>Not studied</td>
</tr>
<tr>
<td>Correct attribution of symptom origin</td>
<td>Decrease</td>
<td>Not studied</td>
</tr>
<tr>
<td>Self-treatment</td>
<td>Increase</td>
<td>Increase</td>
</tr>
</tbody>
</table>
Acute Coronary Syndrome

Sociodemographic Factors
Old age, female sex, low education level, low socioeconomic status, and black race are associated with increased delays in seeking treatment.16,42,53,58–60 Special mention of the impact of race/ethnicity on treatment-seeking delay is warranted because of the complexity of this issue. Data from single-center studies,61 large multicenter trials,55 and from the National Registry of Myocardial Infarction 2 (NRMI 2)58 have demonstrated longer prehospital delay among black patients than among white patients. Latino/Hispanic persons make up the fastest-growing minority group in the United States, but relatively few investigators have examined whether or not differences exist in prehospital delay among this diverse group. Although Latino/Hispanic persons had significantly greater median prehospital delay than did whites (4 versus 2 hours) in one study,62 other large studies failed to show this difference.55,63

Although few studies have examined prehospital delay among black and Latino/Hispanic patients, even fewer of adequate sample size have examined this delay among Asian/Pacific Islanders and Native Americans, whether overall or across their various major subgroups. The largest assessment to date comes from the NRMI 2 registry, where no differences in prehospital delay were found between patients who were Asian/Pacific Islander Americans and those who were white.63 On the other hand, median prehospital delay times were higher among Native Americans in this registry than among whites.64

Why might racial or ethnic differences in treatment-seeking behavior exist? Data conflict with regard to whether the clinical presentation of ACS differs among white versus black,63,65 Latino/Hispanic,63 Asian/Pacific Islander,63 and Native American66 patients. Adequate familiarity with possible symptoms of ACS is generally low among adults and may vary by race or ethnicity.57,68 Perceptions of chest pain or ischemic symptoms and their severity may differ in blacks from those in whites and other groups.69 Cultural differences in symptom response may accentuate other factors that contribute to differential use of emergency services.70,71 Trust in physicians and medical institutions,72 satisfaction with previous medical care,73 perceived access to necessary services,74 perceived discrimination,31,38,42,43,75,76 and effectiveness of patient–provider communication likely add to the challenges of optimizing patient decision-making while they complicate attempts to address disparities in health care.

Clinical Factors
The preponderance of evidence indicates that having a prior AMI does not facilitate care seeking.77 In general, chronic health conditions such as diabetes, hypertension, and high cholesterol, as well as high-risk behaviors such as smoking, are associated with additional delay in seeking treatment.43 A history of heart failure or angina also appears to delay care seeking.

As might be expected, patients reporting more acute symptoms58 and those in cardiogenic shock exhibit shorter delays before seeking care than those with less severe symptomatology.13,42,50,56,77–79 Patients who assess their symptoms as relatively benign are more likely to delay the care-seeking process.80

Social, Cognitive, and Emotional Factors
The decision to seek treatment is heavily influenced by patients’ social context, cognitive processes, and emotional reactions, but these aspects of delay remain underexplored. One of the earliest studies on patient delay in seeking treatment during AMI incorporated both cognitive and emotional variables,31,82 but research in the 3 decades since this study was published has included these factors only sporadically.

People routinely participate in situations where they experience organized social life and the intersection of social, psychological, and biophysical features of ongoing life. Social commitments can outweigh the impulse to seek immediate care, even for acute cardiac symptoms. Situations and circumstances constrain individual behavior because we are committed to them; they represent our sense of social reality, and our identities are invested in them. Although healthcare providers can find it incomprehensible that patients would fail to immediately seek care at the onset of ACS symptoms, individuals often value social situations—in all their complexity and challenge—too highly to immediately terminate them.

A major social and situational factor is an individual’s location when symptoms begin. Onset of symptoms at home is associated with delayed hospital arrival.83 This association is especially significant, because almost three quarters of patients are at home when symptoms begin.38 The patient’s activity level at symptom onset is another situational factor: those resting or sleeping at symptom onset delay longer than those engaging in physical activity.38 As might be expected, long travel distances to the hospital,59 rural residence,82 and traveling home in response to symptoms are all associated with longer delays.16,38,84

Living alone84 and being alone at symptom onset82 are associated with longer delays in seeking care for ACS symptoms. Although being alone and at home at acute symptom onset increases delay,83 the vast majority of individuals are with someone when symptoms begin.85 Being with a companion promotes faster care seeking.82 The fastest response times are found in those who are with a coworker or a companion who is not a family member when symptoms begin.56,85 Family members (particularly spouses) often recommend strategies that increase delay.56,85

Anxiety or acknowledgment of the seriousness of symptoms is associated with reduced delay.86 In one study, no effect on delay was observed for patients’ perceived level of control over their personal health,87 whereas other investigators found that patients who believed their health was determined by chance (that is, they had low levels of health locus of control) were less likely to recognize their symptoms.88

Feelings of embarrassment have been shown to be significant factors in delay.56,79,83 The concern for social propriety delays care seeking because people do not want to trouble others about their symptoms.56,81 The potential for feeling
embarrassed increases when symptoms occur after business hours or on the weekend and when patients consider the possibility that their symptoms are not really serious. The experience of prior false alarms is associated with intentions to delay when future symptoms occur and with increased reticence to call emergency medical services (EMS). Cognitive factors, or interpretations and assessments of situations and circumstances, can contribute to delay, especially when a discrepancy exists between what an individual believes about symptoms of ACS and what he or she actually experiences. The mismatch between symptom expectations and actual experiences produced greater delay than sociodemographic or clinical factors in one study. Many patients reported being overwhelmed by their symptom experience because it did not resemble a typical “Hollywood heart attack,” as seen on television. Consistent with this finding, absence of chest pain and slow onset of acute symptoms delay care seeking. An evolving, cumulative event produces even more delay.

Patients who believe their symptoms are related to their heart seek care faster than those who attribute their symptoms to other causes. Patients’ failure to recognize that symptoms are heart related can be explained by lack of familiarity with the symptoms of ACS, but even patients who know the symptoms of AMI often delay seeking treatment. In fact, several investigators have documented that the US public is quite familiar with the association between chest pain and AMI. However, the public is less aware that ACS often presents with a constellation of symptoms, not just chest pain, and many people do not realize that the chest sensations of ACS are often not severe and may have qualities not typical of pain. Clearly, some individuals have trouble reconciling their actual symptoms with their preconceptions.

Symptom patterns appear to differ by gender, with women having less typical symptom patterns than men, which may contribute to women’s delay in seeking care. The mistaken belief that women are less likely to have an ACS event is held by both patients and physicians, also potentially contributing to delay. Conversely, perceiving oneself to be at risk can decrease delay in seeking care for ACS.

Another factor thought to affect delay is an individual’s knowledge of potential treatment options. Many patients have little understanding of the benefits of using EMS or of reperfusion therapies. Only 16% of AMI patients in one study knew about fibrinolytic therapy, but those patients sought treatment significantly sooner than patients who were not aware of this therapy. In a study that compared delay for physicians experiencing AMI to delay for nonphysicians experiencing AMI, median delay was substantially shorter for physicians (1.8 hours versus 4.9 hours). Physicians may have delayed less because they were aware of the time-dependent requirements for reperfusion therapies.

The concept of denial is commonly used to explain delay. However, the few investigators who have attempted to measure this phenomenon have found no relationship between denial and delay. Patients, however, who attempted to distract themselves from their symptoms delayed longer, and those who scored low on their ability to recognize emotions and bodily sensations also had longer delays. These findings suggest that it may be more appropriate to speak of indecision rather than denial. Indecision, circumstantial and more variable than denial, is defined as not knowing what to do and constructing and weighing options before taking action.

One natural coping response to indecision is waiting. When patients wait for symptoms to go away or wait for them to evolve into a highly recognizable pattern, substantial delay in seeking treatment occurs. Taking medications and other self-care strategies, very common with ACS symptoms, result in delays in seeking care. Self-treatment with prescription medication, including nitrates and nonprescription medications (for example, antacids), is a frequent cause of delay among AMI patients, including those with a history of AMI or angina. In 2 studies within the past decade, both the rate of medication use and the number of doses taken were positively correlated with delay in hospital arrival.

Healthcare Provider Contributions to Delay

A number of investigators have demonstrated that calling a physician’s office increases delay in seeking treatment. In fact, some have demonstrated that provider delay accounts for more time lost than patient delay in the prehospital period. This problem is even more profound when we consider that most individuals believe calling their doctor, not EMS, is the correct course of action. Reference toward physicians causes delays when symptoms occur during off hours. Persons who call a physician are less likely to use EMS. Patients who use EMS receive reperfusion therapy faster than those who do not.

Providers may believe that it is unnecessary to tell patients to call 911 because they assume patients already know to do so. Many physicians are unaware of, or fail to appreciate, the empirical evidence with regard to the consequences of patient delay.

Acute Ischemic Stroke

Sociodemographic Factors

In most studies of delay in seeking care for stroke symptoms, gender and age differences were not associated with prehospital delay. Socioeconomic factors, such as educational level, employment, and insurance status, were also unrelated to prehospital delay in most studies, whereas results were mixed for income level. Although race or ethnicity was unrelated to delay in many studies, some investigators found longer delays for blacks and for Asians and Pacific Islanders.

Clinical Factors

Prehospital delay is influenced by stroke symptoms because some stroke symptoms render the patient unable to call for help. In some studies, shorter delays were associated with an array of factors, including sudden onset of symptoms and impaired consciousness. Greater stroke severity, measured in a variety of ways, was associated with shorter prehospital delays in most studies. But not all studies. Findings on the differences in delay time by type of stroke are mixed. Although not shown with absolute
consistency, short prehospital delays were found with hemorrhagic stroke in most studies.20,24,26,114,118–120 A history of transient ischemic attack19 or prior stroke115 was related to shorter prehospital delay in 2 studies yet was unrelated to prehospital delay in many more studies.19–21,25,110,113,114,116–118 Other preexisting comorbidities were generally unrelated to prehospital delay for stroke, including AMI,19,20 congestive heart failure,20 atrial fibrillation,22 and diabetes.19 Risk factors for stroke, such as hypertension,19,24 hypercholesterolemia,24 alcohol consumption,19 and smoking,19,22,24 were also generally unrelated to prehospital delay.

Social, Cognitive, and Emotional Factors
Findings are inconsistent with regard to how the presence of witnesses to the onset of stroke symptoms affects prehospital delay. In some studies, prehospital delay was reduced when the witness, rather than the patient, identified the problem.112,120 In other studies, no impact on delay was evident on the basis of who recognized the problem as stroke.26,117 If the first action after symptom onset was to contact another person, including a family member or a physician, then prehospital delay was significantly longer than in cases where a different action was taken.25,26,120 Living alone or being alone when symptoms first occurred was associated with longer delays in some19,111 but not most studies.6,20,22,51,114,121 Use of EMS was associated with significantly shorter prehospital delay times,20,22,26,110–114,117,118,120

Patients’ familiarity with stroke warning signs, belief that symptoms are related to stroke, awareness that they have risk factors for stroke, and previous exposure to a stroke program appear to be unrelated to prehospital delays in seeking care.21,112,117 Knowing someone who had suffered a stroke was associated with shorter prehospital delay in one study117 but not in another study.112 However, as might be expected, prehospital delay was significantly longer when patients did not believe their stroke symptoms were serious and urgent.26,112,117

Greater delay occurred with nocturnal onset of symptoms.17,24,26,116,118–120 Weekend onset was unrelated to prehospital delay in 2 studies24,114 but associated with longer delays in 1 study.118 Greater distance between home and hospital was associated with longer delays in several studies25,114,120,122 but unrelated to delay in others.6,26,113,117–119

Healthcare Provider Contributions to Delay
As in the case of ACS, if a patient’s response to symptoms includes calling a physician, prehospital delay is longer.25,26,120 Few other aspects of healthcare provider behavior have been studied.

Differences Between Delay in Seeking Treatment for ACS and for Stroke

ACS and acute ischemic stroke have considerable pathophysiological overlap, and their procedures for treatment share the need to minimize the time from onset of symptoms to definitive management. Despite the many similarities, however, these disease processes are significantly different in terms of the median duration from symptom onset to presentation at a hospital. Delay from symptom onset to presentation is 2 to 3 times longer for acute ischemic stroke than for ACS.123 Understanding the factors leading to the different patterns of delay associated with ACS and acute stroke may have an impact on the design of potential interventions.

The primary clinical differences between ACS and acute ischemic stroke are the symptom complexes of the 2 diseases. One very important difference is that pain is frequently associated with ACS but is uncommon with stroke. Although the precise incidence of pain in ACS is unknown, the majority of patients with AMI likely have pain or discomfort.124 In contrast, pain is associated with only 8.7% of anterior circulation ischemic stroke cases and 15% of posterior circulation ischemic stroke cases.125 Pain is a motivating symptom. In ACS and acute stroke, the presence of severe pain is associated with decreased delay.22

Possibly the greatest area of difference between ACS and acute ischemic stroke is the greater likelihood of cognitive impairment in the stroke patient. Although most victims of ACS do not have acute changes in mental status, a large proportion of victims of acute stroke will have significant communicative, motor, or cognitive deficits. Each of these deficits can dramatically increase delay to medical care by necessitating the assistance of another individual. In the setting of acute stroke, 23% of patients have dysphasia, 77.4% have an acute upper limb motor deficit, and 18.7% have an altered level of consciousness.126 Thus, a large proportion of acute stroke victims have a disease-specific potential cause of delay in seeking treatment. This conclusion is further supported by the finding that stroke victims who were alone at the time of onset had a longer median prehospital delay compared with those who were not alone at onset.127

Finally, healthcare providers may contribute to the disparity in delay. Use of EMS reduces prehospital delay and is the optimum means of reaching care for patients with ACS. In many areas, however, stroke does not receive the same dispatch priority as ACS. Therefore, there may be an inherent bias toward greater delay for acute stroke victims over ACS victims. Moreover, the public perception of warning signs for acute stroke is considerably less advanced than for ACS.4,5 Although familiarity with acute stroke warning signs is improving, it lags considerably behind familiarity with the warning signs of ACS.6 In 2 surveys of the public’s knowledge of stroke warning signs, only 18% of respondents cited “doctors” as their primary source of stroke knowledge. More attention by physicians to educating their patients about stroke may help reduce delays. Thus, although many differences between stroke and ACS exist, the acute treatment of AMI has been defined in public consciousness 20 years longer than the acute treatment of stroke. Although the diseases are different, we can examine the efforts that have and have not been successful for ACS and apply the lessons that have been learned to the treatment of stroke.

Interventions to Reduce Prehospital Delays in Seeking Treatment

Acute Coronary Syndrome

Previous attempts to reduce patient delay in seeking treatment for ACS symptoms using broad-based community education
programs have yielded disappointing results,128 likely because of emphasis on simply providing information without attending to the complex cognitive, emotional, and social contexts in which treatment-seeking behavior occurs. In the vast majority of studies conducted over the past 3 decades, investigators have documented little or no decrease in patient delay from community education programs carried out in the media or by mass mailings on the topics of symptom recognition and early EMS access.4

The Rapid Early Action for Coronary Treatment (REACT) trial6,128 has been the most ambitious study to date designed to reduce delay in seeking treatment for ACS symptoms. REACT was a 4-year, multisite community intervention study funded by the National Heart, Lung, and Blood Institute (NHLBI) to test whether a community-based, multicomponent intervention of 18 months’ duration would reduce patient delay. The intervention included the following: (1) education of medical and nonmedical community leaders and agencies; (2) community education to promote awareness of heart attack symptoms and the need to call 911; (3) provider education to increase knowledge and promote delivery of patient education; and (4) patient education for high-risk patients and their families. No reduction in delay was observed as a result of the intervention, although an increase in EMS use occurred in the intervention communities. It should be noted that delay prior to the intervention was already lower than that seen in most communities.

Before conducting the REACT trial, the NHLBI implemented a phased-in approach to reducingprehospital delay. The primary focus was to educate healthcare professionals until future research provided answers for the Institute about approaches to educating the public.128,129 The authors of an early National Heart Attack Alert Program publication suggested that, although it may be desirable for all individuals to receive education about the signs and symptoms of AMI, resources available for this purpose should be directed toward reducing delay among those most likely to benefit—patients at high risk for an AMI.42

Patients with known coronary heart disease, clinical atherosclerotic disease of the aorta or peripheral arteries, or clinical cerebrovascular disease are at high risk for AMI or death.11–13 In fact, individuals who survive the acute stage of a heart attack have a chance of illness and death that is 1.5 to 15 times higher than that of the general population. The risk of another heart attack, sudden death, angina pectoris, heart failure, or stroke for both men and women in this group is substantial. Within 6 years of having a recognized heart attack, 18% of men and 35% of women will have another heart attack. Seven percent of men and 6% of women will experience sudden death.1 Such high-risk individuals are a significant proportion of the US population: some 12.9 million Americans have coronary heart disease. Thus, a defined and identifiable population of patients exists for

TABLE 2. Interventions to Reduce Prehospital Treatment-Seeking Delay in Stroke

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Dates</th>
<th>Location</th>
<th>Intervention</th>
<th>Major Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community based</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberts et al, 1992</td>
<td>1985-1989</td>
<td>Durham, NC</td>
<td>Public education through mass media; professional education of local</td>
<td>86% of cerebral infarction patients presented to facility <24 hours after</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ambulance personnel, local paramedics, and 3000 referring physicians.</td>
<td>onset vs 37% before intervention.</td>
</tr>
<tr>
<td>Barsan et al, 1994</td>
<td>1987-1989</td>
<td>12 hospitals in Ohio, Va,</td>
<td>Public education through mass media; professional education of paramedics</td>
<td>Mean delay time from symptom onset to hospital arrival declined from 3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and NY</td>
<td>stressing rapid assessment and transport of stroke patients with early</td>
<td>hours before intervention to 1.5 hours after intervention.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hospital notification.</td>
<td></td>
</tr>
<tr>
<td>Patient focused</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No studies to date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(excluding Seattle)</td>
<td></td>
<td>support responses.</td>
</tr>
<tr>
<td>Barsan et al, 1994</td>
<td>1987-1989</td>
<td>12 hospitals in Ohio, Va,</td>
<td>Public education through mass media; professional education of paramedics</td>
<td>Mean delay time from symptom onset to hospital arrival declined from 3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and NY</td>
<td>stressing rapid assessment and transport of stroke patients with early</td>
<td>hours before intervention to 1.5 hours after intervention.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hospital notification.</td>
<td></td>
</tr>
<tr>
<td>Zweifler et al, 1997</td>
<td>1995-1996</td>
<td>Mobile, Ala</td>
<td>Professional education of EMS personnel; stroke code system.</td>
<td>No preintervention data; 36% of ischemic stroke cases presented to hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>within 6 hours.</td>
</tr>
<tr>
<td>Harbison et al, 1999</td>
<td>1997-1998</td>
<td>Newcastle, UK</td>
<td>Rapid ambulance protocol (direct transport and admission to acute stroke</td>
<td>Mean delay from symptom onset to emergency room: 1 hour, 12 minutes for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>care unit).</td>
<td>ambulance protocol admission vs 6 hours for general practitioner’s admission.</td>
</tr>
</tbody>
</table>
 whom the mortality and morbidity associated with AMI could be reduced if they received effective education and counseling about the appropriate response to symptoms of an evolving AMI. Within this high-risk patient group, it is particularly important to focus on women and some minorities because these populations have longer reported delays before seeking care in response to AMI symptoms, yet they have been substantially underrepresented in this area of research.9–11,13

Acute Ischemic Stroke

A recent systematic review on the delivery of interventions to reduce prehospital and in-hospital delays in acute stroke care between 1981 and 2000 demonstrated a paucity of literature on effective interventions to reduce prehospital delay. Interventions included community-based interventions involving mass media and public education programs,130,131 interventions involving system changes to promote professional education programs,130–132 stroke teams and protocols,133 and ambulance protocols.133 On the basis of reviews of those studies and more recent reports (Table 2), it is apparent that further studies of effective interventions to reduce prehospital delay are needed in a variety of settings that would specifically target (1) the community at large; (2) high-risk patient populations, patient family members, and caregivers; and (3) the EMS and healthcare providers who are in a position to counsel and educate high-risk patients.

Public education through mass media can increase public awareness of stroke symptoms134 and reduce delay in presenting to the ED.130,131 Although their work was not designed as an intervention study, investigators in Cincinnati, Ohio, documented 91 episodes of stroke-related media coverage between 1995 and 2000 that may have contributed to significant improvements in community-level awareness of stroke symptoms.127 In the 2000 survey, the most frequently cited sources of knowledge about stroke were television (32%), magazines (24%), newspapers (22%), physicians (20%), and a family member with stroke (19%).127

To date, no published interventions have targeted high-risk patients with the goal of reducing prehospital delay for stroke (Table 2). Because individuals with hypertension are at risk for stroke and patients with a history of stroke are at risk for a recurrent stroke, these patients and their family members represent a sizable audience that could benefit from education during office visits. Those with hypertension, previous stroke, or transient ischemic attack are more likely to report knowledge of at least 1 stroke symptom.126,127 However, as in the case of patients with prior AMI, acute stroke victims with a history of previous stroke have longer prehospital delays.113

One study showed that, of the calls to activate EMS for stroke, >60% were made by family members and 18% by paid caregivers.135 To reduce the length of stroke delays, patient education interventions should address family and caregivers of high-risk patients, as well as the patients themselves.

Between 50% and 60% of all stroke patients arrive at the hospital by ambulance, and the mode of arrival significantly impacts length of delay and stroke outcome.20,110,111,113,136 Effective interventions to reduce prehospital stroke delay should address emergency dispatch personnel and EMS transport services.133,137 Emergency dispatch services must have a protocol that assigns a high priority for a possible stroke to ensure rapid transport.138 Early recognition and identification of stroke symptoms by EMS personnel and advance hospital notification of a possible stroke patient are also important in reducing delay.131,136 A nationwide survey of paramedics demonstrated that most EMS personnel are knowledgeable about stroke symptoms but are unaware of the therapeutic window for fibrinolysis.139 Continuing education and protocol updates on stroke identification can improve care.140 Researchers have advocated establishing stroke centers that could help shape EMS policies for triage of patients and consistently provide the best level of care.132,138 Development of a regional acute stroke protocol (that is, a coordinated regional system response that improves access to stroke care) could reduce prehospital delay if it incorporated EMS stroke protocols, as well.133 System policies would need to include documentation of a written plan for transporting and receiving stroke patients via EMS and evidence of cooperative educational activities.138,141

Future Directions

Emphasizing the importance of timely treatment, Dr John Rawles wrote, “The magnitude of the benefit from earlier fibrinolysis is such that giving fibrinolytic treatment to patients with acute myocardial infarction should be accorded the same degree of urgency as the treatment of cardiac arrest.”3 The same can be said of the timely treatment of acute stroke. Nonetheless, despite more than 2 decades of study, little progress has been made in reducing the delay in seeking treatment for ACS and stroke.

The following 4 major challenges need to be addressed by researchers and clinicians to move knowledge forward in this area and improve patient outcomes: (1) moving from examining sociodemographic and health history factors related to delay to more fully understanding the social, cognitive, and emotional factors that contribute to delay, both singly and through their interaction; (2) testing new interventions that target high-risk populations and that move beyond simply providing individuals with information about symptoms and recommendations for action by addressing social, cognitive, and emotional reasons for delay; (3) systematically applying what is known from research to date to the education of patients who are at risk for ACS and stroke; and (4) focusing on previously understudied and underserved populations.

Understanding Social, Cognitive, and Emotional Factors That Contribute to Delay

The importance of social, cognitive, and emotional factors, particularly in the context of a situational or circumstantial analysis, cannot be overemphasized. Because age, sex, marital status, race, and sometimes education, income, health history, insurance status, and presenting complaints are usually available to researchers, the vast majority of delay studies are based on patient chart reviews and EMS records. Incorporating interviews and questionnaires into study designs provides an opportunity to go beyond demographic correla-
delay in evaluating women, especially because women of symptoms to ED arrival can be attributed to this physician differences between men and women in total time from onset appear more likely to call a physician with symptoms. Nevertheless, describing typical symptoms and recommending appropriate actions have been the focus of all mass public education campaigns that have focused solely on teaching about symptoms further demonstrates the importance of changing current messages that aim to reduce delay in seeking treatment. Education should emphasize the urgency of immediate emergency transport and treatment within the context of the potential therapeutic benefits of reducing prehospital delay. Messages that emphasize the benefits of not delaying have been shown to be more effective than the fear-based messages that providers most commonly use. The role of family members, friends, and coworkers in helping ACS and stroke patients, and the benefit of helping the patient call 911 rather than providing private transportation, must be emphasized. Future public education strategies should focus on minority populations to make significant gains in decreasing prehospital delay for ACS and stroke. Blacks may recognize ACS and stroke symptoms less readily than whites, delay longer in seeking treatment, be less likely to reach an emergency room via ambulance in some communities, and yet have a greater risk of death from both ACS and stroke at an earlier age than the rest of the population. Public campaigns and patient education efforts must focus on improving awareness of ACS and stroke signs and symptoms in this high-risk population and on teaching patients and their families how to manage the social, cognitive, and emotional manifestations that accompany these symptoms and contribute to delay. Particularly for those at risk of stroke, it is imperative that family members and friends be targeted for education and “dep- utized” to act when stroke symptoms occur because of the cognitive and physical impairments that may render the patient incapable of responding. Because a greater proportion of stroke deaths occur among older women than among older men, public and patient education efforts among this group represent opportunities to diminish overall delay. More than 52% of all stroke deaths among women occur before EMS arrives, compared with 40% of stroke deaths among men. Evidence suggests that longer delays to hospital treatment for ACS are experienced by women as opposed to men. Public campaigns and patient education must target women who may not be convinced that they are at risk. An equally important target is the healthcare provider, who often does not appreciate the risk of heart disease and stroke in women and who likely contributes to patients’ delays in seeking treatment. Educational efforts should also focus on workers and work sites. In one study, in which EMS was activated for only 38% of stroke cases, patients not employed at the time of their stroke were substantially more likely to use EMS than
employed stroke patients,135 who more often received transport from coworkers in a private car. This contrast suggests that large employers or work sites should be targeted for public education on symptom awareness and the urgency to activate emergency transport in cases of stroke.

Focusing on Previously Understudied Populations

Different Racial or Ethnic Groups

Contemporary, prospective studies of ACS and stroke patients are needed that oversample people of color to more accurately determine whether prehospital delay varies across different racial or ethnic groups and subgroups, and if so, the magnitude of the variation and whether race or ethnicity is an independent predictor of prehospital delay. Furthermore, systematic evaluation of many of the patient-centered factors described above, as well as of more practical barriers (such as lack of access to transportation or language differences) will provide us with clearer insights into those group-specific features. Once identified, these features could serve as novel targets for developing appropriate, tailored interventions to decrease prehospital delay across different racial or ethnic groups.

Patients With Stroke

Extensive research to date has focused on delays in seeking treatment among individuals with ACS. Recognition that stroke is a major health problem and the realization that negative outcomes can be mitigated by prompt recognition and treatment have increased the focus on delays in seeking treatment among patients with acute stroke. Still, much more research is needed. Valuable information has been obtained from studying factors associated with prehospital delay; however, more information is needed to effectively reduce this delay. Future approaches could include dividing prehospital delay into 3 phases and examining factors related to delay in each. These phases would include (1) the period from symptom onset to the decision to seek medical attention, (2) the period from the decision to seek medical attention to first medical contact, and (3) the period from first medical contact to hospital arrival. The most recent report from a large registry confirms that \(<10\%\) of acute stroke patients arrive at the ED within 1 hour of stroke onset, that \(<25\%\) arrived within 3 hours, and that 3\% to 8.5\% (depending on the state) receive fibrinolysis.143 Investigators using this registry data estimate that the biggest inroads into improving these rates will be made by patients arriving sooner at the hospital.144 Other factors that might be related to prehospital delay for stroke, including denial, embarrassment, cost, and cultural factors such as feeling like one has little or no control over one’s health, have not been fully explored.

Summary

Despite decades of study, patient delay in seeking treatment for ACS and acute ischemic stroke symptoms remains the major impediment to receiving early, definitive treatment. As a direct consequence, morbidity and mortality in ACS and stroke are substantially higher than they need to be given the treatment options currently available. A number of patient, provider, and healthcare system factors contribute to prehospital delay in patients who seek treatment. Because community-based public education campaigns have to date been ineffective in reducing patient delay, future research should concentrate on interventions that target high-risk populations; social, cognitive, and emotional factors contributing to delay; and the contribution to delay by healthcare providers and healthcare systems.
Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debra K. Moser</td>
<td>University of Kentucky</td>
<td>NIH, NINR, R01, Co-investigator on this NHLBI-funded study of an intervention aimed at decreasing delay in response to AMI. The intervention is an educational approach, not one that we will be marketing or selling.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Laura P. Kimble</td>
<td>Georgia State University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark J. Alberts</td>
<td>Northwestern University</td>
<td>Bristol-Myers Squibb, Boehringer Ingelheim, Sanofi</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Angelo Alonzo</td>
<td>The Ohio State University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Janet B. Croft</td>
<td>Centers for Disease Control and Prevention</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kathleen Dracup</td>
<td>University of Southern California</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kelly R. Evenson</td>
<td>University of North Carolina</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alan S. Go</td>
<td>Kaiser Permanente</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary M. Haines</td>
<td>National Heart, Lung, and Blood Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rashmi U. Kotlani</td>
<td>Borgess Research Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>George A. Mensah</td>
<td>Centers for Disease Control and Prevention</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dexter L. Morris</td>
<td>Currently employed full-time by GlaxoSmithKline.</td>
<td>Co-investigator, no financial or other remuneration on project for EMS education/stroke funded by the Duke Endowment.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Arthur M. Pancioli</td>
<td>University of Cincinnati</td>
<td>NIH/NINDS</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barbara Riegel</td>
<td>University of Pennsylvania</td>
<td>Co-investigator on an NHLBI-funded study of an intervention aimed at decreasing delay in response to AMI. The intervention is an educational approach, not one that we will be marketing or selling.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Julie Johnson Zerwic</td>
<td>University of Illinois at Chicago</td>
<td>Principal investigator on research grant, “Tailored intervention to increase MI symptom recognition.” R03NR008750. Funding through National Institute of Nursing Research.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Bennett</td>
<td>Indiana University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Maureen Friedman</td>
<td>Nazareth College</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David C. Goff, Jr</td>
<td>Wake Forest University School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric D. Peterson</td>
<td>Duke Clinical Research Institute</td>
<td>Millennium Pharma; Schering Plough; Bristol-Myers Squibb/Sanofi</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Millennium Pharma</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit.
References

53. United Kingdom Heart Attack Study (UKHAS) Collaborative Group. Effect of time from onset to coming under care on fatality of patients with acute myocardial infarction: effect of revasculation and thrombolytic treatment. Heart. 1998;80:114–120.

Reducing Delay in Seeking Treatment by Patients With Acute Coronary Syndrome and Stroke: A Scientific Statement From the American Heart Association Council on Cardiovascular Nursing and Stroke Council
Debra K. Moser, Laura P. Kimble, Mark J. Alberts, Angelo Alonzo, Janet B. Croft, Kathleen Dracup, Kelly R. Evenson, Alan S. Go, Mary M. Hand, Rashmi U. Kothari, George A. Mensah, Dexter L. Morris, Arthur M. Paniolo, Barbara Riegel and Julie Johnson Zerwic

Circulation. 2006;114:168-182; originally published online June 26, 2006;
doi: 10.1161/CIRCULATIONAHA.106.176040
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/114/2/168

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/