Overcoming the Defects of a Virtue
Dual-Chamber Versus Single-Chamber Detection Enhancements for Implantable Defibrillator Rhythm Diagnosis: The Detect Supraventricular Tachycardia Study

Michael O. Sweeney, MD

“Mission critical” is a uniquely American cliché generally held to mean an action or series of actions essential for the success of an important endeavor. Randomized clinical trials have conclusively demonstrated that implantable cardioverter-defibrillators (ICDs) reduce mortality among appropriately selected patients who have survived an episode of life-threatening ventricular arrhythmia or are at risk for ventricular arrhythmia. The mission critical aspect of ICD operation is accurate recognition and termination of ventricular arrhythmia. Reproducibly reliable delivery of this critical series of actions is sufficient to guarantee mortal benefit.

Recognition of ventricular arrhythmias is fundamentally a sequential 2-step process. The first step, sensing, requires continuous real-time recording of cardiac electrical activity that is processed and filtered to reduce noise and to exclude physiological signals that are not of interest. Practically speaking, only ventricular electrical activity is necessary for this step and could be obtained from several different recording sites (endocardium, epicardium, subcutaneous tissue). The second step, detection, requires characterization of sensed signals to inform the need for therapy. ICDs rely on the rate of sensed ventricular signals for detection and hierarchical prioritization of specific therapies. Rate-based detection alone has proved robust for accurate recognition of ventricular fibrillation (VF) because, except for preexcited atrial fibrillation (AF), virtually no other cardiac rhythm disturbance is capable of achieving similarly high ventricular rates. On the other hand, although rate-based detection alone is similarly reliable for relatively slower ventricular tachycardia (VT), it is critically flawed because (1) VT occurs across a broad range of rates, and within this range rate alone does not specify rhythm, (2) neither fast and lethal nor slow and harmless are synonymous, and (3) many supraventricular tachycardias (SVTs) reliably achieve ventricular rates overlapping with VT. Thus, the flaw of rate-based detection for VT is a defect of its virtues.

Consequently, this sequential 2-step process is modified to include detection enhancements. The purpose of detection enhancements is to selectively identify true VT for appropriate therapy and to selectively reject SVT with overlapping ventricular rates to avoid indiscriminate therapy. Detection enhancements are applied after rate-based criteria are satisfied, and they are updated continuously until the ventricular rate slows spontaneously or a therapy is delivered. The simplest detection enhancement is time. A specified waiting period (in units of time or ventricular intervals) before a therapy is delivered after rate-based detection has been satisfied can effectively reduce premature therapies for true VT and inappropriate therapies for SVT because either may spontaneously slow or terminate. Time duration alone is incapable of distinguishing between VT and SVT and has obvious practical limitations related to patient safety; therefore, much effort has been spent developing techniques for rhythm discrimination.

The basis for discrimination is identifying and exploiting distinguishing characteristics of VT compared with SVT. The process is similar to the systematic approach to diagnosing VT using surface ECG in which more information, generally speaking, increases the probability of a correct diagnosis. Such information includes ventricular rate and regularity, onset and offset characteristics, atrial rhythm, atrial and ventricular timing relationships, electrical axis, and distinguishing features of the QRS complex (shape, notching, etc) relative to sinus rhythm. However, the availability of information for analysis in ICDs is influenced by the hardware system. The ventricular signal for sensing and detection is recorded from a single site (usually the right ventricular apex) and is common to all ICD systems. This is sufficient for calculating tachycardia onset and regularity, which could be useful for discrimination because sinus tachycardia is usually of gradual onset whereas VT starts suddenly and because AF is characterized by irregular ventricular intervals whereas VT is typically regular (or stable).

Accordingly, use of onset and stability alone may yield specificity as high as 96% for rejecting sinus tachycardia and AF at ventricular rates <180 to 190 bpm in single-chamber ICDs. The specificity for AF using ventricular interval stability alone declines significantly at higher rates (>190 bpm) because of regularization. In either situation, the penalty for the improved specificity using this simple approach to inappropriate therapy inhibition is a reduction in sensitivity for detection of true VT to 80% to 90%, which is fundamentally unacceptable. The addition of a therapy inhibi-
itor override (high-rate timeout), after which therapy is delivered regardless of rhythm discrimination if ventricular rate criteria are still satisfied, guarantees 100% detection sensitivity for true VT but erodes detection specificity.

Because VT is characterized by a change in ventricular activation sequence, morphological features of the ventricular electrogram (EGM) also could be useful in diagnosing VT. This can be achieved with single-chamber or dual-chamber ICDs using various ventricular EGM sources. Atrial rhythm analysis and AV timing relationships also might enhance rhythm discrimination but require a dual-chamber ICD. The hybridization of such advanced detection enhancements to simple techniques such as onset and stability would be reasonably expected to increase ventricular rate–based detection specificity without compromising the goal of 100% sensitivity.

Interestingly, this has been difficult to prove in clinical investigation. Regardless of increasingly sophisticated detection enhancements, the specificity for ventricular rate-based detection resides around 70% to 90%. Likewise, small prospective randomized studies have not demonstrated a consistent advantage of dual-chamber over single-chamber detection enhancements. Further complicating matters is that all forms of detection enhancement are nominally off in most ICD systems, and physician awareness of the value of such enhancements is inadequate. This exasperating set of conditions recently led to an experiment wherein patients were randomized to purely rate-based detection versus one specific approach to dual-chamber detection merely to demonstrate that “any” detection enhancements are superior to none whatsoever.

The Detect SVT study reported in this issue of Circulation randomized 400 patients who received dual-chamber ICDs for conventional indications to single- or dual-chamber detection. The primary end point was the proportion of expertly adjudicated SVT episodes that met ventricular rate detection criteria and were inappropriately classified as VT. Slightly more than 30% to 40% of patients overall had SVTs during follow-up, which accounted for a disturbingly large proportion of all ventricular detections in either treatment group (42% single chamber versus 69% dual chamber). After correction for multiple episodes within the same patient, the inappropriate detection rates were 46.5% versus 32.3% for the single- versus dual-chamber groups, respectively. Thus, dual-chamber enhancements reduced overall inappropriate detections by nearly 50% (odds ratio, 0.53; 95% CI, 0.30 to 0.94) compared with single-chamber detection. The clinical consequence of improved rejection of VT episodes that met ventricular rate-based detection was a 46% reduction in the odds of inappropriate therapies in the dual- versus single-chamber group (adjusted rates, 38.3% versus 26.1%, respectively). However, the inability of this study to demonstrate a reduction in inappropriate shocks in the dual-chamber group despite a reduction in misclassification of SVTs as VT is a huge disappointment. This is a direct result of failing to specify standardized tachycardia therapy programming between treatment groups. Serendipitously, a greater use of antitachycardia pacing (ATP) in the single-chamber group reduced overall shocks despite a higher rate of misclassification of SVT that received inappropriate ventricular therapies. It is well recognized that ATP may prevent shocks for inappropriate detections by >1 mechanism such as terminating AV node–dependent SVTs, delaying shocks long enough to permit spontaneous slowing or termination of SVT, and slowing of SVTs by concealed retrograde penetration of the AV node. Furthermore, the success of ATP when broadly applied to detection rates as high as 250 bpm results in most shocks being delivered for misclassified SVT.

Several other observations merit emphasis. The prescribed exclusion of a high-rate timeout is a notable departure. The authors justified this choice on the basis that therapy inhibitor overrides inevitably degrade detection specificity. Whether a therapy inhibitor is more likely to interrupt an appropriate therapy withhold for SVT that meets ventricular rate detection criteria or to interrupt an inappropriate therapy withhold for true VT has not been carefully studied and probably varies by patient, arrhythmia mechanism, discrimination technique, and other factors. The clinical consequence of this decision in the Detect SVT study was that only 24% of true VT episodes overall were appropriately detected. The authors offer the reassurance that only 24% of these true VT episodes that were misclassified as SVT were sustained (lasting >30 seconds), implying that the remaining 76% were clinically irrelevant because they terminated spontaneously. We are not told how the sustained, misclassified true VT episodes terminated and whether they were associated with symptoms (ie, syncope). Furthermore, although it is well known that many episodes of VT terminate spontaneously during capacitor charging, there is an important distinction between this situation and serendipitous termination of VT misclassified as SVT, which is operationally a device failure.

The difficulty of properly classifying SVTs with a 1:1 AV relationship also is highlighted by this study. These rhythms are often sudden onset (simulating VT) and regular (also mimicking VT and rendering ventricular interval stability criteria useless). The situation is even more complex when there is a varying AV timing relationship resulting from discontinuous AV node behavior at high atrial rates, which mimics AV dissociation, a hallmark of VT. Although the use of ventricular EGM morphology would seem particularly helpful in this situation, specificity with the technique used in the Detect SVT study has been reported to be only ≈70%. Rhythm discrimination using template matching based on ventricular EGM morphology analysis is predicated on 2 fallible assumptions: that the template sinus rhythm EGM (which must be periodically updated) is constant and that the VT EGM is always significantly different from the template. Other potential reasons for algorithm failure such as template misalignment, maturation, and postshock distortion have been reviewed. Whether another approach to ventricular EGM morphology would perform superiorly is unknown and difficult to establish because the number of patients studied influences comparisons between different techniques.

Finally, SVT detections were registered in the VF zone in nearly 20% of patients. Traditionally, all ventricular rhythms detected at rates >180 to 190 bpm are classified as VF with the consequences that shocks are nominally applied and
detection enhancements are not applied. This historical prac-
tice should be abolished because ≈70% to 80% of all true
ventricular rhythms in the VF zone are actually fast VT that
can be painlessly and safely terminated with ATP.13 It seems
reasonable that application of detection enhancements in the
VF zone would further reduce inappropriate detections.

The Detect SVT study provides some modestly reassuring evidence that fits with intuition and experience; namely,
when properly applied, more information about the distin-
guishing characteristics of atrial versus ventricular arrhyth-
mas should increase detection specificity without exces-
sively jeopardizing patient safety. On the other hand, inap-
propriate therapy rates >25% despite increasingly sophis-
ticated detection enhancements cannot be viewed as
satisfactory. Although the authors emphasize the distinction
between inappropriate detections and therapies, every inap-
propriate detection risks exposing the patient to a full se-
quence of therapies. The likelihood of an inappropriate
therapy for misclassified SVT significantly exceeds the like-
lihood of an appropriate therapy for VT in primary prevention
patients.16,17 One of the principal limitations of ICD therapy
is the discomfort associated with shocks. A direct correlation
between poor quality-of-life scores and painful shocks has
been described in trials of primary and secondary preven-
tion.13,18,19 The results of the Detect SVT study should further
inform physicians about the value and limitations of detection
enhancements in optimal ICD therapy. More importantly, the
impact of inappropriate therapies on quality of life and costs
should become a central part of the national dialogue about
the choice of specific hardware for ICD therapy.

Source of Funding
Dr Sweeney has received grant support and other research support from Medtronic, Inc.

Disclosure
Dr Sweeney is a paid consultant to, has served on the speakers’
bureau of, and has received honoraria from Medtronic, Inc.

References
1. Brugada J, Mont L, Figueiredo M, Valentino M, Matas M,
Navarro-Lopez F. Enhanced detection criteria in implantable defibril-
Mewis C, Eigenberger B, Kuhlkamp V. Enhanced detection criteria in
implantable cardioverter defibrillators: sensitivity and specificity of the
stability algorithm at different heart rates. Pacing Clin Electrophysiol.
2001;24:1325–1333.
3. Gromelfeld GC, Schulte B, Hohnloser SH, Trappe HJ, Korte T, Stellbrink
the German MD Study Group. Morphology discrimination: a beat-to-beat
algorithm for the discrimination of ventricular from supraventricular
4. Swerdlow CD, Brown ML, Lurie K, Zhang J, Wood NM, Olson WH,
Gillberg JM. Discrimination of ventricular tachycardia from supraven-
tricular tachycardia by a downloaded wavelet-transform algorithm: a
paradigm for development of implantable cardioverter defibrillator
S, Gillberg J, DeSouza CM. Critical analysis of dual-chamber implantable
cardioverter-defibrillator arrhythmia detection results and technical con-
J, Lambiez M, for the Ventak AV Investigators. Performance of a dual-
chamber implantable defibrillator algorithm for discrimination of ventric-
E, for the Defender I and II Clinical Trial Investigators. Diagnostic
performance of a dual-chamber cardioverter defibrillator programmed
with nominal settings: a European prospective study. J Cardiovasc Elect-
S, Ziemer B, Schmitt C. Do current dual chamber cardioverter defibrillators
have advantages over conventional single chamber cardioverter defibril-
ators in reducing inappropriate therapies? A randomized prospective
Schols W, Seidl K, Piel M, Ouyang F, Hohnloser SH, Kuck KH. The 1+1
Trial: a prospective trial of dual- versus single-chamber implantable
defibrillator in patients with slow ventricular tachycardias. Circulation.
10. Theuns DAMJ, Klooostwijk PJ, Goedhart DM, Jordana LJM. Prevention
of inappropriate therapy in implantable cardioverter defibrillators: results
of a prospective, randomized study of tachyrhythmia detection algo-
Newman D, Gelazniks R, Barre A, for the ASTRID Investigators. Ran-
domized controlled study of detection enhancements versus rate-only
detection to prevent inappropriate therapy in a dual-chamber implantable
12. Friedman PA, McClelland RL, Bantel WR, Acosta H, Kessler D, Munger
TM, Kavesh JM, Wood M, Daoud E, Massumi A, Schugger C, Shorofsky
S, Wilkoff B, Glixon M. Dual-chamber versus single-chamber detection
enhancements for implantable defibrillator rhythm diagnosis: the Detect
13. Wathen MS, DeGroot PJ, Sweeney MO, Stark AJ, Otterness MF,
Adkisson WO, Canby RC, Khalighi K, Machado C, Rubenstein DS,
Volosin J, for the PainFREE Rx II Investigators. Prospective ran-
domized multicenter trial of empirical antitachycardia pacing versus
shocks for spontaneous rapid ventricular tachycardia in patients
with implantable cardioverter defibrillators: PainFREE Rx II Trial Results.
Lovett EG, Hsu W, Morris MM, Lang DJ. Advanced rhythm discrimi-
nation for implantable cardioverter defibrillators using electrogram vector
15. Hintringer F, Deibl M, Berger T, Pachinger O, Roithinger FX. Com-
parison of the specificity of implantable dual chamber defibrillator
16. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R,
Domanski M, Trueman C, Anderson J, Johnson G, McNulty SE, Clapp-
Channing N, Davidson-Ray LD, Fruhal ES, Fishbein DP, Luceri RM, Ip
JH, for the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT)
Investigators. Amiodarone or an implantable cardioverter-defibrillator for
MF, Stark AJ. Appropriate and inappropriate ventricular therapies,
quality of life and mortality among primary and secondary prevention
ICD patients: results from PainFREE Rx II. Circulation. 2005;111:
2898–2905.
18. Namerow PB, Birt HR, Heywood GM, Windle JR, Parides MK, for the
CABG Patch Trial Investigators and Coordinators. Quality of life six
months after CABG surgery in patients randomized to ICD versus no ICD
therapy: findings from the CABG Patch Trial. Pacing Clin Electro-
19. Schron EB, Exner DV, Yao Q, Jenkins LS, Steinberg JS, Cook JR,
Kutalek SP, Friedman PL, Bubien RS, Page RL, Powell J, for the AVID
Investigators. Quality of life in the Antiarrhythmics Versus Implantable
Defibrillators Trial: impact of therapy and influence of adverse symptoms

Key Words: Editorials ■ supraventricular tachycardia ■ ventricular
tachycardia ■ implantable cardioverter-defibrillators
Overcoming the Defects of a Virtue: Dual-Chamber Versus Single-Chamber Detection Enhancements for Implantable Defibrillator Rhythm Diagnosis: The Detect Supraventricular Tachycardia Study
Michael O. Sweeney

_Circulation._ 2006;113:2862-2864
doi: 10.1161/CIRCULATIONAHA.106.634113

_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/113/25/2862

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/