Search on Chromosome 17 Centromere Reveals TNFRSF13B as a Susceptibility Gene for Intracranial Aneurysm
A Preliminary Study

Kayoko Inoue, MD, MPH, PhD; Youhei Mineharu, MD; Sumiko Inoue, PhD; Shigeki Yamada, MD, PhD; Fumihiko Matsuda, PhD; Kazuhiko Nozaki, MD, PhD; Katsunobu Takenaka, MD, PhD; Nobuo Hashimoto, MD, PhD; Akio Koizumi, MD, PhD

Background—Our previous studies have shown a significant linkage of intracranial aneurysms (IAs) to chromosome 17. Methods and Results—Nine genes (TNFRSF13B, M-RIP, COPS3, RAI1, SREBF1, GRAP, MAPK7, MFAP4, and AKAP10) were selected from 108 genes that are located between D17S1857 and D17S1871 by excluding 99 genes that were pseudogenes, hypothetical genes, or well-characterized genes but not likely associated with IA. Direct sequencing of all coding and regulatory regions in 58 cases (29 pedigree probands and 29 unrelated nonpedigree cases) was performed. Deleterious changes were found only in TNFRSF13B, K154X, and c.585 to 586insA in exon4. The association of IA with TNFRSF13B was further studied in 304 unrelated cases and 332 control subjects. Rare nonsynonymous changes, a splicing acceptor site change and a frame shift, were found in unrelated cases (2.3%; 14 of 608) more frequently than in control subjects (0.8%; 5 of 664; P=0.035). The association study using single-nucleotide polymorphisms in an unrelated case-control cohort revealed a protective haplotype (odds ratio 0.69, 95% confidence interval 0.52 to 0.92, P=0.012) compared with the major haplotype after adjustment for covariates. Conclusions—We propose that TNFRSF13B is one of the susceptibility genes for IA. (Circulation. 2006;113:2002-2010.)

Key Words: aneurysm ■ cerebrovascular disorders ■ genes ■ immune system

Intracranial aneurysms (IAs) are one of the major public health problems in Japan. The mortality rate from subarachnoid hemorrhages (SAHs), >90% of which are attributable to IA rupture, is estimated at 70 deaths per 10,000 person-years and accounts for 2% of annual total deaths.1 The consequences of SAH are catastrophic, with approximately half of IA ruptures resulting in immediate death.

Clinical Perspective p 2010
In familial IAs, there is a 3- to 5-fold increase in risk for first-degree relatives of affected individuals compared with the general population.2,3 A positive family history is a risk factor as strong as smoking, hypertension, and heavy consumption of alcohol.4,5

In an attempt to isolate susceptibility gene(s) for IA, 4 genome-wide linkage analyses have been reported.6–9 In a series of studies, we have failed to identify a positive association with reported candidate genes.9,10

Because disease and genetic heterogeneity are postulated for IA,11 extensive efforts are required to find the susceptibility gene(s) for IA, if the approach is limited to traditional positional cloning. On the other hand, the candidate gene approach relies on serendipity.

In the present study, we hypothesize that the many rare variants contribute to a common phenotype.12 We further assume that although deleterious changes are likely to be rare in the unaffected cohort, they may be more common in aggregate in the affected cohort. Consequently, we have assumed that variants associated with functional changes such as nonsense or nonsynonymous variants should be more abundant in candidate genes that determine susceptibility for IA. With this rationale, candidate genes were searched in a primary gene set in the 17-centromere region between D17S1857 and D17S1871, where we found the maximum nonparametric logarithm of the odds score peak (3.00) at D17S2196.9

Methods

Study Design
Subjects from 3 groups participated. The first group comprised probands of 29 pedigrees with IA clustering.9 The second group consisted of 333 unrelated nonpedigree cases with IA, and the...
third group had 332 control subjects. Members of the first group and 29 unrelated cases, who were selected randomly from the second group, constituted the first cohort. The remaining 304 unrelated nonpedigree case subjects in the second group constituted the second cohort, and the third group constituted the third cohort. The response rates to our request of participation in the present study were 95.1% in the second group and 94.8% in the third group, respectively.

The target region was 4.3 Mb, which encompassed D17S1857 and D17S1871, where we found significant linkage in families with an IA cluster. A total of 108 genes are now assigned to this region (Data Supplement Table I). We set an exclusion principle to choose the primary candidate gene set: We excluded 99 genes; 26 pseudogenes; 29 hypothetical genes; 22 enzymes and transporters; 8 developmentally regulated genes; 4 genes associated with Smith-Magenis syndrome; 3 genes associated with neoplastic syndrome; 3 zinc finger proteins genes; 3 similar to keratin genes; and 1 open reading frame. Finally, 9 genes remained. These were TNFRSF13B, M-RIP, COPS3, RAI1, SREBF1, GRAP, MAPK7, MFAP4, and AKAP10 (Table 1). These 9 genes were directly sequenced in all subjects of the first cohort. Whether or not sequence variants were functional was predicted by PolyPhen (available at http://tux.embl-heidelberg.de/ramensky). Except for TNFRSF13B, none of the sequence variants in other genes were predicted to be deleterious. Further analysis was thus limited to TNFRSF13B. Using observed polymorphisms, an association study was conducted in the second cohort and the third cohort.

Study Population

The probands of pedigrees and unrelated nonpedigree cases were diagnosed by digital subtraction angiography or in operations throughout collaborating hospitals in western Japan. We have excluded cases with IA affected with known heritable diseases or autoimmune diseases. Control subjects were screened at the brain checkup in the same hospitals as cases and met the following criteria: (1) confirmation of absence of IA by digital subtraction angiography, 3-dimensional computerized tomography, or magnetic resonance angiography; (2) an age at screening of ≥40 years old; (3) no medical history of any stroke, including IA or SAH; and (4) no family history of IA or SAH in first-degree relatives.

Individual and family history and lifestyle data were obtained by interviews. Past history and comorbidity were also examined by clinical charts at the hospitals or interview charts at the brain checkups. The study was approved by the Ethics Committee of

Table 1. Nine Genes First Sequenced in Chromosome 17 Centromere in 58 Cases (First Cohort)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>MIM No.</th>
<th>Position</th>
<th>GenBank Accession No. (2006/02/23)</th>
<th>Genomic Region, kb</th>
<th>mRNA Length, bp</th>
<th>No. of Exons</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFRSF13B</td>
<td>Tumor necrosis factor receptor superfamily, member 13B</td>
<td>604907</td>
<td>16473152–16439349</td>
<td>NT_010718.15</td>
<td>33.804</td>
<td>879</td>
<td>4</td>
</tr>
<tr>
<td>M-RIP</td>
<td>Myosin phosphatase-Rho interacting protein</td>
<td>...</td>
<td>16543056–16686620</td>
<td>NT_010718.15</td>
<td>143.565</td>
<td>3114</td>
<td>29</td>
</tr>
<tr>
<td>COPS3</td>
<td>COP9 constitutive photomorphogenic homolog</td>
<td>604665</td>
<td>16782340–16747090</td>
<td>NT_010718.15</td>
<td>35.251</td>
<td>1269</td>
<td>12</td>
</tr>
<tr>
<td>RAI1</td>
<td>Retinoic acid induced 1</td>
<td>607642</td>
<td>17181736–17312516</td>
<td>NT_010718.15</td>
<td>130.781</td>
<td>5718</td>
<td>8</td>
</tr>
<tr>
<td>SREBF1</td>
<td>Sterol regulatory element binding transcription factor 1</td>
<td>184756</td>
<td>17338043–17312341</td>
<td>NT_010718.15</td>
<td>25.703</td>
<td>3441</td>
<td>21</td>
</tr>
<tr>
<td>GRAP</td>
<td>GRB2-related adaptor protein</td>
<td>604330</td>
<td>18548021–18522034</td>
<td>NT_010718.15</td>
<td>25.988</td>
<td>651</td>
<td>6</td>
</tr>
<tr>
<td>MAPK7</td>
<td>Mitogen-activated protein kinase 7</td>
<td>602521</td>
<td>18877883–18884469</td>
<td>NT_010718.15</td>
<td>6.587</td>
<td>2448</td>
<td>7</td>
</tr>
<tr>
<td>MFAP4</td>
<td>Microfibrillar-associated protein 4</td>
<td>600596</td>
<td>18888110–18883573</td>
<td>NT_010718.15</td>
<td>4.538</td>
<td>765</td>
<td>6</td>
</tr>
<tr>
<td>AKAP10</td>
<td>A kinase (PRKA) anchor protein 10</td>
<td>604694</td>
<td>19478745–19405569</td>
<td>NT_010718.15</td>
<td>73.177</td>
<td>1986</td>
<td>15</td>
</tr>
</tbody>
</table>

MIM indicates Mendelian Inheritance in Man; mRNA, messenger RNA.

Table 2. Characteristics of the First Cohort (29 Pedigree Probands and 29 Unrelated Cases), the Second Cohort (304 Unrelated Cases), and the Third Cohort (332 Unrelated Controls)

<table>
<thead>
<tr>
<th></th>
<th>Nonpedigree Cohorts</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Cohort (Pedigree and Nonpedigree): 29 Probands and 29 Unrelated Cases (n=58)</td>
<td>Second Cohort: 304 Unrelated Cases (n=304)</td>
<td>Third Cohort: 332 Controls (n=332)</td>
<td>P*</td>
<td></td>
</tr>
<tr>
<td>Female, %</td>
<td>70.7</td>
<td>66.8</td>
<td>54.5</td>
<td>0.0016†</td>
<td></td>
</tr>
<tr>
<td>Age at diagnosis, y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>58.6±12.5</td>
<td>59.2±10.6</td>
<td>62.2±9.9</td>
<td>0.00017‡</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>26–78</td>
<td>30–90</td>
<td>40–88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>55.2</td>
<td>56.3</td>
<td>42.5</td>
<td>0.0005†</td>
<td></td>
</tr>
<tr>
<td>Ever-smoker, %</td>
<td>39.7</td>
<td>39.5</td>
<td>37.7</td>
<td>0.13†</td>
<td></td>
</tr>
<tr>
<td>Ever-drinker, %</td>
<td>43.1</td>
<td>38.5</td>
<td>43.7</td>
<td>0.18†</td>
<td></td>
</tr>
<tr>
<td>Family history of IA or SAH, %</td>
<td>58.6</td>
<td>17.4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruptured IA, %</td>
<td>62.1</td>
<td>47.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Comparison between 304 unrelated cases (second cohort) vs 332 controls (third cohort).
†χ² Test.
‡Student t test.
Kyoto University Institutional Review Board, and appropriate informed consent was obtained from all subjects.

Direct Sequencing and Prediction of Functional Analysis for Detected Variants

All exons, intron-exon boundaries, putative promoter sequences, and the 3′ untranslated region were analyzed by direct sequencing of 9 genes for 58 cases (the first cohort). For sequencing, we referred to TNFRSF13B, M-RIP, COPS3, RAII, SREBF1, GRAP, MAPK7, MFAP4, and AKAP10 on the NCBI Map Viewer (available at http://www.ncbi.nih.gov/mapview/maps.cgi?). Primers for coding exons were designed from an intron sequence and commercially synthesized by Proligo (Proligo Primers & Probes, Kyoto, Japan; available at http://www.proligo.com). For regulatory regions, 500 bp upstream to the first exon was sequenced; however, if the database suggested the existence of a regulatory region further away from the intron-exon boundary and commercially synthesized by Proligo (Proligo Primers & Probes, Kyoto, Japan; available at http://www.proligo.com). For regulatory regions, 500 bp upstream to the first exon was sequenced; however, if the database suggested the existence of a regulatory region further away from the intron-exon boundary and commercially synthesized by Proligo (Proligo Primers & Probes, Kyoto, Japan; available at http://www.proligo.com). For regulatory regions, 500 bp upstream to the first exon was sequenced; however, if the database suggested the existence of a regulatory region further away from the intron-exon boundary and commercially synthesized by Proligo (Proligo Primers & Probes, Kyoto, Japan; available at http://www.proligo.com). For regulatory regions, 500 bp upstream to the first exon was sequenced; however, if the database suggested the existence of a regulatory region further away from the intron-exon boundary and commercially synthesized by Proligo (Proligo Primers & Probes, Kyoto, Japan; available at http://www.proligo.com). For regulatory regions, 500 bp upstream to the first exon was sequenced; however, if the database suggested the existence of a regulatory region further away from the intron-exon boundary and commercially synthesized by Proligo (Proligo Primers & Probes, Kyoto, Japan; available at http://www.proligo.com).

Testing Segregation in Pedigrees

Three variants (K154X, c.585-586insA, and G76C) of TNFRSF13B found in 3 probands were investigated for concordance of segregation in these families (pedigree 10, pedigree 26, and pedigree 15).9

Association Study

SNPs of TNFRSF13B with allele frequency ≥1% in 58 cases (the first cohort: 29 probands of the pedigrees and 29 unrelated cases) were all genotyped by direct sequencing (P251L and S277S) or by polymerase chain reaction–restriction fragment length polymorphism with AlwI for c-247G>T and BfaI for IVS3+25C>A in 304 unrelated cases (the second cohort) and 332 controls (the third cohort).

Haplotypes were constructed with sequence variants with allele frequency ≥1% in the third cohort by THESISAS (Testing Haplotyp Effects In Association Studies)14 (available for download at http://genecanvas.ecgene.net/). We used the following criteria to choose a set of haplotypes for the association study: a set of the minimum number of haplotypes for which cumulative haplotype frequency was ≥80%15 or a set of all haplotypes for which frequencies were ≥5%.16 Associations were analyzed with adjustment for covariates including sex, hypertension, smoking, and drinking habit. Bonferroni correction was done for comparison of multiple haplotypes, not for experiment-wide multiple testing. Linkage disequilibrium (LD) was analyzed and visualized with the Genotype2LDBlock (available at http://cgi.uc.edu/cgi-bin/kzhang/genotype2LDBlock.cgi).

Population-Attributable Risk

The population-attributable risk for a given haplotype was calculated as follows:

\[
\text{Population-attributable risk} = (OR - 1) \times IE \times P/IT
\]

where IE is incidence of IA in the control cohort, IT is the incidence of IA in the general population, and P is the reference haplotype frequency in the general population. We assumed that IE was equal to IT and that P in the control cohort was equal to that in the general population. Thus, the population-attributable risk will be obtained as follows:

\[
\text{Population-attributable risk} = (OR - 1) \times P
\]

The authors had full access to the data and take full responsibility for its integrity. All authors have read and agree to the manuscript as written.
Results

Demographic Features of the 3 Cohorts
As shown in Table 2, among unrelated subjects, the proportion of females or that of hypertension was higher in the second cohort than in the third cohort. Age at diagnosis was lower in the second cohort. No significant difference was found for either smoking or drinking habits.

Candidate Genes
The primary candidate gene set, after the exclusion of genes on the basis of defined criteria, was found to be related to immunity (*TNFRSF13B*), regulatory component (*M-RIP*), protein kinase (*COPS3, MAPK7*), transcriptional factor (*RAI1, SREBF1*), signaling protein (*GRAP*), cell adhesion (*MFAP4*), and signal transduction (*AKAP10*). Detected sequence changes in 58 cases (the first cohort) and their predicted effects on function are shown in Data Supplement Table III. We identified 7 sequence changes in *TNFRSF13B*, 20 sequence changes in *M-RIP*, 6 sequence changes in *COPS3*, 23 sequence changes in *RAI1*, 9 sequence changes in *SREBF1*, 9 sequence changes in *GRAP*, 5 sequence changes in *MAPK7*, 2 sequence changes in *MFAP4*, and 10 sequence changes in *AKAP10*.

TNFRSF13B had 2 nonsense mutations and 2 nonsynonymous variants predicted as "probably damaging" by Poly-
Phen: K154X and frame shift (c.585-586insA) in exon4, G76C in exon3, and P251L in exon5. Apparent deleterious variants, including nonsense mutations and nonsynonymous variants, that were predicted to be “probably damaging” were identified only in \(\text{TNFRSF13B} \) (Table 3).

Segregation of the \(\text{TNFRSF13B} \) Variants With the IA Phenotype in Pedigrees

Two nonsense mutations and 1 nonsynonymous variant (“probably damaging” by PolyPhen) were found in probands in 3 pedigrees (Figure 1) among 29 families. In 1 family (pedigree 10), K154X was found in 2 affected siblings and 1 daughter, whereas it was not detected in an unaffected younger brother. Insertion A (c.585-586insA) was found in 1 family (pedigree 26); an affected mother and her son had this mutation. This mutation was also found in an unaffected sibling of the mother, who later developed stroke but was not investigated for pathogenesis. G76C was found in another family (pedigree 15); 2 affected sisters had this variant, but an unaffected sister did not.

Direct Sequencing Exons 3 to 5 in 304 Unrelated Cases (Second Cohort) and 332 Controls (Third Cohort) in \(\text{TNFRSF13B} \)

An extensive search was done in exons 3 to 5 because there are 2 deleterious variants and 2 “probably damaging” variants in these regions in \(\text{TNFRSF13B} \). We further found additional sequence variants in the second and third cohorts (Table 3). The number of subjects having rare nonsynonymous changes, a splicing acceptor site change and a frame shift in \(\text{TNFRSF13B} \), was significantly larger in the 304 unrelated cases than in the 332 controls (Fisher exact test, \(P = 0.035 \); Table 4). Locations of these variants are summarized in Figure 2. These nonsynonymous variants were located on the region critical for function.17–19 The 70th peptide S was conserved in

Table 4. Four Rare Nonsynonymous Changes, a Splicing Acceptor Site Change, and a Frame Shift in \(\text{TNFRSF13B} \) and the Detected No. of Subjects in 304 Unrelated Cases (the Second Cohort) and 332 Controls (the Third Cohort)

<table>
<thead>
<tr>
<th>Position</th>
<th>Nucleotide Change</th>
<th>Amino Acid Change</th>
<th>Detected No. of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon3</td>
<td>c. 222G>A</td>
<td>S70N</td>
<td>1</td>
</tr>
<tr>
<td>Exon3</td>
<td>c. 234A>G</td>
<td>E74G</td>
<td>2</td>
</tr>
<tr>
<td>Exon3</td>
<td>c. 239G>A</td>
<td>G76S</td>
<td>8</td>
</tr>
<tr>
<td>Exon4</td>
<td>c. 542T>C</td>
<td>C177R</td>
<td>2</td>
</tr>
<tr>
<td>Intron3</td>
<td>IVS3-1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Exon4</td>
<td>c.585-586 Insertion A</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

GenBank Accession No. NM_012452.

*Fisher exact test.

Figure 2. Schema of the domain structure of full-length \(\text{TNFRSF13B} \).

CRD: cysteine-rich domain

TM: trans-membrane

ICD: intracellular regions
Xenopus laevis but not in mice, dogs, or rats. On the other hand, 74th E, 76th G, and 177th C were conserved in mice, dogs, and rats. Additionally, G76S and C177R were found in more than 1 unrelated subject; however, no one had more than 1 variant.

Association Study
Allele frequencies of 4 SNPs were found to be ≥1% in the third cohort (Table 3). We thus used 4 SNPs (c-247G>T, IVS3+25C>A, P251L, and S277S) of TNFRSF13B to construct haplotypes. LD structure was shown in Figure 3. Application of the selection criteria chose 4 haplotypes, which encompassed 87% of all haplotypes (Tables 5 and 6). Haplotype H1 (GACC) was found to be protective (OR 0.69, 95% CI 0.52 to 0.92, P=0.012) compared with the major haplotype H4 (TCTC). After Bonferroni correction for multiple comparisons, the probability value of H1 was still statistically significant (Pcorr=0.048).

Population-Attributable Risks
The population-attributable risk was calculated to be approximately 8% for the H1 haplotype versus H4, compared with 24% for smoking versus nonsmoking. Therefore, the attributable risk for the TNFRSF13B variants was approximately one third that of smoking.

Discussion
Extensive efforts have been made to search for susceptibility genes for IA. So far, 3 genome-wide linkage analyses have been done for the general population. With the exceptions of ELN,6 LOX,20 and COL1A2,21 no gene has been claimed as a candidate gene. There have been contradictions, however, in terms of involvement of ELN in IA.22,23

In the present study, we have conducted a systematic approach targeting a linked region on chromosome 17. We selected 9 candidates from 108 genes and sequenced entire coding exons and regulatory regions in 58 cases (the first cohort). Because we found several variants that included obvious deleterious mutations in TNFRSF13B, we searched variants in 304 unrelated cases (the second cohort) and 332 control subjects (the third cohort), although searches were limited to those in exons 3 to 5, which covered the critical areas cysteine-rich domain 2 (CRD2), trans-membrane, and intracellular regions. The rare variants were significantly more frequent in IA unrelated cases than in control subjects. In addition, deleterious variants (K154X, frame shift [c.585-586insA], and G76C) were clearly segregated in the families, except in a family sibling who had c.585-586insA but did not have

| TABLE 5. Allele Frequencies of TNFRSF13B Variants in 304 Unrelated Cases (the Second Cohort) and 332 Controls (the Third Cohort) |
|-----------------|-----------------|-----------------|
| Allele Frequency | P (HWE) |
| Locus 1 (G/T)* | 0.67/0.33 | 0.21 |
| Locus 2 (A/C)* | 0.39/0.61 | 0.14 |
| Locus 3 (C/T)* | 0.65/0.35 | 0.23 |
| Locus 4 (C/T)* | 0.85/0.15 | 0.43 |

HWE indicates Hardy-Weinberg equilibrium.

*Locus 1: rs4985754; locus 2: rs2274892; locus 3: SNP at 16440340; and locus 4: rs11078355.
founder mutations that are specific to ethnic groups. If this
whereas in whites with CVID, it is A181E, which suggests
common mutation among Japanese with IA is G76S (8/17),
variable immunodeficiency (CVID) and immunoglobulin
TNFRSF13B
interactor (TACI) encoded by
TNFRSF13B
emerges as a candidate for susceptibility for IA.
Transmembrane activator and calcium modulator ligand
interactor (TACI) encoded by
TNFRSF13B
mediates iso-
type switching in B cells. The mutations in
TNFRSF13B
have recently been reported to be associated with common
variable immunodeficiency (CVID) and immunoglobulin
A (IgA) deficiency in humans.26,27 In 1 of these studies, 11
mutations (4.1%) were found in 270 chromosomes from
135 sporadic CVID cases.26 It is of particular interest that
most sporadic cases with CVID had only 1 mutant allele, which
suggests a mechanism of gain of function or
haploinsufficiency.
Given that mutations of
TNFRSF13B
are associated with
CVID or IgA deficiency, an unanswered question is why
variants in
TNFRSF13B
are associated with IA. It is
interesting that in the present study, 12 of 17 rare variants in
IA cases and 3 of 5 rare variants in control subjects were
found in the CRD2 domain, whereas the majority of
mutations in cases with CVID or IgA deficiency were
found at the C terminal side to the CRD2 region, which
transfers signals from cell surface to intracellular domains.
We postulate that variants at the ligand binding site may
cause quantitative changes, whereas mutations in signal
transduction result in qualitative changes. Different modes
of functional impairments might be associated with different
phenotypes. Studies are needed to investigate this further.
In the present study, we found 3 nonsense mutations (1
stop codon, 1 splicing acceptor site change, and 1 frame
shift) and 5 rare nonsynonymous changes in 17 cases. Each
case had a single variant. It is interesting that these variants
are novel, and none were found in whites.26,27 The most
common mutation among Japanese with IA is G76S (8/17),
whereas in whites with CVID, it is A181E, which suggests
founder mutations that are specific to ethnic groups. If this
is true, genetic preposition to IA or CVID or IgA defi-
cency may be predicted by these founder mutations in the
future.
The present study has several limitations. First,
population-attributable risks of IA are calculated to be 7%
to 10%, whereas that of smoking observed is =24%, which
suggests that the risk attributable to
TNFRSF13B
is
approximately one third that of smoking in the present
cohort. However, further studies are needed, because only
a small fraction of the risk is explained by
THNFRS13B.
Second, we have selected only 9 genes as the primary gene
set from 108 genes. We excluded genes for which the
functions are not well characterized or those with well-
characterized functions that are not considered to be
involved in IA. Although this is primary screening, this
study cannot be free from selection bias. In the next study,
we are expanding the gene set so that it includes some
genes with unknown functions. Third, we tested with
PolyPhen whether or not nonsynonymous variants were
functional. Bioinformatics approaches may sometimes be
misleading.28 In the future, we should explore other genes
that had “possibly damaging” or “unknown” variants.
Effects of variants on the function of TACI should also be
confirmed experimentally in future. Fourth, there may be
an argument for the hypothesis that rare variants contribute
to common diseases. However, the hypothesis can provide
criteria for positive selection of a susceptibility gene,
which would have been overlooked by a haplotype-based
association study. Fifth, in the present study, we did not
determine CVID-related parameters such as B-cell expres-
sion of TACI and serum levels of immunoglobulin. Fi-
ally, we did not explore genes in LD with
TNFRSF13B.

TABLE 6. Haplotype Association Study With Adjustment for Covariates by THESIAS (the Third Cohort)

<table>
<thead>
<tr>
<th>Haplotype Identification Code</th>
<th>Frequency of Haplotype</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 GACC</td>
<td>0.211</td>
<td>0.69 (0.52–0.92)</td>
<td>0.012*</td>
</tr>
<tr>
<td>H2 GACT</td>
<td>0.117</td>
<td>0.82 (0.57–1.18)</td>
<td>0.29</td>
</tr>
<tr>
<td>H3 GCCC</td>
<td>0.251</td>
<td>1.11 (0.79–1.42)</td>
<td>0.70</td>
</tr>
<tr>
<td>H4 TCTC</td>
<td>0.289</td>
<td>Intercept</td>
<td></td>
</tr>
</tbody>
</table>

Covariate
- Sex (female vs male)
- Hypertension
- Smoking (ever-smoker vs nonsmoker)
- Alcohol (ever-drinker vs nondrinker)

<table>
<thead>
<tr>
<th>Covariate</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>2.26 (1.55–3.30)</td>
<td>0.000024</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.97 (1.44–2.70)</td>
<td>0.000027</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.64 (1.12–2.42)</td>
<td>0.01184</td>
</tr>
<tr>
<td>Alcohol</td>
<td>0.91 (0.63–1.33)</td>
<td>0.63</td>
</tr>
</tbody>
</table>

*After Bonferroni correction, \(P_{corr} = 0.048 \).
nologic mechanisms may play a role in IA development to a discernible extent. Our hypothesis is in accordance with clinical experiences in which IA is often found in subjects with autoimmune diseases. Further studies are needed to strengthen our hypothesis. In addition, the present results might pave the way for an investigation of a link between immunologic events and IA development.

Acknowledgments
This work was supported by a grant from the Ministry of Education, Science, Sports, and Culture of Japan to Dr Koizumi (15012231, 16012232, and 17019034) and a grant from the Japan Society for the Promotion of Science to Dr. Koizumi (Kiban Kenkyu A: 14207016 and S: 17109007). We thank Norio Matsumura for technical assistance and the following doctors for patient recruitment and help in ascertaining magnetic resonance angiography examinations: Shinanske Tomina, Hiroshi Hasegawa, and Toshikiro Ito (Yokohama Shintoshi Neurosurgical Hospital); Shununichi Yoneda and Yoshito Naruo (Nihonbashi Hospital); Yoo Kang and Shoichi Tani (Osaka Saiseikai Izu Hospital); Kouji Murakawa (Takayama Red Cross Hospital); Hiyosu Yamagasa (Germo-spring Hospital); Atsushi Kawarazaki (Kawarazaki Hospital); Masayuki Matsuda (Shiga University of Medical Science); Michiyasu Suzuki and Sadahiro Nomura (Yamaguchi University School of Medicine); Takaaki Kaneko and Nozomu Murai (Hikone Municipal Hospital); Tatsumiho Yamagami (Kyoto Kizugawa Hospital); Haru Ohishi, Kiminari Onaka, Juno Sasaki, Koki Iwaya, and Masaya Iwakawa (Semboku Kumiai Sougou Hospital); Kenji Kikuchi and Yutaka Yamazaki (Yuri Kumiai Sougou Hospital); Shiro Nagasawa and Nobuhisa Mabuchi (Soseikai Hospital); Atsushi Oka (Takeda Hospital); Yoshikiko Uemura (Kyoto City Hospital); Tomohiko Iwai (Gifu Municipal Hospital); Kiyohiro Houkin and Osamu Honmou (Sapporo Medical University School of Medicine); Ichiro Tani, Tetsuji Tani (Osaka Saiseikai Izuo Hospital); Kouji Murakawa, and Toshihiko Inui (Tominaga Hospital); Shyunichi Sunyaev and Kenji Hashimoto (Hyogo Prefectural Tsukagu- general Hospital); Yoo Kang and Yoshito Naruo (Nihonbashi Hospital); Robert SK, Alexander P, Yves LM, Ruth M, Helen HH. (2005). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.

References

CLINICAL PERSPECTIVE

A number of genetic studies conducted on familial intracranial aneurysms (IA) have reported positive findings for various chromosomal regions, including 1p, 2p, 7cent, 17cent, 19q and Xp. In the present study, we have extensively searched for genes on chromosome 17cent. A total of 9 candidate genes (*TNFRSF13B, M-RIP, COPS3, RAI1, SREBF1, GRAP, MAPK7, MFAP4, and AKAP10*) were selected from 108 genes within this linked region. *TNFRSF13B* was the only gene tested that was associated with intracranial aneurysms in the 58 cases (29 pedigree probands and 29 unrelated non-pedigree cases). The association of IA with *TNFRSF13B* was further studied in 304 unrelated cases and 332 control subjects. In unrelated cases, deleterious or nonsynonymous variants were found at a higher frequency (2.3%) than in control subjects (0.8%) (P=0.035). The association study using single nucleotide polymorphisms in an unrelated case-control cohort revealed a protective haplotype (odds ratio = 0.69, 95% confidence interval, 0.52 to 0.92; K = 0.012) to the major haplotype. We propose that *TNFRSF13B* is one of the genes which determine susceptibility for IAs. Other genes are also involved in IAs, as the population attributable risk of *TNFRSF13B* is small (7% to 10%). Interestingly, *TNFRSF13B*, one of the members that transduces key signals in the regulation for the survival and the apoptosis of immune cells, has recently been reported to be associated with common variable immunodeficiency and IgA deficiency. The present finding provides support for the hypothesis that immunological mechanisms play a role in the development of IA.
Search on Chromosome 17 Centromere Reveals *TNFRSF13B* as a Susceptibility Gene for Intracranial Aneurysm: A Preliminary Study

Kayoko Inoue, Youhei Mineharu, Sumiko Inoue, Shigeki Yamada, Fumihiko Matsuda, Kazuhiko Nozaki, Katsunobu Takenaka, Nobuo Hashimoto and Akio Koizumi

Circulation. 2006;113:2002-2010; originally published online April 17, 2006; doi: 10.1161/CIRCULATIONAHA.105.579326

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2006 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/113/16/2002

Data Supplement (unedited) at:

http://circ.ahajournals.org/content/suppl/2006/04/17/CIRCULATIONAHA.105.579326.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:

http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:

http://circ.ahajournals.org//subscriptions/