Dynamic Myocardial Ischemia Caused by Circumflex Artery Stenosis Detected by a New Implantable Left Atrial Pressure Monitoring Device

Jay L.T. Ritzema-Carter, BM, MRCP; David Smyth, MBChB, MD; Richard W. Troughton, MBChB, PhD; Ian G. Crozier, MBChB, MD; Iain C. Melton, MBChB; A. Mark Richards, MD, PhD, DSc; Neal Eigler, MD; James Whiting, PhD; Saibal Kar, MD; Henry Krum, MD; William T. Abraham, MD

A 81-year-old man with severe left ventricular dysfunction (left ventricular ejection fraction 24%), prior coronary artery bypass grafting, symptomatic heart failure (New York Heart Association class III), and an investigational percutaneously implanted permanent left atrial pressure (LAP) monitoring system (HeartPOD Savacor, Inc, Los Angeles, Calif) in situ (Figure 1) was admitted with an acute coronary syndrome. High-fidelity resting LAP waveforms were acquired at least twice daily by the patient, using a hand-held computer to communicate with the implant by radiofrequency digital telemetry. Mean LAP variations included frequent, diurnal increases to ≥ 35 mm Hg, with large c-V waves > 60 mm Hg. The patient underwent successful stenting of an unprotected circumflex marginal branch (Figure 2). Figure 3 shows hemodynamic waveforms during the angioplasty. Myocardial ischemia may elevate LAP by causing transient systolic or diastolic left ventricular dysfunction or mitral regurgitation from papillary muscle dysfunction. In this patient, ambulatory direct LAP monitoring detected dynamic ischemia and helped to confirm successful revascularization of the culprit circumflex artery.

Acknowledgments
Catherine Cruickshank was Study Coordinator at the Cardiology Department, Christchurch Hospital.

Disclosures
Dr Troughton has a research grant from the study sponsor, Savacor, Inc, Los Angeles, Calif, to participate in the HOMEOSTASIS 1 Trial. Drs Eigler, Whiting, and Kar have financial interests in the study sponsor. Dr Abraham serves as a consultant to the sponsor and as Study Chairman. The other authors report no conflicts.

From Christchurch Hospital, Christchurch, New Zealand (J.L.T.R.-C., D.S., R.W.T., I.G.C., I.C.M., A.M.R.); Cedars-Sinai Medical Center, Los Angeles, Calif (N.E., J.W., S.K.); Monash University, Alfred Hospital, Melbourne, Australia (H.K.); and The Ohio State University, Columbus, Ohio (W.T.A.).

The online-only Data Supplement can be found at http://circ.ahajournals.org/cgi/content/full/113/15/e705/DC1.

Correspondence to Dr Jay Ritzema-Carter, 2nd Floor, Parkside West, Christchurch Hospital, Private Bag 4710, Christchurch, New Zealand 8001.
E-mail jay.ritzemacarter@cdhb.govt.nz

(Circulation. 2006;113;e705-e706.)

© 2006 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

DOI: 10.1161/CIRCULATIONAHA.105.572040
Figure 2. Native circumflex marginal branch stenosis before (A) and after (B) stenting.

Figure 3. LAP and electrogram waveforms from the implanted monitoring system showing a normal LAP at baseline (A), LAP elevation during 20-second coronary occlusion with massive c-V waves (B), and normalization of LAP and c-V waves within 3 minutes after successful circumflex artery stenting (C). IEGM indicates intracardiac electrogram.
Dynamic Myocardial Ischemia Caused by Circumflex Artery Stenosis Detected by a New Implantable Left Atrial Pressure Monitoring Device

Circulation. 2006;113:e705-e706
doi: 10.1161/CIRCULATIONAHA.105.572040

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/113/15/e705