Part 3: Defibrillation

The 2005 Consensus Conference considered questions related to the sequence of shock delivery and the use and effectiveness of various waveforms and energies. These questions have been grouped into the following categories: (1) strategies before defibrillation, (2) use of automated external defibrillators (AEDs), (3) electrode-patient interface, (4) use of the electrocardiographic (ECG) waveform to alter management, (5) waveform and energy levels for the initial shock, (6) sequence after failure of the initial shock (ie, second and subsequent shocks), and (7) other related topics.

The ECC Guidelines 2000 state that defibrillation should be attempted as soon as ventricular fibrillation (VF) is detected, regardless of the response interval (ie, time between collapse and arrival of the AED). If the response interval is >4 to 5 minutes, however, there is evidence that 1 1/2 to 3 minutes of CPR before attempted defibrillation may improve the victim’s chance of survival. The data in support of out-of-hospital AED programs continues to accumulate, and there is some evidence supporting the use of AEDs in the hospital. Analysis of the VF waveform enables prediction of the likelihood of defibrillation success; with this information the rescuer can be instructed to give CPR or attempt defibrillation. This technology was developed by analysis of downloads from AEDs; it has yet to be applied prospectively to improve defibrillation success and is not available outside research programs.

All new defibrillators deliver a shock with a biphasic waveform. There are several varieties of biphasic waveform, but the best variant and the optimal energy level and shock strategy (fixed versus escalating) have yet to be determined. Biphasic devices achieve higher first-shock success rates than monophasic defibrillators. This fact, combined with the knowledge that interruptions to chest compressions are harmful, suggests that a 1-shock strategy (1 shock followed immediately by CPR) may be preferable to the traditional 3-shock sequence for VF and pulseless ventricular tachycardia (VT).

Strategies Before Defibrillation

Precordial Thump

Consensus on Science
No prospective studies have evaluated the use of the precordial (chest) thump. In 3 case series (LOE 5)2–4 VF or pulseless VT was converted to a perfusing rhythm by a precordial thump. The likelihood of conversion of VF decreased rapidly with time (LOE 5).4 The conversion rate was higher for unstable or pulseless VT than for VF (LOE 5).2–6

Several observational studies indicated that an effective thump was delivered by a closed fist from a height of 5 to 40 cm (LOE 5).3,6–8 Other observational studies indicated that additional tachyarrhythmias, such as unstable supraventricular tachycardia (SVT), were terminated by precordial thump (LOE 5).9,10 Potential complications of the precordial thump include rhythm deteriorations, such as rate acceleration of VT, conversion of VT into VF, complete heart block, and asystole (LOE 5).3,5,6,8,11,12; LOE 6).13 Existing data does not allow an accurate estimate of the likelihood of these complications.

Treatment Recommendation
One immediate precordial thump may be considered after a monitored cardiac arrest if an electrical defibrillator is not immediately available.

CPR Before Defibrillation

Consensus on Science
In a before–after study (LOE 4)14 and a randomized trial (LOE 2),15 1 1/2 to 3 minutes of CPR by paramedics or EMS physicians before attempted defibrillation improved return of spontaneous circulation (ROSC) and survival rates for adults with out-of-hospital VF or VT when the response interval (ambulance dispatch to arrival) and time to defibrillation was ≥4 to 5 minutes. This contrasts with the results of another trial in adults with out-of-hospital VF or VT, in which 1 1/2 minutes of paramedic CPR before defibrillation did not improve ROSC or survival to hospital discharge (LOE 2).16 In animal studies of VF lasting ≥5 minutes, CPR (often with administration of epinephrine) before defibrillation improved hemodynamics and survival rates (LOE 6).17–21

Treatment Recommendation
A 1 1/2- to 3-minute period of CPR before attempting defibrillation may be considered in adults with out-of-hospital VF or pulseless VT and EMS response (call to arrival) intervals >4 to 5 minutes. There is no evidence to support or refute the use of CPR before defibrillation for in-hospital cardiac arrest.

Use of AEDS

AED Programs

Consensus on Science
A randomized trial of trained lay responders in public settings (LOE 2)22 and observational studies of CPR and defibrillation...
performed by trained professional responders in casinos (LOE 5)23 and lay responders in airports (LOE 5)24 and on commercial passenger airplanes (LOE 5)25,26 showed that AED programs are safe and feasible and significantly increase survival from out-of-hospital VF cardiac arrest if the emergency response plan is effectively implemented and sustained. In some studies defibrillation by trained first responders (eg, firefighters or police officers) has improved survival rates from witnessed out-of-hospital VF sudden cardiac arrest (LOE 227; LOE 328,29; LOE 430,31; LOE 532). In other studies AED defibrillation by trained first responders has not improved survival.14,33

Approximately 80% of out-of-hospital cardiac arrests occur in a private or residential setting (LOE 4).34 However, there is insufficient data to support or refute the effectiveness of home AED programs.

Treatment Recommendation
Use of AEDs by trained lay and professional responders is recommended to increase survival rates in patients with cardiac arrest. Use of AEDs in public settings (airports, casinos, sports facilities, etc) where witnessed cardiac arrest is likely to occur can be useful if an effective response plan is in place. The response plan should include equipment maintenance, training of likely responders, coordination with local EMS systems, and program monitoring. No recommendation can be made for or against personal or home AED deployment.

AED Program Quality Assurance and Maintenance

Consensus on Science
No published trials specifically evaluated the effectiveness of AED program quality improvement efforts to further improve survival rates. Case series and reports suggest that potential improvements can be made by reviewing AED function (rhythm analysis and shock), battery and pad readiness, operator performance, and system performance (eg, mock codes, time to shock, outcomes) (LOE 5).35–42

Treatment Recommendation
AED programs should optimize AED function (rhythm analysis and shock), battery and pad readiness, operator performance, and system performance (eg, mock codes, time to shock, outcomes).

AED Use in Hospitals

Consensus on Science
No published randomized trials have compared AEDs with manual defibrillators in hospitals. One study of adults with in-hospital cardiac arrest with shockable rhythms showed higher survival-to-hospital discharge rates when defibrillation was provided through an AED program than with manual defibrillation alone (LOE 4).45 In an animal model, use of an AED substantially interrupted and delayed chest compressions compared with manual defibrillation (LOE 6).44 A manikin study showed that use of an AED significantly increased the likelihood of delivering 3 shocks but increased the time to deliver the shocks when compared with manual defibrillators (LOE 6).45 In contrast, a study of mock arrests in simulated patients showed that use of monitoring leads and fully automated defibrillators reduced time to defibrillation when compared with manual defibrillators (LOE 7).46

Treatment Recommendation
Use of AEDs is reasonable to facilitate early defibrillation in hospitals.

Electrode-Patient Interface

Electrode Pad/Paddle Position and Size

Consensus on Science

Position. No studies of cardiac arrest in humans have evaluated the effect of pad/paddle position on defibrillation success or survival rates. Most studies evaluated cardioversion (eg, atrial fibrillation [AF]) or secondary endpoints (eg, transhematic impedance [TTI]). Placement of paddles or electrode pads on the superior-anterior right chest and the inferior-lateral left chest were effective (paddles studied in AF, LOE 227; pads studied in AF, LOE 348; effect of pad position on TTI, LOE 349). Alternative paddle or pad positions that were reported to be effective were apex-posterior (paddles studied in VF and AF, LOE 450; effect of pad position on TTI, LOE 349), and anteroposterior (paddles studied in AF, LOE 251; paddles studied in AF, LOE 252, LOE 351; effect of pad position on TTI, LOE 349). One study showed lower TTI with longitudinal placement of the apical paddle (LOE 3).54 Placement of the pad on the female breast increased impedance and may decrease efficacy of defibrillation (LOE 5).55 High-voltage alternating current (eg, from high power lines) interfered with AED analysis (LOE 6).56

Size. One human study (LOE 3)57 and one animal study (LOE 6)58 documented higher defibrillation success rates with larger paddles: 12.8-cm paddles were superior to 8-cm paddles. Eight studies (LOE 353,57,59,60; LOE 561; LOE 655,62,63) demonstrated that increased pad size decreased TTI. In one canine study, significantly increased myocardial damage was reported after defibrillation with small (4.3 cm) electrodes compared with larger (8 and 12 cm) electrodes (LOE 6).64

Treatment Recommendation
Paddles and electrode pads should be placed on the exposed chest in an anterolateral position. Acceptable alternative positions are anteroposterior (paddles and pads) and apex-posterior (pads). In large-breasted patients it is reasonable to place the left electrode pad (or paddle) lateral to or underneath the left breast. Defibrillation success may be higher with 12-cm electrodes than with 8-cm electrodes. Small electrodes (4.3 cm) may be harmful; myocardial injury can occur.

Self-Adhesive Defibrillation Pads Versus Paddles

Consensus on Science
One randomized trial (LOE 2)65 and 2 retrospective comparisons (LOE 4)50,66 showed that TTI is similar when either pads or paddles are used. One prospective comparison of pads and paddles (LOE 3)67 showed lower TTI when paddles were applied at an optimal force of 8 kg compared with pads. One randomized study of chronic AF showed similar effectiveness for self-adhesive pads and manual paddles when monophasic
damped sinusoidal or BTE waveforms were evaluated separately (LOE 7). Several studies (LOE 569–71; LOE 672) showed the practical benefits of paddles over paddles for routine monitoring and defibrillation, prehospital defibrillation, and perioperative defibrillation.

Treatment Recommendation
Self-adhesive defibrillation pads are safe and effective and are an acceptable alternative to standard defibrillation paddles.

Waveform Analysis
VF waveform analysis has the potential to improve the timing and effectiveness of defibrillation attempts; this should minimize interruptions in precordial compressions and reduce the number of unsuccessful high-energy shocks, which cause postresuscitation myocardial injury. The technology is advancing rapidly but is not yet available to assist rescuers.

Prediction of Shock Success From VF Waveform

Consensus on Science
Retrospective analyses of the VF waveform in clinical and animal studies and theoretical models (LOE 473–82; LOE 683–93) suggest that it is possible to predict with varying reliability the success of defibrillation from the fibrillation waveform. No studies specifically evaluated whether treatment can be altered by the prediction of defibrillation success to improve survival from cardiac arrest.

Initial Shock Waveform and Energy Levels
Several related questions were reviewed. Outcome after defibrillation has been studied by many investigators. When evaluating these studies the reviewer must consider the setting (eg, out-of-hospital versus in-hospital), the initial rhythm (eg, VF/pulseless VT), the duration of arrests (eg, out-of-hospital with typical EMS response interval versus electrophysiology study with 15-second arrest interval), and the specific outcome measured (eg, termination of VF at 5 seconds).

Biphasic Versus Monophasic Waveforms for Ventricular Defibrillation

Consensus on Science
In 3 randomized cardiac arrest studies (LOE 2),94–96 a reanalysis of one of these studies (LOE 2),93 2 observational cardiac arrest studies (LOE 4),98,99 meta-analysis of 7 randomized trials in the electrophysiology laboratory (LOE 1),100 and multiple animal studies, defibrillation with a biphasic waveform, using equal or lower energy levels, was at least as effective for termination of VF as monophasic waveforms. No specific waveform (either monophasic or biphasic) was consistently associated with a greater incidence of ROSC or higher hospital discharge rates from cardiac arrest than any other specific waveform. One retrospective study (LOE 4)99 showed a lower survival-to-hospital-discharge rate after defibrillation with a biphasic truncated exponential (BTE) waveform when compared with a monophasic truncated exponential (MTE) device (20% versus 39.7%, P = 0.01), but survival was a secondary end point. This study had multiple potential confounders, including the fact that CPR was provided to more subjects in the MTE group.

No direct comparison of the different biphasic waveforms has been reported as of 2005.

Treatment Recommendation
Biphasic waveform shocks are safe and effective for termination of VF when compared with monophasic waveform shocks.

Energy Level for Defibrillation

Consensus on Science
Eight human clinical studies (LOE 294; LOE 3101; LOE 595,96,98,99,102,103) described initial biphasic selected shock energies ranging from 100 J to 200 J with different devices but without clearly demonstrating an optimal energy level. These human clinical studies also described use of subsequent selected shock energy levels with different devices for shock-refractory VF/VT ranging from 150 J to 360 J but without clearly demonstrating an optimal energy level.

Seven more laboratory studies (LOE 7)104–110 in stable patients evaluated termination of induced VF with energy levels of 115 J to 200 J.

Neither human clinical nor laboratory studies demonstrated evidence of significantly greater benefit or harm from any energy level used currently. One human study in the out-of-hospital setting showed an increased incidence of transient heart block following 2 or more 320-J monophasic damped sine wave (MDS) shocks when compared with an equal number of 175-J MDS shocks, but there was no difference in long-term clinical outcome (LOE 2).111

Only 1 of the reviewed animal studies showed harm caused by attempted defibrillation with doses in the range of 120 J to 360 J in adult animals; this study indicated that myocardial damage was caused by higher-energy shocks (LOE 6).112

One in-hospital study of 100 patients in VF compared MDS shocks of low (200 J to 240 J), intermediate (300 J to 320 J), and high (400 J to 440 J) energy (LOE 2).113 First-shock efficacy (termination of VF for ≥5 seconds) was 39% for the low-energy group, 58% for the intermediate-energy group, and 56% for the high-energy dose group. These differences did not achieve statistical significance. A study of electrical cardioversion for AF indicated that 360-J MDS shocks were more effective than 100-J or 200-J MDS shocks (LOE 7).114 Cardioversion of a well-perfused myocardium, however, is not the same as defibrillation attempted during VF cardiac arrest, and any extrapolation should be interpreted cautiously.

Treatment Recommendation
There is insufficient evidence for or against specific selected energy levels for the first or subsequent biphasic shocks. With a biphasic defibrillator it is reasonable to use 150 J to 200 J with BTE waveforms or 120 J with the rectilinear biphasic waveform for the initial shock. With a monophasic waveform defibrillator, an initial shock of 360 J is reasonable.
Second and Subsequent Shocks

Fixed Versus Escalating Energy

Consensus on Science

Only one small human clinical study (LOE 3)\(^{101}\) compared fixed energy with escalating energies using biphasic defibrillators. The study did not identify a clear benefit for either strategy.

Treatment Recommendation

Nonescalating- and escalating-energy biphasic waveform defibrillation can be used safely and effectively to terminate VF of both short and long duration.

1-Shock Protocol Versus 3-Shock Sequence

Consensus on Science

No published human or animal studies compared a 1-shock protocol with a 3-stacked shock sequence for any outcome. The magnitude of success of initial or subsequent shocks depended on the specific group of patients, the initial rhythm, and the outcome considered. Shock success was defined as termination of VF for \(\geq 5\) seconds after the shock. Resuscitation success can include ROSC and survival to hospital discharge. Only shock success is cited below.

First-shock success. Six studies of defibrillation in out-of-hospital cardiac arrest reported first-shock success in patients whose initial rhythm was shockable (VF/pulseless VT):

- In studies that used a 200-J MDS waveform, the first-shock success rate was 77% to 91% (LOE 2\(^{94,97}\); LOE 5\(^{95,99}\)). In studies that used a 200-J MTE waveform, the first-shock success rate was 54% to 63% (LOE 4)\(^{97,99}\).
- In studies that used a 150-J BTE waveform\(^{97,99,115,116}\) and 1 study that used a 200-J BTE waveform,\(^{95}\) the first-shock success rate was 86% to 98%,\(^{95,97,99,115,116}\).
- The first-shock success rate with a 120-J rectilinear biphasic waveform was 85% (according to L.J. Morrison, MD, in oral discussion at the 2005 Consensus Conference)\(^{94}\).

Although the first-shock success rate was relatively high in patients with out-of-hospital cardiac arrest and an initial rhythm of VF, the average rate of ROSC with the first shock (for MDS, MTE, and BTE waveforms) was 21% (range 13% to 23%) (LOE 5)\(^{99}\).

Second- and third-shock success rates. Six studies of defibrillation in out-of-hospital cardiac arrest reported the shock success (defined above) rate of the first shock and subsequent 2 shocks (if the initial shock was unsuccessful) for patients with an initial rhythm of VF/pulseless VT. The figures below refer to only those patients who remained in VF after the first shock, and they represent the proportion of these cases successfully defibrillated by either the second or third shock.

- In 2 studies that used the MDS waveform with increasing energy levels (200 J to 200/300 J to 360 J), the combined shock success of the second and third shocks when the first shock failed was 68% to 72% (LOE 5)\(^{94,99}\). In 2 studies that used the MTE waveform with increasing energy levels (200 J to 200/300 J to 360 J), the combined shock success of the second and third shocks when the first shock failed was 27% to 60% (LOE 5)\(^{97,99}\).
- In 4 studies that used the fixed-energy 150-J BTE waveform, the combined shock success of the second and third shocks when the first shock failed was 50% to 90% (LOE 5)\(^{97,99,115,116}\).
- In the 1 study that used a rectilinear waveform with increasing energy levels (120 J to 150 J to 200 J), the combined success rate of the second and third shocks when the first shock failed was 85% (LOE 5)\(^{94}\).

One study of defibrillation for out-of-hospital cardiac arrest in which the initial rhythm was VF reported a 26% rate of ROSC with the initial series of up to 3 shocks (for BTE waveforms) combined with preshock or postshock CPR or both (LOE 5)\(^{116}\).

Treatment Recommendation

Priorities in resuscitation should include early assessment of the need for defibrillation (Part 2: “Adult Basic Life Support”), provision of CPR until a defibrillator is available, and minimization of interruptions in chest compressions. Rescuers can optimize the likelihood of defibrillation success by optimizing the performance of CPR, timing of shock delivery with respect to CPR, and the combination of waveform and energy levels. A 1-shock strategy may improve outcome by reducing interruption of chest compressions. A 3-stacked shock sequence can be optimized by immediate resumption of effective chest compressions after each shock (irrespective of the rhythm) and by minimizing the hands-off time for rhythm analysis.

Related Defibrillation Topics

Defibrillator Data Collection

Consensus on Science

Collection of data from defibrillators enables a comparison of actual performance during cardiac arrests and training events. The results of 3 observational studies (LOE 5)\(^{117–119}\) suggest that the rate and depth of external cardiac compressions and ventilation rate were at variance with current guidelines.

Treatment Recommendation

Monitor/defibrillators modified to enable collection of data on compression rate and depth and ventilation rate may be useful for monitoring and improving process and outcomes after cardiac arrest.

Oxygen and Fire Risk During Defibrillation

Consensus on Science

Several case reports (LOE 5)\(^{120–125}\) described instances of fires ignited by sparks from poorly attached defibrillator paddles in the presence of an oxygen-enriched atmosphere. The oxygen-enriched atmosphere rarely extends \(>0.5\) m (1.5 ft) in any direction from the oxygen outflow point, and the oxygen concentration returns quickly to ambient when the source of enrichment is removed (LOE 5)\(^{122};\) LOE 6\(^{126}\). The most severe fires were caused when ventilator tubing was disconnected from the tracheal tube and then left adjacent to...
the patient’s head during attempted defibrillation (LOE 5).121,123,125 In at least one case a spark generated during defibrillation ignited oxygen delivered by a simple transparent face mask that was left in place (LOE 5).120

In a manikin study (LOE 6) there was no increase in oxygen concentration anywhere around the manikin when the ventilation device was left attached to the tracheal tube, even with an oxygen flow of 15 L/min.

Treatment Recommendation

Rescuers should take precautions to minimize sparking (by paying attention to pad/paddle placement, contact, etc) during attempted defibrillation. Rescuers should try to ensure that defibrillation is not attempted in an oxygen-enriched atmosphere.

References

Worksheets Cited

W59. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC90

W60A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC91

W60B. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC92

W61A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC93

W61B. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC94

W62A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC95

W63A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC97

W63B. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC98

W64A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC99

W64B. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC100

W64C. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC101

W65A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC102

W66. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC104

W68. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC106

W69A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC107

W69B. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC108

W69C. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC109

W70A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC110

W70B. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC111

W71. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC112

W166B. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC285

W171. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC294

W172. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC295

W173A. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC296

W174. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC299

W175. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC300

W177. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC302

W178. http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.105.170522/DC303
Part 3: Defibrillation