Part 8: Interdisciplinary Topics

The Interdisciplinary Task Force discussed topics that applied to several task forces and in particular focused on questions about educational methods, ethics, and outcomes. Some of these topics are discussed in other sections of this document (eg, the topic of medical emergency teams is discussed in Part 4: “Advanced Life Support”).

To maintain consistency with the science statements in other sections, studies using manikins were recorded as LOE 6, irrespective of the study design.

Educational Methods

Acquisition and retention of skills are poor after conventional CPR training.1 Evidence for and against several resuscitation training methods was reviewed, highlighting the need for further research.

Devices

CPR Prompt Devices

Consensus on Science

Twenty-seven randomized studies using models from the motor skills literature (LOE 6)2–28 and one randomized study using manikins (LOE 6)29 showed that the use of audio or visual prompts during motor skills acquisition training improved student skills performance during or immediately after training. These studies and supporting theory from 2 studies (LOE 7)30,31 indicate that the overuse of guiding prompts during training reduced skills retention in the long term.

Treatment Recommendation

Audio and visual prompts and other forms of directive or corrective feedback that guide action sequences and timing of chest compressions and ventilations may help early learning of CPR skills. Training must include ample practice time without prompting devices to optimize skills retention for situations in which prompting devices are not available.

Instructional Methods

Effective AED Instructional Methods

Consensus on Science

Seven studies (LOE 432–35; LOE 536,37; LOE 738 showed improved rates of survival from out-of-hospital cardiac arrest when CPR plus automated external defibrillator (AED) use showed higher survival rates compared with national reports (LOE 7).38

Twenty studies (LOE 579; LOE 640–58) document consistent improvement in simulated AED use and skills retention using diverse training methods and durations. Three studies (LOE 6)59–61 show that within a simulated arrest scenario the correct and appropriate use of an AED depends on the AED user interface.

Effective BLS Instructional Methods

Consensus on Science

Nineteen randomized manikin studies (LOE 6)48,62–79 and one extrapolated study (LOE 7)80 showed considerable variability in BLS skills acquisition and retention with the use of different instructional formats (video instruction, computer-assisted instruction, and traditional instruction). Four randomized studies using manikins (LOE 6)66–69 indicated that one video instruction program (a self-instructional synchronous “watch-while-you-practice” program) achieved better skills acquisition and retention than other educational formats. One randomized study of adult learners using manikins showed that a brief video self-instruction program produced CPR skills performance equivalent to or better than traditional training (LOE 6).81

Treatment Recommendation

Instructional methods should not be limited to traditional techniques; newer training methods (eg, “watch-while-you-practice” video programs) may be more effective. Training programs should be evaluated to verify that they enable effective skills acquisition and retention.

Instructional Methods for Hand Position in Chest Compressions

Consensus on Science

Six randomized controlled trials (RCTs) using manikins (LOE 6)67,69,82–85 evaluated hand positioning in detail. One specifically evaluate the training provided, but sites where rescuers were trained and equipped to provide CPR or CPR plus automated external defibrillator (AED) use showed higher survival rates compared with national reports (LOE 7).38

From the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations, hosted by the American Heart Association in Dallas, Texas, January 23–30, 2005.

This article has been copublished in Resuscitation.

(Circulation. 2005;112:III-100-III-108.)

© 2005 International Liaison Committee on Resuscitation, American Heart Association, and European Resuscitation Council.

This special supplement to Circulation is freely available at http://www.circulationaha.org DOI: 10.1161/CIRCULATIONAHA.105.166478

III-100
trial102 compared a simplified message (“place hands in the center of the chest”) versus the standard method (anatomical landmarks) for teaching correct hand placement. Three of the 6 trials83–85 compared a staged teaching approach with standard teaching. Two of the trials67,69 compared the results of video self-instruction with standard teaching on CPR performance. The likelihood of achieving an acceptable hand position was no different between those who had received detailed instruction on anatomical landmarks and those who were instructed to simply compress the center of the chest.

In 4 manikin RCTs (LOE 6)86–88 the use of anatomical landmarks to determine hand placement delayed delivery of the first chest compression after a ventilation; thus, fewer compressions were delivered per minute. Incorrect rescuer hand placement can injure the victim (LOE 6).86,87

Treatment Recommendation
Teaching hand placement for chest compression should be simplified with less attention to anatomical landmarks and emphasis on the importance of minimizing interruption to chest compressions and performing an adequate number of chest compressions per minute.

Retraining Intervals

Retraining Intervals in Advanced and Basic Life SupportW186A,W186

Consensus on Science
One prospective cohort study (LOE 3),88 1 survey (LOE 5),89 and 10 manikin studies (LOE 6),90–99 documented decay in healthcare provider ALS skills and knowledge after ALS training and retraining from as little as 6 weeks to 2 years. Refresher courses based only on knowledge did not prevent the decay in psychomotor skills.

A single randomized manikin study (LOE 6)100 concluded that retraining at either 3- or 6-month intervals resulted in similar BLS performance at 12 months and providers who were retrained performed significantly better than controls with no retraining.

Treatment Recommendation
Frequent retraining (theory and practice) is required to maintain both BLS and ALS skills. The optimal interval for retraining has not been established.

Media Campaigns

Media Campaigns Targeting Chest PainW193A,W193B

Consensus on Science
One large RCT (LOE 1),101 a Cochrane systematic review (LOE 1),102 and 4 additional studies (LOE 3103,104; LOE 4105,106) evaluating the impact of mass media campaigns indicate that they do not reduce the delay to presentation at the hospital following onset of chest pain. Conversely, 7 studies (LOE 3)107–113 did report reduced delay in the patient’s response to chest pain.

The evidence that mass media campaigns reduce patient delay from the onset of symptoms to presentation at hospital is equivocal and suggests that the impact of such campaigns, particularly on prehospital delay times, may be greater for populations in which the baseline delay time is long.

There is evidence that mass media campaigns can increase the use of ambulance transport (LOE 1)101 in patients with symptoms that suggest myocardial ischemia. In several studies (LOE 1102; LOE 3107,103,114; LOE 4105) the number of patients presenting to the emergency department increased in the early stages of the media campaign but soon returned to baseline.

The impact of mass media campaigns on rates of mortality from ischemic heart disease remains inconclusive (LOE 3),109 however, the inference is that by reducing prehospital delay time, the mortality rate should decrease.

Treatment Recommendation
Given that the data is inconsistent, mass media campaigns should not be considered the only option for reducing patient delay but rather part of an overall system approach to reduce the interval from onset of symptoms of chest pain to hospital presentation.

Educational Evaluation

Although there is considerable literature on the evaluation of educational processes in general, there are few studies of resuscitation education.

Attitude Toward Performing CPR

Barriers to Performing CPRW184A,W184B

Consensus on Science
One RCT (LOE 2),115 1 prospective controlled cohort study (LOE 3),116 2 cohort and case studies (LOE 4),117,118 supported by 27 cohort and case studies (LOE 5119–138; LOE 7139–145) indicate hesitancy or unwillingness to perform CPR, particularly mouth-to-mouth ventilation, on adult patients in and out of hospital, even after CPR training.

Reasons for the hesitancy or unwillingness to perform CPR include, but are not limited to, fear of contracting a disease while performing mouth-to-mouth ventilations, fear of performing the skills incorrectly, and fear of hurting the patient.

Treatment Recommendation
CPR training programs should include discussion of the minimal risk of contracting infectious diseases while performing mouth-to-mouth ventilation. “Chest compression only” resuscitation may be considered when there is a reluctance to perform mouth-to-mouth ventilation (see Part 2: “Adult Basic Life Support”).

Written Test Scores and Skills CompetenceW188A,W188B

Consensus on Science
Do written test scores correlate with competence in CPR skills? None of the studies reviewed was designed specifically to answer this question. In 14 of 17 studies test scores correlated with CPR proficiency. Of the 7 studies with good written test scores (LOE 6 manikin studies), 4 studies were associated with good CPR skills146–149 and 3 studies with poor CPR skills150–152. In 2 manikin studies (LOE 6)153 mediocre written test scores correlated with mediocre or borderline CPR performance. In 6 manikin studies (LOE
Treatment Recommendation
A written test score does not always reflect BLS skills competence. Therefore, a written test or questionnaire should not be used as the sole determinant of a person’s acquisition of the skills needed to perform CPR.

Ethics
The ethical issues surrounding resuscitation are dependent on local culture and law. Consideration of the patient’s wishes, the family’s desires, cultural issues, and local laws makes specific recommendations about ethical decisions generally inappropriate.

Impact of DNAR on Resuscitation

Consensus on Science
The emergency medical services (EMS) system is activated for many patients in cardiac arrest who are chronically ill, have a terminal illness, or have do-not-attempt-resuscitation (DNAR) orders (LOE 4).159–161 Studies from the United States and Australia indicate that Caucasians and better-educated persons are more likely to have advance directives (LOE 4162–165; LOE 7166–168). There is evidence that out-of-hospital healthcare providers can interpret and use DNAR orders and other documents to limit treatment (LOE 3169,170; LOE 4171; LOE 7172).

The most studied DNAR form is the Physician Orders for Life-Sustaining Treatment (POLST) form,170,171,173–175

Treatment Recommendation
We recommend the use of standardized out-of-hospital physician orders for patients who are chronically ill or have a terminal illness. These must be easily understood by EMS personnel. Additional instructions should indicate whether EMS personnel are to initiate or continue life-sustaining interventions for patients in cardiac arrest and those in near-arrest. Because laws governing the use of DNAR forms and advance directives vary by jurisdiction, providers should be aware of local laws and regulations.176

Family Member Presence During CPR

Consensus on Science
No studies evaluated the effect of the presence of parents during resuscitation of children. Studies on parents’ opinions indicate their preference to be at the side of the child who is dying (LOE 5),177 during CPR (LOE 5),177 or during procedures (LOE 7).177–184 However, 5 studies (LOE 3)185–189 found that staff members were reluctant to allow parents to be present during resuscitation.

Most relatives of adult patients requiring CPR state that they would like to be offered the option of being present in the resuscitation room (LOE 5).190–194 A survey of adult patients indicated that many, but not all, would prefer to have certain family members present (LOE 5).195 Family presence during resuscitation did not impact on self-reported stress among staff (LOE 3),196 nor was it disruptive for staff (LOE 5).191,194 Family members considered their presence to be beneficial (LOE 5)191,193,194,197 and their adjustment to the death of the patient made easier by their presence during the resuscitation attempt (LOE 2198; LOE 5191,197).

There are no data to support or refute the importance of having a dedicated staff member available to support family members during resuscitation for either adults or children, but this practice is well described (LOE 2198; LOE 5191).

Treatment Recommendation
There is no data indicating that the presence of relatives in the resuscitation room is harmful. Therefore, it is reasonable to give select family members the opportunity to be present during resuscitation unless the adult patient has raised a prior objection.

Outcomes and Cost-Effectiveness
Research about the “quality of life” for survivors of cardiac arrest is plagued by the lack of a consistent definition of quality of life and how best to measure it. Nonetheless, the increasing demand for limited healthcare resources makes it important to measure the effectiveness of CPR in terms of quality of survival and not just the number of survivors.

Outcomes
Quality of Life Outcomes After CPR

Consensus on Science
In 6 nonrandomized prospective cohort studies (LOE 3)144,199–203 and 20 additional studies (LOE 4204–210; LOE 5211–223) of long-term survivors of in- and out-of-hospital cardiac arrest, the quality of life among the majority of adult survivors is similar to that of the general population. Cognitive deficits in survivors, such as memory loss and depression, are common. In 2 studies (LOE 4)224,225 neurologic outcomes were poor after cardiac arrest in children. Two studies indicate that the quality of life may not be as good in some cohorts, such as long-term care patients (LOE 5).226,227

Treatment Recommendation

Cost-Effectiveness
Cost-Effectiveness in CPR Training Programs

Consensus on Science
In the single study (LOE 3)148 that considers the cost-effectiveness of CPR training programs, traditional CPR training in an unselected population of laypeople is expensive compared with accepted cost-effectiveness thresholds. Conversely, selective training of laypeople at high risk of witnessing a cardiac arrest (ie, persons living in households with a recent survivor of myocardial infarction) is much more cost-effective.
Treatment Recommendation

It is reasonable for CPR programs to emphasize the enrollment of laypeople with the highest probability of encountering a victim of cardiac arrest. Other potentially more cost-effective methods of training should be considered (see previous sections).

References

47. McKee DR, Wynne G, Evans TR. Student nurses can defibrillate within 90 seconds: an evaluation of a training programme for third year student

100. Berden HJ, Willems FF, Hendrick JM, Pijls NH, Knape JT. How frequently should basic cardiopulmonary resuscitation training be repeated to maintain adequate skills? BMJ. 1993;306:1576–1577.

III-106 Circulation November 29, 2005

Part 8: Interdisciplinary Topics

Circulation. 2005;112:III-100-III-108
doi: 10.1161/CIRCULATIONAHA.105.166478
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/112/22_suppl/III-100

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2005/11/28/112.22_suppl.III-100.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/