Targeted Deletion of Fgl-2/Fibroleukin in the Donor Modulates Immunologic Response and Acute Vascular Rejection in Cardiac Xenografts

Michael Mendicino; MingFeng Liu; Anand Ghanekar, MD; Wei He; Cheryl Koscik; Itay Shalev; Mojib Javadi; Julie Turnbull; Wenhao Chen; Laisum Fung; Seisuke Sakamoto, MD; Phillip Marsden, MD; Thomas K. Waddell, MD, PhD; M. James Phillips, MD; Reginald Gorczynski, MD, PhD; Gary A. Levy, MD; David Grant, MD

Background—Xenografts ultimately fail as a result of acute vascular rejection (AVR), a process characterized by intravascular thrombosis, fibrin deposition, and endothelial cell activation.

Methods and Results—We studied whether targeted deletion of Fgl-2, an inducible endothelial cell procoagulant, (Fgl-2−/−) in the donor prevents AVR in a mouse-to-rat cardiac xenotransplantation model. By 3 days after transplant, Fgl-2−/− grafts developed typical features of AVR associated with increased levels of donor Fgl-2 mRNA. Grafts from Fgl-2−/− mice had reduced fibrin deposition but developed cellular rejection. Treatment with a short course of cobra venom factor and maintenance cyclosporine resulted in long-term acceptance of both Fgl-2+/+ and Fgl-2−/− grafts. On withdrawal of cyclosporine, Fgl-2+/+ grafts developed features of AVR; in contrast, Fgl-2−/− grafts again developed acute cellular rejection. Rejecting Fgl-2−/− hearts stained positively for IgG, IgM, C3, and C5b-9, whereas rejecting Fgl-2+/− hearts had minimal Ig and complement deposition despite xenoantibodies in the serum. Furthermore, serum containing xenoantibodies failed to stain Fgl-2−/− long-term treated hearts but did stain wild-type heart tissues. Treatment of Fgl-2−/− xenografts with mycophenolate mofetil and tacrolimus, a clinically relevant immune suppression protocol, led to long-term graft acceptance.

Conclusions—Deletion of Fgl-2 ameliorates AVR by downregulation of xenoantigens and may facilitate successful clinical heart xenotransplantation. (Circulation. 2005;112:248-256.)

Key Words: apoptosis ⚫ endothelium ⚫ immunology ⚫ thrombosis ⚫ transplantation

Transplantation is the treatment of choice for patients with end-stage heart failure, but its application is limited by a severe shortage of available human organs. Xenotransplantation potentially offers an unlimited supply of organs,1,2 Hyperacute rejection of porcine hearts transplanted into nonhuman primates, which occurs within minutes to hours of graft implantation, has been overcome through depletion of preformed xenoreactive antibodies, prevention of complement activation, and production of 1,3-galactosyltransferase-deficient pigs, but these strategies have failed to prevent acute vascular rejection (AVR).3,4 AVR, which occurs days to weeks after transplantation in nonhuman primates, is characterized by endothelial cell (EC) activation, intravascular thrombosis, and fibrin deposition.5–7

Other investigators have shown that activation of graft EC during AVR leads to a loss of thromboregulatory molecules, including thrombomodulin, heparan sulfate, and CD39, and an increase in expression of tissue factor (TF).8,9 We recently reported that porcine kidney xenografts undergoing AVR showed induction of a novel procoagulant Fgl-2 on graft vascular EC.10 Fgl-2 belongs to a family of fibrinogen-like proteins (fibrinogen-related domain [FRED]) that includes fibrinogen, tenasin, ficolin, and angiopoietin.11–13 FRED proteins participate in coagulation, cell adhesion, transendothelial migration, cell proliferation, and regulation of transcription factors.14,15 Fgl-2 is expressed and differentially regulated in many cell types, including EC.16 Membrane-associated Fgl-2 has prothrombinase activity, whereas secreted Fgl-2 has immunomodulatory activity.17,18 Distinct from TF, Fgl-2 directly cleaves prothrombin to thrombin and plays a key role in the pathogenesis of some diseases.
characterized by intravascular thrombosis and fibrin deposition.

To study the role of Fgl-2 in AVR, we transplanted hearts from Fgl-2/−/− and Fgl-2/−/+ donor mice into Lewis rats. As confirmed in the studies reported below, these recipients exhibit a strong immunologic response to murine xenografts, resulting in a predictable and reproducible pattern of AVR similar to that seen in primates.

Methods

Animals

The generation and characterization of mice with a targeted deletion of Fgl-2 have been described. Male mice on a mixed C57BL6 × 129/SvJ background were used for all experiments, and control Fgl-2/−/− mice were age and litter matched. Inbred male Lewis rats were obtained from Charles River (Montreal, Quebec, Canada). All animals were housed and handled in accordance with guidelines set by the Canadian Council on Animal Care.

Mouse-to-Rat Cardiac Xenotransplantation and Immune Suppression

Animals were anesthetized with an intraperitoneal injection of Somnotol (MTC Pharmaceuticals) at a dose of 65 mg/kg for all procedures. Each donor mouse heart was removed as previously described and implanted heterotopically in the groin of a Lewis rat. The ascending aorta and pulmonary artery of the donor heart were anastomosed to the recipient femoral artery and femoral vein, respectively. Grafts were observed for 30 minutes after reperfusion and subsequently were assessed daily by palpation. Cessation of graft function was inferred by an absence of palpable ventricular contractions and was confirmed by direct examination of the graft. For accommodation induction, reagents and protocol were as previously described.

Serum Xenoantibody Levels

The levels of xenoreactive antibodies in the serum of rats before and after xenotransplantation with hearts from wild-type (Fgl-2+/+) or knockout (Fgl-2−/−) mice were quantified after binding to the surface of Fgl-2−/− heart tissue. Briefly, heart tissue from Fgl-2−/− hearts was fixed with 10% formalin in PBS on glass slides. The slides were blocked for 1 hour with 2% goat serum in PBS followed by another 1 hour of blocking with 10% FBS in PBS. Serum from naive or transplanted rats was added for 1 hour at 37°C. After extensive washing, mouse anti-rat Ig–specific antibody (Becton Dickinson) was added for 1 hour at 37°C. After 3 washes, a horseradish peroxidase–conjugated goat anti-mouse Ig was used as the secondary antibody for rat complement. Isotype-matched nonimmunized mouse monoclonal antibodies, and anti-rat granulocyte (clone HIS48), a mouse polyclonal antibody, were all obtained from BD Pharmingen. Monoclonal mouse anti-rat ED1 (clone ED1) was obtained from Serotec. A multiply absorbed biotinylated polyclonal goat anti-mouse Ig (BD Pharmingen) was used as a secondary antibody in all cases. Rat immunoglobulin and complement were studied by immunofluorescence with FITC-labeled rabbit anti-rat IgG F(ab′)2 fragment, and goat and anti-rat IgM F(ab′)2 fragment (Jackson Immunoresearch Labs) or mouse anti-rat ED11 (rat reticulum) (Serotec) and mouse anti-human C5b-9 (Dako), respectively. FITC-labeled rat anti-mouse IgG F(ab′)2 fragment (Jackson Immunoresearch Labs) was used as the secondary antibody for rat complement.

Histopathology and Immunopathology

For light microscopy, specimens were fixed in 10% neutral-buffered formalin, embedded in paraffin, and stained with hematoxylin and eosin (H&E) or Martius scarlet blue stain by standard procedures. For transmission electron microscopy (TEM), specimens were treated as previously described. For immunohistochemistry of recipient cell lineage, 6-μm cryostat sections were fixed in cold acetone and subsequently studied by a standard indirect avidin-biotin method (Histomouse-SP kit, Zymed). Anti-rat leukocyte common antigen (LCA or CD45, clone OX-1), anti-rat β T-cell receptor (clone R73), anti-rat CD45RA (clone OX-33), anti-rat NRK-P1A (clone 10/78) mouse monoclonal antibodies, and anti-rat granulocyte (clone HIS48), a mouse polyclonal antibody, were all obtained from BD Pharmingen. Monoclonal mouse anti-rat ED1 (clone ED1) was obtained from Serotec. A multiply absorbed biotinylated polyclonal goat anti-mouse Ig (BD Pharmingen) was used as a secondary antibody in all cases. Rat immunoglobulin and complement were studied by immunofluorescence with FITC-labeled rabbit anti-rat IgG F(ab′)2 fragment, fragment and goat anti-rat IgM F(ab′)2 fragment (Jackson Immunoresearch Labs) or mouse anti-rat ED11 (rat reticulum) (Serotec) and mouse anti-human C5b-9 (Dako), respectively. FITC-labeled rat anti-mouse IgG F(ab′)2 fragment (Jackson Immunoresearch Labs) was used as the secondary antibody for rat complement.

Serum Xenoantibody Levels

The levels of xenoreactive antibodies in the serum of rats before and after xenotransplantation with hearts from wild-type (Fgl-2+/+) or knockout (Fgl-2−/−) mice were quantified after binding to the surface of Fgl-2−/− heart tissue. Briefly, heart tissue from Fgl-2−/− hearts was fixed with 10% formalin in PBS on glass slides. The slides were blocked for 1 hour with 2% goat serum in PBS followed by another 1 hour of blocking with 10% FBS in PBS. Serum from naive or transplanted rats was added for 1 hour at 37°C. After extensive washing, mouse anti-rat Ig–specific antibody (Becton Dickinson) was added for 1 hour at 37°C. After 3 washes, a horseradish peroxidase–conjugated goat anti-mouse antibody (Becton Dickinson) was added for 1 hour, then substrate was added and developed. Samples were transferred to 96-well plates and read in a Titertek spectrophotometer. Units (μg/mL) were extrapolated from a standard curve derived with the use of known quantities of purified rat Ig antibodies.

Northern Blotting and Reverse Transcriptase–Polymerase Chain Reaction

Explanted grafts were snap-frozen in liquid nitrogen and preserved at −80°C. Total RNA was isolated with the use of Trizol reagent (Life Technologies) according to the manufacturer’s instructions. mRNA was isolated with the use of the Oligotex mRNA purification kit (Qiagen). Northern blot was performed with standard procedures with the use of gene-specific primers for Fgl-2 (sense 5′-TGCCCACGCTGACCATCCA-3′ and antisense 5′-AGACCTGGCAGGAAT-3′) and TF (sense 5′-CAGTTCAAGGGAGACCTTCC-3′ and antisense 5′-GGTTCTTTCTG-3′), and a 1-kb cDNA probe for GAPDH was obtained from Clontech. Membranes were hybridized with radiolabeled cDNA probes with the use of ExpressHyb hybridization solution (Clontech). ImageQuant 5.1 software (Molecular Dynamics) quantified results by using pixel number counts normalized to GAPDH counts with background correction. Semi quantitative reverse transcription–polymerase chain reaction (RT-PCR) was performed with a 1-step RT-PCR kit (Qiagen) with gene specific primers for mouse Fgl-2 (sense 5′-CGGGAGATGGAGA-AGG-3′ and antisense 5′-TATGCTGGCACAACAAAAAT-3′), rat Fgl-2 (sense 5′-AGACCTGGCAGGAAT-3′ and antisense 5′-CGCTTTGAGCTGATCCAC-3′), and β-actin (sense 5′-ATGTGGAGACCTTACACAC-3′ and antisense 5′-CACGTCACACTTCACTGATGGA-3′).

Histopathology and Immunopathology

For light microscopy, specimens were fixed in 10% neutral-buffered formalin, embedded in paraffin, and stained with hematoxylin and eosin (H&E) or Martius scarlet blue stain by standard procedures. For transmission electron microscopy (TEM), specimens were treated as previously described. For immunohistochemistry of recipient cell lineage, 6-μm cryostat sections were fixed in cold acetone and subsequently studied by a standard indirect avidin-biotin method (Histomouse-SP kit, Zymed). Anti-rat leukocyte common antigen (LCA or CD45, clone OX-1), anti-rat β T-cell receptor (clone R73), anti-rat CD45RA (clone OX-33), anti-rat NRK-P1A (clone 10/78) mouse monoclonal antibodies, and anti-rat granulocyte (clone HIS48), a mouse polyclonal antibody, were all obtained from BD Pharmingen. Monoclonal mouse anti-rat ED1 (clone ED1) was obtained from Serotec. A multiply absorbed biotinylated polyclonal goat anti-mouse Ig (BD Pharmingen) was used as a secondary antibody in all cases. Rat immunoglobulin and complement were studied by immunofluorescence with FITC-labeled rabbit anti-rat IgG F(ab′)2 fragment, fragment and goat anti-rat IgM F(ab′)2 fragment, fragment (Jackson Immunoresearch Labs) or mouse anti-rat ED11 (rat reticulum) (Serotec) and mouse anti-human C5b-9 (Dako), respectively. FITC-labeled rat anti-mouse IgG F(ab′)2 fragment (Jackson Immunoresearch Labs) was used as the secondary antibody for rat complement. Isotype-matched nonimmunized mouse monoclonal antibodies were included as negative controls in each experiment. Terminal deoxynucleotidyl transferase–mediated dUTP-biotin nick end labeling (TUNEL) was performed with standard protocols on paraffin-embedded histological sections with the use of an automated in situ hybridization instrument (Discovery Ventana Medical Systems). Stored serum samples from accommodated rats with functioning and rejecting grafts were incubated with frozen tissue sections at a 1:50 dilution for 2 hours and then studied with the use of immunofluorescence for rat immunoglobulin as described above.

Morphometric Analysis

Naive hearts and syngeneically transplanted hearts harvested on postoperative days 1, 2, and 3 were used as controls. Morphometric analyses of tissue sections were performed to quantify the histopathological changes in the ventricular myocardium, including thrombosis, total cellular infiltration, cardiomyocyte loss, and specific cell lineage infiltration in Fgl-2+/+ and Fgl-2−/− cardiac xenografts on postoperative days 1, 2, and 3 (n=4 hearts per day per genotype).

Primary Mouse Aortic EC Culture, Immunoprecipitation, and Western Blot

Primary mouse aortic EC (MAEC) were harvested, cultured, and characterized as described. MAEC were stimulated with 50% heat-inactivated Lewis rat serum or media alone for 24 hours for immunoprecipitation and analysis by SDS-PAGE gel electrophoresis, with the use of rabbit anti-mouse Fgl-2 polyclonal antibody (R1) for capture and with the same primary with horseradish peroxidase–conjugated donkey anti-rabbit IgG as a secondary antibody for detection.

TNF-α Protein Assay

Hearts were homogenized on ice in T-PER reagent (Pierce) supplemented with protease inhibitor cocktail (BD Pharmingen), and samples were assessed for tumor necrosis factor-α (TNF-α) protein concentration by the rat TNF-α sandwich ELISA kit (Pierce) according to the manufacturer’s instructions.

Statistical Analysis

Data are expressed as mean±SEM for thrombosis, total cell infiltration, cardiomyocytolysis, and TNF-α protein expression or mean±SD for specific cell lineage infiltration. Survival of Fgl-2+/+ and Fgl-2−/− cardiac xenografts was analyzed by Kaplan-Meier plots and compared with the Mantel-Cox log-rank test. A factorial ANOVA was used to compare genotype/postoperative day for thrombosis, total cell infiltration, cardiomyocytolysis, and TNF-α protein concentration by the rat TNF-α sandwich ELISA kit (Pierce) according to the manufacturer’s instructions.

Results

Fgl-2−/− Xenografts Were Protected From AVR but Developed an Accelerated Cellular Immune Response

Both Fgl-2+/+ and Fgl-2−/− grafts recovered 3 days after transplant stained strongly for IgM and C3 but were negative for IgG and C5b-9, reflecting the innate humoral response that is induced in this xenograft model (data not shown).

Survival of Fgl-2−/− grafts was not prolonged (3.2±0.4 versus 2.9±0.3 days) (n=10 per group; P=NS).

Cardiac xenografts from Fgl-2−/− littermate control mice developed typical features of AVR characterized by an extensive intravascular thrombosis seen on both H&E microscopy (Figure 1a) and TEM (Figure 1c). In contrast, the grafts from Fgl-2−/− mice showed minimal thrombosis and only focal hemorrhages (Figure 1b). Morphometric analysis showed a difference in thrombosed vessels (P<0.0004) (Figure 1e).

Although Fgl-2−/− grafts did not develop AVR, they showed dense infiltration by recipient mononuclear cells (Figure 1b). The cellular infiltration correlated spatially with areas of myocardial cell loss (cardiomyocytolysis) (Figure 1d). Morphometric analyses showed increased cellular infiltration and cardiomyocytolysis in the Fgl-2−/− grafts (P<0.002; P<0.0005) (Figure 1f). These assays were highly reproducible with <1% variability for all factors studied.

By immunohistochemistry, graft-infiltrating cells in Fgl-2−/− hearts were predominantly macrophages (Figure 2a) (P<0.0006) (Figure 2b). TUNEL analysis revealed that Fgl-2−/− grafts had increased apoptotic cardiomyocytes (Figure 3). TEM showed nuclear pyknosis, chromatin clumping, myofilament condensation, and residual cytoplasmic and...
nuclear fragments (Figure 1d). Graft-infiltrating macrophages were in close contact with apoptotic cardiomyocytes (Figure 3b). In contrast, grafts from Fgl-2/H11001/H11001 donors revealed intact cardiomyocytes containing swollen mitochondria with dense matrical granules and disrupted myofilaments, consistent with ischemic necrosis (Figure 1a and 1c). In grafts from Fgl-2/H11002/H11002 mice, venulocapillary EC apoptosis was seen only in areas of heavy infiltration of macrophages, which was associated with high TNF-α protein expression (Figure 3c). In contrast, minimal macrophage infiltration and TNF-α protein expression were seen in grafts from Fgl-2/H11001/H11001 mice (P<0.038) (Figure 3d), which instead demonstrated vascular EC apoptosis adjacent to areas with intravascular thrombosis (Figure 3c).

AVR Was Associated With Increased Fgl-2 mRNA and Protein Levels in Wild-Type Donor Grafts and Primary EC, Respectively

Fgl-2 mRNA progressively increased beginning on postoperative day 1, whereas TF mRNA levels decreased compared with baseline levels (Figure 4a). By densitometry, a 3.3-fold increase in Fgl-2 mRNA levels and a 1.6-fold decrease in TF mRNA levels were detected by postoperative day 1 (Figure 4b). Semiquantitative RT-PCR, performed with the use of primer sets specific for either mouse or rat Fgl-2, showed minimal levels of rat Fgl-2 mRNA within the graft (Figure 4c), whereas mouse Fgl-2 levels increased, showing that the induced Fgl-2 mRNA was of donor origin. MAEC propagated from Fgl-2/+ mice showed induced Fgl-2 protein expression in cell lysates after incubation with heat-inactivated Lewis rat serum, whereas Fgl-2/-/- MAEC showed no Fgl-2 protein expression (Figure 4d).

Effect of Treatment With Cobra Venom Factor and Cyclosporine on Graft Survival

Animals receiving cardiac xenografts were treated with cyclosporine, cobra venom factor, or a short course of cobra venom factor combined with maintenance cyclosporine (Table and Figure 5). Treatment with cobra venom factor and cyclosporine alone had minimal effects on survival or histology compared with untreated controls (Figures 1 and 5). Induction with cobra venom factor and maintenance cyclosporine resulted in long-term acceptance of cardiac xenografts from both Fgl-2/+ and Fgl-2/-/- donors. At time of the animals' death on postoperative day 60, these grafts showed nearly normal histology (Figure 5).

Withdrawal of cyclosporine at postoperative day 60 led to rejection within 11 days in both groups (Table) (P=NS). Rejected Fgl-2/+ grafts had intravascular thrombosis and a mixed cellular infiltrate (Figure 5), whereas grafts from Fgl-2/-/- mice had a histology similar to acute allograft rejection characterized by vasculitis/endotheliitis and a dense cellular infiltrate (Figure 5), comprising primarily αβ T-cell receptor plus T cells (data not shown).

The Fgl-2/+ grafts were strongly positive for both rat IgM and IgG, as well as C3 and C5b-9. Martius scarlet blue staining confirmed extensive fibrin deposition (Figure 6).
contrast, grafts from Fgl-2−/− mice had minimal immunoglobulin and complement deposition and scant macrovascular fibrin. Nevertheless, the latter grafts had cardiomyocyte apoptosis by TUNEL staining (Figure 6). In a pilot study, treatment of rats with mycophenolate mofetil and tacrolimus daily led to long-term acceptance of all Fgl-2−/− heart grafts (21 days), whereas 33% of Fgl-2+/− grafts underwent vascular rejection (Table).

Serum xenoantibodies from rats transplanted with Fgl-2+/− and Fgl-2−/− hearts were measured by ELISA (Figure 7). As expected, at time 0, levels of preformed xenoantibodies were high. Subsequent levels were lower, reflecting possible adsorption by the graft and/or reduced production. Reduced levels of xenoantibodies were detected in the Fgl-2−/− recipients, but antibody was present (Figure 7I). Fgl-2−/− grafts recovered from rats that had received long-term immunosup-
Effect of Recipient Immunosuppression on Survival and Pathology

<table>
<thead>
<tr>
<th>Donor Genotype</th>
<th>Recipient Treatment</th>
<th>Survival (POD)</th>
<th>Pathology Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fgl-2(^{+/+})</td>
<td>CsA (n=4)</td>
<td>3, 3, 3, 3</td>
<td>AVR</td>
</tr>
<tr>
<td>Fgl-2(^{-/-})</td>
<td>CsA (n=3)</td>
<td>3, 3, 3</td>
<td>Cellular rejection</td>
</tr>
<tr>
<td>Fgl-2(^{+/+})</td>
<td>CVF (n=4)</td>
<td>4, 5, 5, 6</td>
<td>AVR</td>
</tr>
<tr>
<td>Fgl-2(^{-/-})</td>
<td>CVF (n=4)</td>
<td>4, 4, 4, 6</td>
<td>Cellular rejection</td>
</tr>
<tr>
<td>Fgl-2(^{+/+})</td>
<td>CsA+CVF (n=3)</td>
<td>60, 60, 60, 60</td>
<td>Normal</td>
</tr>
<tr>
<td>Fgl-2(^{-/-})</td>
<td>CsA+CVF (n=3)</td>
<td>60, 60, 60, 60</td>
<td>Normal</td>
</tr>
<tr>
<td>Fgl-2(^{+/+})</td>
<td>CsA+CVF; CsA withdrawal POD 60 (n=4)</td>
<td>70, 67, 69, 71</td>
<td>AVR</td>
</tr>
<tr>
<td>Fgl-2(^{-/-})</td>
<td>CsA+CVF; CsA withdrawal POD 60 (n=3)</td>
<td>66, 66, 69, 69</td>
<td>Allo-like rejection</td>
</tr>
<tr>
<td>Fgl-2(^{+/+})</td>
<td>MMF+TAC (n=3)</td>
<td>6, 15, >21</td>
<td>AVR</td>
</tr>
<tr>
<td>Fgl-2(^{-/-})</td>
<td>MMF+TAC (n=3)</td>
<td>>21, >21, >21</td>
<td></td>
</tr>
</tbody>
</table>

Rats receiving Fgl-2\(^{+/+}\) or Fgl-2\(^{-/-}\) grafts were treated with cyclosporine A (CsA) alone, cobra venom factor (CVF) alone, CsA and CVF in combination, or mycophenolate mofetil (MMF) and tacrolimus (TAC) in combination per protocol. Survival and pathology of Fgl-2\(^{+/+}\) and Fgl-2\(^{-/-}\) cardiac xenografts in immunosuppressed Lewis rat recipients in all treated groups are shown.

Discussion

The present data demonstrate an important role for Fgl-2 in the pathophysiology of xenograft AVR and provide a rationale for targeting Fgl-2 to facilitate successful human xenotransplantation. Fgl-2 mRNA expression was upregulated in association with the progression of AVR in donor grafts from Fgl-2\(^{+/+}\) mice in a mouse-to-rat cardiac xenograft model. With no immune suppression, both Fgl-2\(^{+/+}\) and Fgl-2\(^{-/-}\) grafts were rejected by day 3. The Fgl-2\(^{+/+}\) grafts had vascular thrombosis and fibrin deposition and other classic features of AVR, whereas the Fgl-2\(^{-/-}\) heart grafts had patent blood vessels with minimal fibrin deposition but notable monomorphic cellular infiltrates, cardiomyocytolysis, and EC apoptosis, features consistent with an accelerated form of cellular rejection. Two injections of cobra venom factor and apoptosis, features consistent with an accelerated form of monomorphic cellular infiltrates, cardiomyocytolysis, and EC blood vessels with minimal fibrin deposition but notable AVR.

The present data show that deletion of Fgl-2 from the donor endothelium ameliorates thrombosis and fibrin deposition in cardiac xenografts. Serum containing xenoreactive antibodies failed to bind to Fgl-2\(^{-/-}\) grafts recovered from rats that had been treated with long-term immunosuppression, suggesting that deletion of Fgl-2 and long-term immunosup-
pression leads to a functionally important (in terms of avoidance of antibody-mediated vascular rejection) down-modulation of xenoantigen expression. Interestingly, this change in xenoantigen expression occurred after sensitization (implantation of the graft), which is also a feature of other models of chronic antigenemia, including tumors and chronic parasitemias. Unpublished studies in our laboratory have shown that xeno AVR is not prevented with the use of Fgl-2/+/-/H1001 mice as recipients, which tests the role of Fgl-2 production by host immune cells in AVR. A similar experiment has been reported by others with negative results in an allograft model. Hancock et al., using a different construct to block Fgl-2 expression, found that targeted deletion of Fgl-2 in the recipient in an allogeneic model failed to prevent fibrin deposition, supporting our hypothesis that Fgl-2 production by donor EC is more important than Fgl-2 production by host immune cells in the pathogenesis of AVR.

In contrast to previous reports, the present data suggest that Fgl-2 may be a more important procoagulant than TF in xenograft AVR. We found that TF mRNA levels declined over time as AVR progressed, whereas Fgl-2 mRNA levels increased postoperatively. These findings may explain why inhibition of TF activity by the nematode anticoagulant peptide NAPc2 failed to control AVR in pilot mouse-to-rat cardiac xenotransplantation studies in our laboratory. (data

Figure 6. Effects of a short course of cobra venom factor and maintenance cyclosporine, which was withdrawn at day 60 on the immunopathology of Fgl-2+/+(+/+ CsA w/d) and Fgl-2−/− (-/- CsA w/d) rejecting grafts. Tissues were stained for rat IgM, IgG, C3, C5b-9, apoptosis by TUNEL, or fibrin. The Fgl-2+/+ graft vessels were strongly positive by immunofluorescence for IgM, IgG, C3, and C5b-9. TUNEL staining was markedly positive in Fgl-2−/− grafts, whereas fibrin deposition (pink) and thrombosis was prominent in Fgl-2−/− grafts. Magnification in all panels ×200. MSB indicates Martius scarlet blue.

Figure 7. Immunopathology of transplanted and accommodated heart xenografts. Serum at animals’ death was collected from rats that received Fgl-2+/+ and Fgl-2−/− mouse hearts and were treated for 60 days with cyclosporine A, which was then stopped. IgM (A and C) and IgG (B and D) xenoantibodies were present in recipients of both Fgl-2+/+ and Fgl-2−/− hearts, as evidenced by strong staining of vascular endothelium of tissue sections from naive Fgl-2+/+ hearts. Accommodated Fgl-2+/+ hearts stained positively for both IgM (E) and IgG (G), whereas accommodated Fgl-2−/− hearts failed to stain for either IgM (F) or IgG (H) (magnification ×200). Levels of total immunoglobulins in serum from naive rats and rats receiving Fgl-2+/+ and Fgl-2−/− hearts while on cyclosporine A (accommodated) and after withdrawal of immunosuppression at time of rejection were detected in an ELISA assay (I).
Targeted deletion of Fgl-2 modified AVR effects on thrombosis, apoptosis, and cellular recruitment. Although untreated Fgl-2−/− xenografts showed minimal evidence for thrombosis, they were ultimately rejected by 3 to 4 days after transplantation by a form of cellular rejections. Rejected untreated Fgl-2−/− xenografts had increased apoptosis of the cardiomyocytes and vascular EC, which spatially correlated with the intensity of the macrophage infiltration. In contrast, in the Fgl-2+/− grafts, cardiomyocytes and vascular EC appeared to be damaged by a combination of apoptosis and necrosis, which was predominantly localized to the myocardium, where it was spatially associated with local vascular occlusion by thrombi, suggesting ischemia as the likely effector mechanism.

Our data suggest that the increased cardiomyocyte apoptosis observed in the Fgl-2−/− grafts may be due to the cytotoxic effects of the graft-infiltrating macrophages. Cardiomyocyte damage appeared to involve cell-cell contact–dependent ligand-receptor interactions, resulting in phagocytosis based on the TEM studies. TNF-α may be the effector molecule in this process because protein expression was significantly higher in rejected Fgl-2−/− grafts compared with Fgl-2+/− grafts and TNF-TNF R1 interactions are known to be proapoptotic in many disease states. 35–37 Alterations in the expression of vascular adhesion molecules in the Fgl-2−/− grafts may contribute to the recruitment of macrophages to the Fgl-2−/− grafts. Another possibility is that the Fgl-2 protein itself contributes to the regulation of apoptotic cell death, as reported with other fibrinogen-like proteins. 38–40 Alternatively, deletion of Fgl-2 from cardiomyocytes, which constitutively express Fgl-2 normally, may make these cells more susceptible to apoptosis.

Long-term survival of both Fgl-2+/− and Fgl-2−/− cardiac xenografts with normal histology was achieved with the use of an immunosuppressive protocol previously described to induce accommodation of mouse-to-rat xenografts. 41–43 When cyclosporine was withdrawn at 60 days, both Fgl-2+/− and Fgl-2−/− grafts failed. The Fgl-2+/− grafts once again developed AVR characterized by heavy deposits of IgM, IgG, C3, and C5b-9, leading to widespread vascular thrombosis similar to that observed in untreated Fgl-2−/− grafts. In contrast, the Fgl-2−/− grafts developed features of acute cellular allograft rejection 44 with an extensive vasculitis/endothelitis that was characterized by a predominately lymphocytic infiltrate with minimal microvascular thrombosis and minimal deposition of immunoglobulin.

Serum containing xenoreactive antibodies recovered from rats that had transplanted Fgl-2+/− hearts failed to stain tissue sections from Fgl-2−/− long-term treated hearts but stained wild-type heart tissues. It is interesting that the grafts were still lost to a cellular immune response despite apparent downregulation of xenoreactives on the vascular endothelium of the graft. We speculate that internalization of these antibody-reactive xenoeptopes from the cell surface may subject them to intracellular processing pathways, resulting in re-presentation as processed peptides suitable for determinant recognition by T-cell receptors. Downregulation of xenotransendothelium levels resulting from the loss of xenoreactives is another mechanism that may have contributed to the change in phenotype of rejection. Ongoing fine-specificity mapping of the epitopes recognized by xenoreactives and the antigen-recognition T cells will elaborate on this possibility.

In conclusion, the most important finding of the present study is that targeted deletion of Fgl-2 changes the pattern of rejection from an acute vascular process (AVR) that is very difficult to prevent to a form of cellular rejection that is more amenable to treatment with clinically relevant immune suppression. If these findings can be reproduced in higher-order primates, then targeting Fgl-2 may, in combination with other current strategies, permit successful clinical heart xenotransplantation.

Acknowledgments

This work was supported by the Heart and Stroke Foundation of Ontario, Canada, and the Canadian Institutes of Health Research. We thank Lily Morikawa and Patricia Feugas for specimen processing, Michael Ho for paraffin section immunohistochemistry, and Mingda Shi for technical assistance.

References

Targeted Deletion of Fgl-2/Fibroleukin in the Donor Modulates Immunologic Response and Acute Vascular Rejection in Cardiac Xenografts

Michael Mendicino, MingFeng Liu, Anand Ghanekar, Wei He, Cheryl Koscik, Itay Shalev, Mojib Javadi, Julie Turnbull, Wenhao Chen, Laisum Fung, Seisuke Sakamoto, Phillip Marsden, Thomas K. Waddell, M. James Phillips, Reginald Gorczynski, Gary A. Levy and David Grant

Circulation. 2005;112:248-256; originally published online July 5, 2005; doi: 10.1161/CIRCULATIONAHA.105.534271

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/112/2/248

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/