A guideline tells you how to get someplace, whereas a lighthouse keeps you off the rocks; both can shepherd you on a safe journey toward your goal. The American College of Cardiology (ACC), in concert with the American Heart Association (AHA), has been at the forefront of developing guidelines for percutaneous coronary interventions (PCI). In an era in which there are multiple data sets to draw from, guidelines help to sort out optimal from less optimal evidence-based approaches. Application of these guidelines makes intuitive sense as we counsel our individual patients about the risk/benefit ratio of PCI and as we develop treatment strategies for healthcare delivery systems to employ.

What Did We Learn?
The majority of non-STEMI procedures are performed for either class I (“evidence and/or general agreement that the procedure is useful and effective”; 69%) or class IIA (“weight of evidence of opinion is in favor of usefulness and efficacy”; 21%) indications. Only 7% of the procedures were class III, defined as “evidence or general agreement that the procedure/treatment is not useful or effective and in some cases may be harmful.” Although that 7% is a single-digit percentage, in fact, some were identified.

Optimal, patients in whom PCI was the only option, or patients who strongly preferred PCI even after the risk/benefit ratio had been fully discussed, or were they part of high-risk clinical research protocols? Those are all important considerations when outcomes in this patient subset are being examined.

The classifications and guidelines are based on perceived risk, and so, not surprisingly, clinical profiles of class I patients were better than those of patients in class II or III, with fewer risk factors, including advanced age, diabetes, 3-vessel disease, prior myocardial infarction, and coexistent renal disease. Having said that, however, even in class III patients, the risk profile did not appear to be prohibitively high.

Drug-eluting stents were used infrequently (in <20% of cases), but it is likely that this low number reflects the fact that patient entry for this study started before the widespread introduction of these stents.

The essential part of this study is the relationship between guideline classification and outcome. Clinical success rates decreased successively across the classes. The magnitude of the decline varied: it was small between class I and class IIA (92.8% versus 91.7%) but rather large between class I and class III (92.8% versus 85.5%). In-hospital mortality rose from 0.5% in class I to 1.7% in class III; however, mortality was not risk-adjusted, which may mask some of the true difference. The rate of CABG during the same admission was lowest in class III, probably related to the fact that many of these patients were considered too high risk for surgery.

What Are the Problems With the Study?
The first problem with this study is that despite the very high number of procedures in the data set, the outcome of PCI was not risk-adjusted. With the availability of excellent discriminatory risk models, it would have been better to report risk-adjusted analyses. Class III patients’ higher-risk demographic and angiographic variables, eg, older age, congestive heart failure, renal disease, worse angiographic lesions, and lower ejection fraction, would put them at increased risk for complications during the procedure.

Second, the aforementioned high-risk features may have led interventionalists performing the procedures to choose PCI despite familiarity with the guidelines.

Third, often class III indications are due to left main interventions, chronic total occlusion in the setting of prior surgery, multivessel vein-graft interventions in patients with left ventricular dysfunction, and relatively asymptomatic patients with 1- or 2-vessel disease without diabetes mellitus and without inducible ischemia. Anderson et al have not separated patients in the class III category into different contraindications. A patient with single-vessel disease, no diabetes, and no inducible ischemia, for example, is likely to

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From Mayo Clinic (D.R.H., M.S.), Rochester, Minn, and Duke Clinical Research Institute (P.H.), Durham, NC.
Correspondence to Mandeep Singh, MD, Mayo Clinic, 200 First St SW, Rochester, MN 55905.
(Circulation. 2005;112:2754-2755.)
© 2005 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org
DOI: 10.1161/CIRCULATIONAHA.105.577825

2754
have lower risk than a patient with unprotected left main
disease who is not a surgical candidate. If most interventions
were performed on patients with prior cardiac surgery, the
threshold of the operator to recommend another open-heart
surgery would be high and may match the unwillingness of
the patient.

Next, the guidelines in this observational registry were
retrofitted. The circumstances surrounding the decision to
determine coronary angioplasty are complex and cannot be
accurately captured in the ACC-NCDR database. Such deci-
sions involve not only the demographic and angiographic
features that most current databases include but also family,
social, and patient-centered issues such as cognitive skills,
depression, and quality of life.

Finally, there are ample data demonstrating the volume/outcome relationship, and most of the hospitals reporting data
in this registry are in the high-volume category.5 Therefore,
the generalizability of the results across different practices is
uncertain.

What Are the Take-Home Messages?
Guidelines play an important role. The process by which they
are developed leads to results that support the recommenda-
tions of those guidelines. The data set, however, is not
perfect. The classifications were derived from collected
clinical data and are not specifically captured, discrete data
points. Missing data in this large data set are significant; eg,
in 11% of cases, missing data precluded classification of the
patient. This group had higher mortality (1.6%), which raises
important, but unanswerable, questions.

Analyses of outcome data based on classification guide-
lines do not allow for risk stratification, although that is part
of the process used in the development of some parts of the
guidelines. In addition, this data set deals only with in-
hospital outcomes, although it may have distinct relevance to
longer-term events.

Guideline development is a vital part of the charter of
professional societies; it influences the care of specific
patients. The process is demanding and time consuming:
weighing all the evidence, coming to an expert consensus on
the strength of data, and then crafting, modifying, and
publishing the specific guidelines. Despite the laborious
process, guidelines must be living documents; they must
continue to evolve to meet the needs of interventional
cardiologists faced with increasingly complex patients and an
ever-changing array of new widgets. Studies such as this one
by Anderson et al2 have demonstrated value; by pointing out
the results of guidelines-led procedures, they act like the
lighthouses that can keep our patients and systems safe. Initial
exploratory reports like this are a toe in the water, testing it,
and the present report sets the stage for the full plunge into
this extraordinary data set.

References
Kuntz RE, Popma JH, Saffi HV, Williams DO, Gibbons RJ, Alpert JP,
Eagle KA, Faxon DP, Fuster V, Gardner TJ, Gregoratos G, Russell RO.
ACC/AHA guidelines for percutaneous coronary interventions (revision
of the 1993 PTCA guidelines): executive summary: a report of the
American College of Cardiology/American Heart Association Task Force
on Practice Guidelines (Committee to Revise the 1993 Guidelines for
Percutaneous Transluminal Coronary Angioplasty). J Am Coll Cardiol.
2. Anderson VH, Shaw RE, Brindis RG, Klein LW, McKay CR, Kucher
MA, Krone RJ, Wolk MI, Smith SC, Weintraub WS. Relationship
between procedure indications and outcomes of percutaneous coronary
interventions by American College of Cardiology/American Heart Asso-
3. Singh M, Lennon RJ, Holmes DR Jr, Bell MR, Ritala CS. Correlates of
procedural complications and a simple integer risk score for percutaneous
Meens WL, Kraft P, DeFranco AC, Chambers JL, Patel K, McGinnity
JG, Eagle KA. Simple bedside additive tool for prediction of in-hospital
104:263–268.
5. Wennberg DE, Lucas FL, Siewers AE, Kellett MA, Malenka DJ.
Outcomes of percutaneous coronary interventions performed at centers
without and with onsite coronary artery bypass graft surgery. JAMA.

Key Words: Editorials ▪ coronary disease ▪ risk factors ▪ guidelines