Correspondence

Letter Regarding Article by Korte et al, “Female Mice Lacking Estrogen Receptor β Display Prolonged Ventricular Repolarization and Reduced Ventricular Automaticity After Myocardial Infarction”

To the Editor:

The article by Korte et al.1 was insightful in that it provided evidence that female mice with chronic left anterior myocardial infarction (MI) and lacking estrogen receptor β (ERβ) have prolonged ventricular repolarization compared with noninfarcted ERβ-deficient and wild-type mice. The prolongation of ventricular repolarization in the ERβ-deficient mice with MI was demonstrated by the prolonged QT and QTc interval with an associated reduction of the expression of Kv4.3 channel (coding for Iₒ). The authors surmised that the observed reduction in ventricular premature beats (VPB) and nonsustained runs of VPB in ERβ-deficient mice with MI resulted from “reduced ventricular automaticity” and concluded that “ERβ plays a significant role in ventricular repolarization andautomaticity in the female mice heart after MI, which is mediated, at least in part by downregulation of Kv4.3 expression.” The part of their conclusion dealing with reduced automaticity is neither demonstrated in the study nor justified. Absence of microelectrode studies prevents the conclusion that automaticity was involved in causing VPB. More importantly, reduction of outward currents (Iₒ, in this case) facilitates rather than reduces the emergence of all forms of “automaticity.” In fact, in the failed heart model in which potassium channel downregulation develops, 2 simultaneous events emerge: prolonged repolarization and early afterdepolarization and early afterdepolarization–mediated triggered activity causing ventricular arrhythmias (for a review, see Tomaselli and Zipes2).

It would thus seem both counterintuitive and contrary to available evidence to propose that Iₒ downregulation reduces automaticity in the ERβ-deficient mice with MI.

Hrарь S. Karagueuzian, PhD
Cedars-Sinai Medical Center
School of Medicine
University of California–Los Angeles
Los Angeles, Calif


Response

We appreciate the interest of Dr Karagueuzian in our article.1 The investigator raises the question whether downregulation of Iₒ could reduce automaticity in the ERβ-deficient infarcted female mice.

In our work, we showed that in infarcted female βERKO mice, ventricular repolarization is significantly prolonged and ventricular spontaneous is significantly decreased. This finding was accompanied by a significant and specific lower expression of Kv4.3 in βERKO animals. We fully agree with Dr Karagueuzian that this article is not able to show that reduced automaticity is strictly related to downregulation of Kv4.3 because microelectrode studies were not performed in this model. The potentially protective (not necessarily proarrhythmic) effect of prolonged repolarization with regard to ventricular arrhythmia has long been discussed,2 and thus we do believe and discuss in the article that prolonged repolarization caused by reduced Kv4.3 (coding for Iₒ) could in this model be the cause of decreased automaticity. We argued that “from the data of this study, it can be hypothesized that prolongation of repolarization caused the reduction of ventricular spontaneity in the infarcted βERKO animals.” The experiments were not aimed to prove this hypothesis. It remains speculative whether an altered dispersion of repolarization has at least contributed to this effect (for a review, see Pham and Rosen3).

We absolutely agree with Dr Karagueuzian that more research is needed to clarify the mechanisms by which cardiac repolarization, potassium channel expression, and arrhythmogenesis are altered in the female mouse heart after myocardial infarction via ERβ.

Thomas Korte, MD
Martin Fuchs, MD
Andreas Arkudas, BS
Sebastian Geertz, BS
Ajmal Gardiwal, MD
Gunnar Klein, MD
Michael Niehaus, MD
Helmut Drexler, MD
Department of Cardiology and Angiology
Medical School Hannover
Hannover, Germany

Rainer Meyer, PhD
Department of Physiology
University of Bonn
Bonn, Germany

Klaus Fink, MD
Institute of Pharmacology and Toxicology
University of Bonn
Bonn, Germany

Andrée Krust, PhD
Pierre Chambon, PhD
Institute de Génétique et de Biologie Moléculaire et Cellulaire,
CNRS/INSERM/ULP
Collège de France
Strasbourg, France

Christian Grobé, MD
Medizinische University Poliklinik
University of Bonn
Bonn, Germany

Letter Regarding Article by Korte et al, "Female Mice Lacking Estrogen Receptor β Display Prolonged Ventricular Repolarization and Reduced Ventricular Automaticity After Myocardial Infarction"
Hrayr S. Karagueuzian

Circulation. 2005;112:e272
doi: 10.1161/CIRCULATIONAHA.105.563809

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/112/16/e272

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/