Activation of Hypoxia-Inducible Factor-1 in Bacillary Angiomatosis
Evidence for a Role of Hypoxia-Inducible Factor-1 in Bacterial Infections

Volkhard A.J. Kempf, MD*; Maria Lebiedziejewski*; Kari Alitalo, MD, PhD*; Joo-Hee Wälzlein; Urs Ehehalt; Jeannette Fiebig; Stephan Huber, PhD; Burkhardt Schütt, PhD; Christian A. Sander, MD; Steffen Müller, PhD; Guntram Grassl, PhD; Amir S. Yazdi, MD; Bernhard Brehm, MD; Ingo B. Autenrieth, MD

Background—Bartonella species are the only known bacterial pathogens causing vasculoproliferative disorders in humans (bacillary angiomatosis [BA]). Cellular and bacterial pathogenetic mechanisms underlying the induction of BA are largely unknown.

Methods and Results—Activation of hypoxia-inducible factor-1 (HIF-1), the key transcription factor involved in angiogenesis, was detected in Bartonella henselae–infected host cells in vitro by immunofluorescence, Western blotting, electrophoretic mobility shift, and reporter gene assays and by immunohistochemistry in BA tissue lesions in vivo. Gene microarray analysis revealed that a B henselae infection resulted in the activation of genes typical for the cellular response to hypoxia. HIF-1 was essential for B henselae–induced expression of vascular endothelial growth factor as shown by inhibition with the use of HIF-1–specific short-interfering RNA. Moreover, infection with B henselae resulted in increased oxygen consumption, cellular hypoxia, and decreased ATP levels in host cells. Infection with a pilus-negative variant of B henselae did not lead to cellular hypoxia or activation of HIF-1 or vascular endothelial growth factor secretion, suggesting a crucial role of this bacterial surface protein in the angiogenic reprogramming of the host cells.

Conclusions—B henselae induces a proangiogenic host cell response via HIF-1. Our data provide for the first time evidence that HIF-1 may play a role in bacterial infections. (Circulation. 2005;111:1054-1062.)

Key Words: angiomatosis, bacillary ■ Bartonella henselae ■ angiogenesis ■ HIF-1 protein ■ hypoxia

Angiogenesis is a multistep process resulting in the formation of new blood vessels from preexisting vasculature. Newly formed vessels supply oxygen and nutrients to growing tumors and are necessary for tumor progression and metastasis.1 Angiogenesis is also a component of various cardiovascular and inflammatory diseases.2 Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor for the induction of angiogenic growth factors that adjust the vascular oxygen supply to tissue metabolic demands.3,4 Of the many genes induced by HIF-1, vascular endothelial growth factor (VEGF) plays a critical role in triggering angiogenesis as the major hypoxia-inducible mitogen for endothelial cells.5 Interestingly, human herpesvirus-8 (HHV-8) and several Bartonella species induce angiogenesis in humans. HHV-8 causes the vasculoproliferative disorder Kaposi’s sarcoma,6 which has a high frequency among immunocompromised patients, such as those infected with HIV. HHV-8–infected cells express VEGF on HIF-1 activation,7 and this mechanism was implicated in endothelial cell proliferation in the lesions.8 Bartonella henselae and B quintana are the etiologic agents of bacillary angiomatosis (BA) and bacillary peliosis (BP), which are histologically characterized as lobulated agents of bacillary angiomatosis (BA) and bacillary peliosis (BP), which are histologically characterized as lobulated proliferation of mainly capillary-sized vessels and predominantly affect HIV patients.9 These slow-growing bacteria are facultative intracellular pathogens that, like HHV-8, also induce VEGF in host cells in vitro and in BA or BP lesions of patients.10 Endothelial cells are one presumed habitat of Bartonella.11 Dissecting the angioproliferative strategies used

Received July 14, 2004; revision received September 30, 2004; accepted October 28, 2004.
From the Institut für Medizinische Mikrobiologie und Hygiene, Eberhard-Karls Universität, Tübingen, Germany (V.A.J.K., M.L., J.W., U.E., J.F., S.M., G.G., I.B.A.); Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (K.A.); Institute of Physiology, Tübingen, Germany (S.H.); Universitätsklinik für Kinderheilkunde und Jugendmedizin, Tübingen, Germany (B.S.); Klinik für Dermatologie und Allergologie, Ludwig Maximilians Universität, Munich, Germany (C.A.S., A.S.Y.); and Medizinische Universitätsklinik III, Tübingen, Germany (B.B.).
*The first 3 authors contributed equally to this work.

The online-only Data Supplement, which contains Figures I through V and a table, can be found with this article at http://www.circulationaha.org.

Correspondence to Dr Volkhard A.J. Kempf, Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany. E-mail volkhard.kempf@med.uni-tuebingen.de

© 2005 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org DOI: 10.1161/01.CIR.0000155608.07691.B7

1054
by *B. henselae* is highly important in terms of understanding bacterial pathogenicity, angiogenesis, and pathogen-triggered tumor formation in humans.

Methods

Bacteria and Cell Culture

B. henselae Marseille, *Legionella pneumophila* (ATCC 33216), HeLa229, and human umbilical vein endothelial cells (HUVECs) were infected as described. SB202190 (p38 inhibitor), PD98059 (MEK1 inhibitor), and parthenolide (nuclear factor-κB [NF-κB] inhibitor) were purchased from Calbiochem; tumor necrosis factor-α (TNF-α) was purchased from R&D Systems.

Immunostaining and Confocal Laser Scanning Microscopy

Differential staining of extracellular and intracellular *B. henselae* and confocal laser scanning microscopy were performed as described.

Transmission Electron Microscopy

Transmission electron microscopy was performed as described.

Lipopolysaccharide Preparation

Lipopolysaccharide (LPS) was prepared as described.

RNA Isolation and Microarray Analysis

Cells (2 × 10^6) were grown for 24 hours and infected with *B. henselae*. Total RNA was extracted with the use of the RNeasy mini kit.

Upregulated Genes in HeLa Cells 6 Hours on *B. henselae* Infection

<table>
<thead>
<tr>
<th>No.</th>
<th>Gene</th>
<th>Induction Light Cycler†</th>
<th>Induction Array*</th>
<th>Transcription Factor</th>
<th>Biological Function</th>
<th>U95 Array Designations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Interleukin-8</td>
<td>IL-8 6.41</td>
<td>5.80†</td>
<td>NF-κB</td>
<td>Angioproliferative, proinflammatory</td>
<td>35372_r_at</td>
</tr>
<tr>
<td>2.</td>
<td>Stanniocalcin-2</td>
<td>STC2 5.18</td>
<td>Yes‡</td>
<td>HIF-1</td>
<td>Signal transduction</td>
<td>32043_at</td>
</tr>
<tr>
<td>3.</td>
<td>Adrenomedullin</td>
<td>ADM 3.88</td>
<td>Yes‡</td>
<td>HIF-1</td>
<td>Angioproliferative</td>
<td>34777_at</td>
</tr>
<tr>
<td>4.</td>
<td>Ephrin A1</td>
<td>ENA1 3.74</td>
<td>ND</td>
<td>HIF-1</td>
<td>Modulation of angioproliferation</td>
<td>40425_at</td>
</tr>
<tr>
<td>5.</td>
<td>Vascular endothelial growth factor</td>
<td>VEGF 3.54</td>
<td>5.10†</td>
<td>HIF-1</td>
<td>Angioproliferative</td>
<td>1953_at, 36100_at, 36101_at</td>
</tr>
<tr>
<td>6.</td>
<td>Insulin-like growth factor binding protein-3</td>
<td>IGFBP-3 2.67</td>
<td>Yes‡</td>
<td>HIF-1</td>
<td>Angioproliferative</td>
<td>37319_at, 1586_at</td>
</tr>
<tr>
<td>7.</td>
<td>Endothelin-2</td>
<td>ET-2 2.13</td>
<td>ND</td>
<td>HIF-1</td>
<td>Modulation of angioproliferation</td>
<td>1092_at</td>
</tr>
</tbody>
</table>

Glycolysis

8. Hexokinase-2 4.37 Yes‡ HIF-1 Key step in glucolysis 40964_at

9. Glucose transport protein-3 SLC2A3 2.87 ND HIF-1 Glucose transport into cells 36979_at

10. Enolase-2 ENO2 2.82 ND HIF-1 Glycolysis 40193_at

Signal transduction

11. N-myc downstream regulated gene-1 NDRG1 4.85 Yes‡ HIF-1 Signaling 36933_at

12. Musculoaponeurotic fibrosarcoma oncogene homolog f MAFF 4.45 ND ? Transcription from Pol2 promoter 36711_at

13. Nuclear factor IL-3 regulated NFIIL3 2.90 ND HIF-1§ Transcription from Pol2 promoter 37544_at

14. Cyclin G2 CCNG2 2.77 Yes‡ HIF-1 Control of cell cycle 37544_at, 1913_at

15. Hyperpolarization activated cyclic nucleotide gated potassium channel-2 HCN2 2.68 ND ? Signal transduction 34520_at

16. Max-interacting protein-1 MXI1 2.51 ND ? Control of cell cycle 654_at

17. p21-activated kinase-2 PAK2 2.26 ND HIF-1§ Signal transduction 1560_g_at

Unknown

18. KIAA0742 protein KIAA0742 3.70 Yes‡ ? Unknown 34786_at

19. Homo sapiens cDNA FLJ22182fs 2.85 Yes‡ ? Unknown 40079_at

20. Hypothetical protein FLJ20500 2.59 ND HIF-1|| Unknown 39827_at

ND indicates not determined.

*Analysis of 2 independent data sets was performed on Affymetrix Microarray suite 5.0 and Affymetrix data mining tool 3.0 as described in Methods.

†Fold induction (Light Cycler) compared with negative control (VEGF: β1-microglobulin normalized; IL-8: GAPDH normalized).

‡Detected with conventional RT-PCRs.

§Indirect evidence (upregulation on hypoxia).

||Contains HIF-1–responsive element (NM_9506686).
Microarray Suite version 5.0, Affymetrix MicroDB 3.0, and data from the quantitative scanning were analyzed by the Affymetrix Expression Analysis technical manual. The probe arrays were prepared according to the manufacturer's instructions (Affymetrix, GeneChip and staining of Human Genome 95Av2 microarrays were performed with the use of the Enzo BioArray HighYield RNA Transcript Labeling Kit (Affymetrix). The hybridization, washing, and staining of Human Genome 95Av2 microarrays were performed according to the manufacturer's instructions (Affymetrix, GeneChip Expression Analysis technical manual). The probe arrays were scanned by using an Agilent GeneArray Scanner, and the readings from the quantitative scanning were analyzed by the Affymetrix Microarray Suite version 5.0, Affymetrix MicroDB 3.0, and Data Mining Tool version 3.0.

Reverse Transcription of mRNA and Polymerase Chain Reactions

The reverse transcription (RT) reactions (HeLa cells, HUVECs) were performed with the use of the SuperScript ds-cDNA synthesis kit (Invitrogen) and oligo-d(pT)₉ primers. The adenomedinulin (ADM), insulinlike growth factor binding protein-3 (IGFBP-3), stanniocalcin-2 (STC2), hexokinase-2 (HK2), cyclin G2 (CCNG2), N-myc downstream regulated gene 1 (NDRG1), KIAA0742 protein (KIAA0742), Homo sapiens cDNA (FLJ22182), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocytic chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), VEGF receptor-2 (VEGFR-2), and β-actin cDNAs were amplified by conventional RT-PCR (see the Data Supplement Table). Quantification of VEGF and interleukin-8 (IL-8) mRNA (LightCycler Primer Sets, Search-LC) was performed by real-time PCR with a LightCycler System (Roche).

Immunostaining and Western Blotting

VEGF, IL-8, IGFBP-3, and ADM concentrations were measured from cell culture supernatants as described. For Western blot analysis of HK2, polyclonal antibodies (SantaCruz) were used. Phosphorylation of p38 and p42/44 mitogen-activated protein (MAP) kinases was evaluated with the use of a phospho-MAP kinase p38 and p42/44 kit (Cell Signaling).

Detection of HIF-1α by Immunofluorescence and Western Blotting

For HIF-1α immunostaining, HeLa cells were seeded on coverslips and infected with B. henselae or exposed to hypoxia. Immunostaining of HIF-1α was performed with the use of anti–HIF-1α (Novus) and TRITC-conjugated anti-IgG antibodies. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI).

For HIF Western blotting, cellular proteins were extracted, subjected to the Bradford assay (BioRad), blotted onto polyvinylidene difluoride membranes, and incubated with HIF-1α-specific (Becton Dickinson) or HIF-2α-specific (Novus) antibodies.

Electrophoretic Mobility Shift Assay

Nuclear extracts were prepared from HeLa cells as described, and protein concentrations were assessed via the Bradford assay (BioRad). Oligonucleotide probes (NF-κB consensus [NF-κB 5’-AGT TGA GGC GAC TTT CCC AGG C-3’; Santa Cruz], HIF-1α consensus [HIF-1α 5’-GCC CTA CGT GCT GTC TCA-3’, Meta- bion]) were labeled with [γ-32P]ATP (Amersham). In competition experiments, extracts were incubated with the labeled probes in the presence of a 100-fold excess of unlabeled oligonucleotides. Antibodies against p50 (Santa Cruz) were included in the binding reaction for supershift analysis.

DNA Constructs, Transient Transfection, and Determination of Reporter Gene Activity

For reporter gene assays, a VEGF promoter/luciferase reporter construct (pVEGF.4) was used. For normalization, cotransfections were performed with the use of pCMV β-galactosidase (pCMV β-gal; Clontech). HeLa cells were transiently transfected with the use of ExGen500 (Fermentas) and incubated for 24 hours at 37°C. Transfected cells were infected with B. henselae or exposed to hypoxia. After 36 hours, cells were lysed for determination of Luc activity, protein determination, and measurement of β-galactosidase with the use of a Luciferase Reporter Gene Assay (Roche). Levels of Luc expression were normalized to β-galactosidase activity and total protein concentration. Every experiment was done in quadruplicate.

The degree of induction was determined as the ratio of Luc activity of B. henselae–infected or hypoxia-exposed cells to that of uninfected control cells.

Gene Silencing Using HIF-1α Short-Interfering RNA

Cells were seeded in 6-well plates, and the short-interfering RNA (siRNA) duplexes [HIF-1α sense r(CUGAUGACCAGCAACUCUGAd(TT), antisense r(UCAAGUUUGCUGCUAUCUGd(TT)); control sense r(UUCUCGGAAAGCUACAG)d(TT), antisense r(ACGUGACACGUUCGGAAG)d(TT)] were diluted at a final concentration of 200 nmol/L. RNAiFect (Qiagen) was used for transfection. Cell culture medium was changed, and the cells were incubated overnight before infection.

Figure 1. Induction of host cell transcripts and proteins on B. henselae infection in HeLa cells. HeLa cells were infected with B. henselae (B. h.), and total RNA was extracted 6 hours after infection and transcribed into cDNA. Gene induction was assessed by real-time PCR (VEGF: 5.2-fold induction; IL-8: 5.8-fold induction) or RT-PCR (ADM, IGFBP-3, HK2, β-actin, duplicates). For determination of secreted protein levels, cells were infected, and supernatants (triplicates) were analyzed 48 hours after infection via ELISA (VEGF, IL-8: pg/mL) or radioimmunoassay (ADM: pg/mL; IGFBP-3: ng/mL). For Western blotting (HK2, duplicates), cellular extracts were prepared 8 hours after infection (loading control: actin). C indicates control uninfected cells.
Figure 2. Activation of HIF-1 on *B. henselae* (*B. h.* infection in HeLa cells. a, HIF-1 activation was detected 6 hours after infection by immunofluorescent staining with the use of HIF-1α-specific and TRITC-labeled secondary antibodies (top row). Nuclei and bacteria were stained with DAPI (bottom row). Bar=20 μm. b, HIF-1α protein (120 kDa) was analyzed in Western blots 6 hours after infection in duplicates (loading control: actin). c, Induction of the VEGF promoter. HeLa cells were transfected with a VEGF promoter/luciferase reporter construct (pVEGF.4) 24 hours before infection, and induction was determined by chemiluminescence 36 hours after infection. C indicates control uninfected cells; H, hypoxia. d, Nuclear localization of transcription factor HIF-1α probe in the presence of a 100-fold excess of an unlabeled competitor probe (comp.). e, Effect of HIF-1α siRNA on HIF-1 activation on infection. HIF-1α was analyzed in Western blots 6 hours after infection (loading control: actin). f, Effect of HIF-1α siRNA on VEGF expression on infection. VEGF (pg/mL) was quantified in cell culture supernatants 48 hours after infection. C indicates control uninfected cells; NS, non-sense control siRNA; HIF-1α, HIF-1α siRNA. *Significant difference compared with *B. henselae*-infected cells and with *B. henselae*-infected cells treated with control siRNA (P<0.05).

Immunohistochemistry

Sections of histologically confirmed paraffin-embedded specimens of BA were stained with the use of specific anti-HIF-1α antibodies (Novus) and the alkaline phosphatase/anti–alkaline phosphatase technique with hematoxylin counterstaining. Unaffected skin was used as control.

Detection of Cellular Hypoxia and Oxygen Consumption

Cellular hypoxia was detected by adding pimonidazole hydrochloride (200 mmol/L; Hypoxyme-1, Chemicon) to HeLa cells that were subsequently infected or exposed to hypoxia for 4 hours. Staining was performed according to the manufacturer’s instructions.

The dissolved O2 concentration was directly measured in the medium of *B. henselae*-infected and control cell cultures (for details, see Data Supplement Figure I). An O2-tight closed chamber was built around the head of a Clark electrode (Conrad Electronics). HeLa cells grown on coverslips were infected for 4 hours with *B. henselae* and placed in the chamber filled with RPMI 1640 medium saturated with CO2 (5%) and O2 (20.8%). The oxygen electrode was allowed to equilibrate for 1 minute at 37°C followed by a 10-minute period of oxygen measurement. O2 concentration (mg/L) was determined at 60-second intervals.

Measurement of Intracellular ATP

For quantification of cellular ATP, HeLa cells were infected with *B. henselae* or exposed to hypoxia for 4 hours, and the intracellular ATP was determined with the use of the CLSII Assay Kit (Roche). ATP levels were normalized to the total protein concentration of the cellular extracts.

Statistical Analysis

All data shown are from representative experiments. Differences between mean values were analyzed with the Student t test. P<0.05 was considered statistically significant.

Results

B. henselae Induces a Proangiogenic Gene Program

For analysis of the genomic response to *B. henselae* infection, infected and uninfected HeLa cells were compared in RNA microarray analysis 6 hours after infection. Confocal laser scanning microscopy showed that at this time >99% of the cells contained bacteria (Data Supplement Figure II). Among >12,000 genes analyzed, 20 genes were found to be upregulated >2-fold on infection. As indicated in the Table, at least 7 of these genes (eg, IL-8, ADM, ephrin A1 [EFNA1], VEGF) are known to play a role in angiogenesis and vessel maturation, 3 are involved in glycolysis, and 7 are involved in signal transduction and cell growth. The function of 3 of the induced genes is currently unknown. Gene downregulation was not detected. Of the 20 genes, 14 of are known to be directly or indirectly regulated via HIF-1, suggesting that the major trigger of angiogenic gene induction on *B. henselae* infection is HIF-1. IL-8 was an exception; this highly induced gene is strongly induced by NF-κB but not by HIF-1. Quantitative real-time PCR or semiquantitative RT-PCR was used to confirm results of the gene array experiments (Figure 1, Data Supplement Figure III). As a test for possible false-negative results, selected NF-κB–regulated genes (ICAM-1, MCP-1, IL-1β, GM-CSF) or the HIF-2–regulated VEGFR-2 gene were not affected on *B. henselae* infection. Moreover, increased protein expression was shown for 5 of the induced genes (VEGF, IL-8, IGFBP-3, ADM, and HK2; Figure 1). Results were consistent with the microarray data indicating a significant change toward a proangiogenic gene program in host cells.
B henselae Induces HIF-1, Cellular Hypoxia, and Decrease of ATP

The induced gene pattern suggested that HIF-1 activation has a crucial role in the host cell response to *B henselae* infection. We therefore investigated the activation of HIF-1 by *B henselae* in HeLa cells (Figure 2). Immunofluorescence analysis revealed the appearance of nuclear HIF-1α 6 hours after *B henselae* infection, similar to hypoxia-treated cells (Figure 2a), and consistent results were obtained by Western blotting (Figure 2b). Transfection experiments with the use of a VEGF promoter/luciferase reporter that is specifically regulated by HIF-1 revealed that *B henselae* increases VEGF gene transcription ~4-fold compared with ~8-fold stimulation by hypoxia (Figure 2c). Nuclear HIF-1α activation was also demonstrated by electrophoretic mobility shift assay (EMSA), which indicated the enhanced capacity of the induced HIF-1α complex to bind to its target consensus DNA sequences (Figure 2d). Finally, activation of HIF-1 and subsequent induction of VEGF secretion after *B henselae* infection was completely inhibited when the cells were treated with HIF-1α siRNA before infection (Figure 2e, 2f). These results clearly indicate that HIF-1 is activated on a *B henselae* infection and that the increased VEGF secretion on *B henselae* infection is dependent on HIF-1.

Endothelial cells that were heavily infected by *B henselae* (Data Supplement Figure II) also upregulated VEGF, IL-8, ADM, and HK2 after *B henselae* infection (Figure 3). Moreover, VEGFR-2, known to be regulated via HIF-2,22 and the NF-κB–regulated MCP-1 and GM-CSF genes were induced. Accordingly, HIF-1 and HIF-2 stabilization was observed in HUVECs (Figure 3b). Moreover, HIF-1 activation and VEGF secretion occurred in all cells investigated thus far (A549, MCF-7, ECC-1 [data not shown], EA.hy 926, MonoMac610,23). These experiments indicate that a *B henselae* infection generally results in HIF activation and the induction of a proangiogenic gene program.

Because of the strong IL-8 induction, we also confirmed NF-κB activation by EMSA (Figure 4a). To dissect the NF-κB–regulated IL-8 from the HIF-1–regulated proangiogenic response, the infection process was modulated by the NF-κB inhibitor parthenolide12 (Figure 4b). This inhibited IL-8 secretion from *B henselae*–infected cells completely but had only little effect on VEGF secretion. This and the data obtained with HIF-1α siRNA strongly suggest that NF-κB is responsible for IL-8 induction, whereas HIF-1 triggers VEGF induction. The MAP kinases p38 and p42/44, which were rapidly and persistently phosphorylated in *B henselae*–infected cells (Figure 4c), contribute only little to the *B henselae*–induced VEGF secretion because preincubation with PD98059 (p42/44 inhibitor) or SB202190 (p38 inhibitor) caused only a slight reduction of the VEGF levels (Figure 4d). These results suggest that activation of HIF-1 on a *Bartonella* infection occurs via hypoxic activation, presumably involving inhibition of prolyl and asparaginyl hydroxylases.4

Because hypoxia is known to be a potent activator of HIF-1,4 we investigated whether infection with *B henselae* leads to an increased O2 consumption and cellular hypoxia. Experiments quantifying the dissolved O2 concentration in a closed cell culture chamber and with the use of a hypoxia-sensitive dye indicated that both processes indeed occurred (Figure 5a to 5c). O2 consumption was increased ~9-fold in the *B henselae*–infected cells. Cellular hypoxia did not result from bacterial overgrowth because the pH of cell culture supernatants was unaffected in the same experiments (control 7.52, *B henselae* 7.51, hypoxia 7.28). In addition, infection resulted in decreased ATP levels in host cells (Figure 5d).

Figure 3. Endothelial cell response to *B henselae* (*B. h.* infection. a, Induction of host cell transcripts and proteins on *B henselae* infection in HUVECs. RNA was extracted 6 hours after infection and transcribed into cDNA. Gene induction was assessed by real-time PCR (VEGF: 11.9-fold induction; IL-8: 4.2-fold induction) or RT-PCR (ADM, HK2, KDR, MCP-1, GM-CSF, β-actin, duplicates). For determination of secreted protein levels, cells were infected, and supernatants (triplicates) were analyzed 48 hours after infection via ELISA (VEGF, IL-8: pg/ml). b, Activation of HIF-1 and HIF-2 on *B henselae* infection in HUVECs. HIF-1α protein (120 kDa) and HIF-2α protein (118 kDa) were analyzed in Western blots 6 hours after infection (loading control: actin). Cont. indicates control; n.d., not determined.
Expression of *B. henselae* Pili Is Crucial for Activation of HIF-1

To analyze whether pilus expression determines the activation of HIF-1, HeLa cells were infected with wild-type (wt) or pilus-negative (Pil-) *B. henselae* (Figure 6a). Analysis of LPS composition disclosed no differences between both strains (Figure 6b). Supershifts were performed with the use of p50 subunit specific antibodies. b, HeLa cells were treated with parthenolide (5 μmol/L, 20 μmol/L) 30 minutes before infection. VEGF and IL-8 production (pg/mL) were determined by VEGF ELISA in supernatants collected 48 hours after infection. Note that the NF-κB inhibitor parthenolide abolishes secretion of IL-8 on *B. henselae* infection completely, whereas secretion of VEGF is much less decreased. c, Phosphorylation of p38 and p42/44 was analyzed in duplicates 30 minutes after *B. henselae* (B. h.) infection (positive control: TNF-α, 50 ng/mL) by Western blotting with anti-phospho-p38 or -p42/44-specific antibodies (pp38, pp42/44). Blots were stripped and reprobed with anti-p38 or -p42/44 antibodies (p38, p42/44). d, HeLa cells were treated with the p38 inhibitor SB202190 (5 μmol/L) or the p42/44 inhibitor PD98059 (25 μmol/L) 30 minutes before infection.

HIF-1 Is Activated in BA Lesions From Patients

To investigate whether HIF-1 activation also occurs in vivo in *Bartonella*-infected tissues, sections from BA lesions were stained for HIF-1α (Figure 7). Nuclear HIF-1α was stained...
strongly in cells identified as histiocytes or macrophages infiltrating BA lesions. These observations are consistent with previously published results of HIF-1α staining in hypoxic tumor tissues and with recent data showing that HIF-1α is crucial in myeloid cell functions associated with inflammation and bacterial defense functions. From this data we conclude that HIF-1 induction occurs in *B henselae* infections both in vitro and in vivo.

Discussion

Our present studies reveal a novel mechanism of angiogenesis associated with a bacterial infection. We show here that infection with *B henselae*, the causative agent of angiogenic proliferation of capillary vessels in BA, results in HIF-1 activation and leads to a gene expression pattern typical for the cellular response to hypoxia. In accordance, nuclear HIF-1 was detected in *Bartonella*-infected cells in vitro and in vivo in BA patient samples. Our results suggest that activation of a HIF-1–dependent cell response on a *Bartonella* infection causes the vasculoproliferative disorder in BA and BP.

Angiogenesis research has been focused mainly on cancer and cardiovascular diseases. The HIF-1–induced angiogenic gene reprogramming would indeed be an excellent target for therapeutic intervention in solid tumors, including hemangio-blastomas, and also in Kaposi’s sarcoma. On the other hand, activation of the HIF pathway could be of therapeutic...
value in tissue ischemia associated with cardiovascular diseases. However, HIF activation in bacterial infections has not been described previously, although genetic deletion of HIF-1α in myeloid cells compromises inflammatory responses. Bartonella species are the only known bacterial pathogens causing vasculoproliferative disorders in humans. VEGF induction was described in Bartonella infections in vivo and in vitro, and a role has also been suggested for macrophage-secreted angiogenic agents.

Only 20 genes were found to be significantly upregulated on Bartonella infection in our microarray analysis. Of these, 14 are known HIF targets. Several of these were confirmed by independent assays, including VEGF, which is known to be a key factor in the triggering of angiogenic processes, and STC2, ADM, IGFBP-3, and HK2, which have also been implicated in hypoxic cellular responses or angiogenic processes. IL-8, which is apparently the only NF-κB-regulated gene in our Bartonella infection model of HeLa cells, is also known to be a strong vasculoproliferative agent. We hypothesize that the induced growth factors and cytokines secreted by the infected host cells contribute to an angiogenic cocktail responsible for endothelial proliferation in BA or BP, whereas the induction of HIF-regulated glycolytic genes may be linked to the metabolic demands of the Bartonella-infected host cells (Figure 8).

Interestingly, some of the induced genes have been reported to be upregulated via HIF-1 or hypoxia in various types of human tumors (eg, enolase-2 [ENO2], NDRG-1, muscleaponeurotic fibrosarcoma oncogene homolog f [MAFF], nuclear factor IL-3 regulated [NFIL3], cyclin G2 [CCNG2], p21-activated kinase-2 [PAK2], and the hypothetical protein FLJ20500 [SCLC2A3]). The gene expression pattern in Bartonella-infected cells thus shows striking similarities with that in other angiogenesis models. Of interest is the fact that besides the angiogenic cytokine IL-8, the response in HeLa cells lacked the typical proinflammatory genes that are found to be induced via NF-κB in other bacterial infections. However, the induction of a broad spectrum of proinflammatory genes and cytokines could be deleterious for the facultative intracellular bacteria. In accordance, we did not find a broad activation of NF-κB–regulated proinflammatory cytokines. These cytokines are commonly induced on bacterial infection of endothelial cells, possibly because of LPS-mediated signals. However, HeLa cells, in contrast to endothelial cells, do not express toll-like receptor-4, which is required for these signals. Finally, the HIF-2 activation in HUVECs is a cell type–specific response that upregulates VEGF–2 and may amplify the VEGF-driven angiogenic loop by making endothelial cells more sensitive to the secreted VEGF.

HIF-1 activation was observed in vitro and in patient samples from BA. This is consistent with our previous observations regarding increased VEGF expression in BA and BP lesions. Macrophages that infiltrate BA lesions were highly positive for HIF-1α and they are known to secrete VEGF on Bartonella infection in vitro. How HIF-1 is activated on a Bartonella infection is not yet clear. The intracellular bacteria should consume a lot of oxygen, and the resulting hypoxia is known to inhibit the prolyl hydroxylases that target HIF-1α to ubiquitin-mediated degradation. In fact, infection with Bartonella resulted in increased O2 consumption and hypoxia in the host cells and was accompanied by an increased consumption of cellular ATP. Furthermore, the MAP kinases p42/44 and p38 are phosphorylated on Bartonella infection. However, although these kinases have been reported to enhance the transcriptional activity of HIF-1 by phosphorylation (p42/44) and to increase VEGF mRNA stability (p38), these specific MAP kinase inhibitors induced only a small decrease of the Bartonella–regulated VEGF secretion in our model. Stabilization of HIF-1α on a Bartonella infection could thus occur by a mechanism similar to that in cells exposed to hypoxia.

Interestingly, the Bartonella Pil− variant did not induce cellular hypoxia, activation of HIF-1, or VEGF expression (Figure 6). Recently, we identified this “pilus” as the non-fimbrial adhesin BadA. When one considers this and the
observation that HIF-1 activation does not occur in LPS-exposed cells, it is highly unlikely that LPS is involved in the activation of HIF-1 by B henselae. Additionally, HIF-1 activation did not occur when cells were infected with L pneumophila. This is not surprising because L pneumophila infections do not result in vasculoproliferative disorders but instead in inflammatory disease. Our results suggest that Bartonella-specific bacterial mechanisms are necessary for the induction of the angiogenic response. The observation that Bartonella induces an HIF-1-driven cellular phenotype is exciting and provides a new aspect to angiogenesis research. Whether similar strategies are shared by other bacterial pathogens needs to be elucidated further.

Acknowledgments
This work was supported by grants from the Deutsche Forschungsgemeinschaft and from the University of Tübingen (Fortüne Programm). The authors thank A. Schaefer for excellent technical assistance, L. Poellinger for kind advice, and U. Zähringer for providing Bartonella LPS.

References
Activation of Hypoxia-Inducible Factor-1 in Bacillary Angiomatosis: Evidence for a Role of Hypoxia-Inducible Factor-1 in Bacterial Infections

Volkhard A.J. Kempf, Maria Lebiedziejewski, Kari Alitalo, Joo-Hee Wälzlein, Urs Ehehalt, Jeannette Fiebig, Stephan Huber, Burkhardt Schütt, Christian A. Sander, Steffen Müller, Guntram Grassl, Amir S. Yazdi, Bernhard Brehm and Ingo B. Autenrieth

Circulation. 2005;111:1054-1062; originally published online February 21, 2005; doi: 10.1161/01.CIR.0000155608.07691.B7
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/111/8/1054

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2005/02/27/01.CIR.0000155608.07691.B7.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/
Supplementary information

Supplementary Table 1. Primers and PCR conditions.

Supplementary Fig. 1. Details on the oxygen-tight closed chamber. (a) An oxygen-tight closed chamber was built around the head of a Clark electrode and placed on a magnetic stirrer in a cell culture incubator (37° C). (b) Clark electrode and oxygen-tight closed chamber in more detail. (c) The oxygen tight cell culture chamber in detail. HeLa cells (grown overnight on coverslips) were placed in the bottom of this chamber filled with CO₂ (5%) and O₂ (20.8 %)-saturated RPMI 1640 medium. A nylon mesh was mounted on top of the cells to allow magnetic stirring of the medium without destruction of the cell layer. (d) Schematic draft of the chamber.

Supplementary Fig. 2. Course of *B. henselae* infection analysed by confocal laser scanning microscopy 1, 3 and 6 hours after infection of HeLa cells and HUVECs. Extracellular bacteria were labeled by fluorescein-isothiocyanate (FITC)-conjugated antibodies (green signal), intracellular bacteria were labeled by Cy-5-conjugated antibodies (blue signal). Filamentous actin was stained with tetramethylrhodamine-isothiocyanate (TRITC)-labeled phalloidin (red signal). Scale bar: 20 µm.

Supplementary Fig. 3. Induction of host cell transcripts upon *B. henselae* infection. HeLa cells were infected with *B. henselae* (*B.h.*), total RNA was extracted six hours after infection and transcribed into cDNA. (a) Gene induction was assessed in duplicate by RT-PCRs (STC2, CCNG2, NDRG1, FLJ22182fis, KIAA0742). (b) Genes not regulated in HeLa cells upon infection. Cells were infected with *B. henselae* (*B.h.*) or stimulated with PMA. Gene induction was assessed by RT-PCRs in duplicate (ICAM-1, MCP-1, IL-1β, GM-CSF, VEGFR-2, β-actin). C: control uninfected cells.

Supplementary Fig. 4. Failure of HIF-1 activation by LPS. LPS from *B. henselae* was added to HeLa cells (1000 ng/ml) and activation of HIF-1 was analysed in Western blots six hours after infection (duplicates are shown; loading control: actin).
Supplementary Fig. 5.: Failure of HIF-1 activation by *L. pneumophila* in HeLa cells. Activation of HIF-1 analysed in Western blots six hours after infection (duplicates are shown; loading control: actin). Note that infection with *B. henselae* results in a strong activation of HIF-1 whereas infection with *L. pneumophila* does not result in HIF-1 activation.
Supplementary information, Tab. 1: Primers and PCR conditions

<table>
<thead>
<tr>
<th>No.</th>
<th>gene</th>
<th>forward primer</th>
<th>reverse primer</th>
<th>cDNA position</th>
<th>genebank accession no.</th>
<th>amplicon size</th>
<th>annealing (°C)</th>
<th>cycles</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADM</td>
<td>5'-AAG AAG TGG AAT AAG TGG GCT-3'</td>
<td>5'-TGG CTT AGA AGA CAC CAG AGT-3'</td>
<td>250-660</td>
<td>NM_001124</td>
<td>411 bp</td>
<td>57</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IGFBP-3</td>
<td>5'-TAG TGA GTG GGA GGA AGA CC-3'</td>
<td>5'-GAG AGG TTC TGG GTA TCT GTG C-3'</td>
<td>498-689</td>
<td>NM_000598</td>
<td>192 bp</td>
<td>63</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STC2</td>
<td>5'-CAA CTC TTG TGA GAT TCG GG-3'</td>
<td>5'-GAG GTG ATG TCC TGC TTC CC-3'</td>
<td>353-872</td>
<td>NM_003714</td>
<td>520 bp</td>
<td>59</td>
<td>27</td>
<td>this study</td>
</tr>
<tr>
<td>4</td>
<td>HK2</td>
<td>5'-TCA ACC CCG GCA AGC AGA GG-3'</td>
<td>5'-CCG CCG GGC CAC CAG AGT-3'</td>
<td>2650-2936</td>
<td>NM_000189</td>
<td>287 bp</td>
<td>58</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CCNG2</td>
<td>5'-GCA CTA TGA ATT GGA AGC TAC TAC TGC C-3'</td>
<td>5'-CAG GAG AAG ATG AAT GGC CCG CTG CTA GGC-3'</td>
<td>582-910</td>
<td>NM_004354</td>
<td>329 bp</td>
<td>61</td>
<td>24</td>
<td>this study</td>
</tr>
<tr>
<td>6</td>
<td>NDRG1</td>
<td>5'-TGG AGT CCT TCA ACA GTT TGG G-3'</td>
<td>5'-AGT ACT TGA AGG CCT CAG CG-3'</td>
<td>479-1032</td>
<td>NM_006096</td>
<td>554 bp</td>
<td>60</td>
<td>25</td>
<td>this study</td>
</tr>
<tr>
<td>7</td>
<td>KIAA0742</td>
<td>5'-ACA AAC ATG GTG TGT TGC GG -3'</td>
<td>5'-GTA AGC AGC ACC CTG TGG GC -3'</td>
<td>1840-2207</td>
<td>NM_018433</td>
<td>368 bp</td>
<td>60</td>
<td>24</td>
<td>this study</td>
</tr>
<tr>
<td>8</td>
<td>FLJ22182fis</td>
<td>5'-AGA GAC AGG GTT TCA TAT GGG-3'</td>
<td>5'-AGA TGT CAA GCC TGT AGG CC -3'</td>
<td>1551-1992</td>
<td>BC042436</td>
<td>442 bp</td>
<td>60</td>
<td>35</td>
<td>this study</td>
</tr>
<tr>
<td>9</td>
<td>IL-1β</td>
<td>5'-AAA CAG ATG AAG TGC TCC TTC CAG G -3'</td>
<td>5'-AAA CAG ATG AAG TGC TCC TTC CAG G -3'</td>
<td>175-565</td>
<td>NM_000576</td>
<td>391 bp</td>
<td>60</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

suppl. Information, -3/R1-
<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Accession</th>
<th>Length (bp)</th>
<th>Temperature (°C)</th>
<th>Replications</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. ICAM-1</td>
<td>5'-TGG AGA ACA CCA CTT GTT GCT CCA -3'</td>
<td>5'-AAA GGA TGG CAC TTT CCC AC -3'</td>
<td>NM_002001</td>
<td>1353-1947</td>
<td>59</td>
<td>26</td>
</tr>
<tr>
<td>11. MCP-1</td>
<td>5'-TTC CCC TCT CAT CAG GCT AGA C -3'</td>
<td>5'-TGG TAG AAC TGT GGT CAG GAG -3'</td>
<td>NM_002982</td>
<td>92-609</td>
<td>61</td>
<td>23</td>
</tr>
<tr>
<td>12. VEGF-2/KDR</td>
<td>5'-AGT CCA ATC ACA CAA TTA AAG CG -3'</td>
<td>5'-GGG TAG AAC TGT GGT CAG GAG -3'</td>
<td>NM_002253</td>
<td>1418-1763</td>
<td>55</td>
<td>23</td>
</tr>
<tr>
<td>13. GM-CSF</td>
<td>5'-TGG ACT GCC CAG CAC TCA AAC GGG ATG-3'</td>
<td>5'-ACA CTG GTG ATC AAA CAG TAG-3'</td>
<td>NM_00758</td>
<td>175-460</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td>14. β-actin</td>
<td>5'-AGG GGA ATC GCT GCT CAT AGC -3'</td>
<td>5'-TAG AAG CAT TTG CGG TGG ACG ATG GAG -3'</td>
<td>NM_001101</td>
<td>541-1260</td>
<td>72</td>
<td>22</td>
</tr>
<tr>
<td>15. VEGF</td>
<td>5'-CCC TGA GAT CGA GTA CAT CTT-3'</td>
<td>5'-ACC GCC TCG GCT TGT CAC -3'</td>
<td>NM_003376</td>
<td>1233-1684</td>
<td>68</td>
<td>--</td>
</tr>
<tr>
<td>16. β2-microglobulin</td>
<td>5'-GAT GAG TAT GCC TGC CGT GTG-3'</td>
<td>5'-CAA TCC AAA TGC GGC ATC T-3'</td>
<td>NM_004048</td>
<td>299-412</td>
<td>68</td>
<td>--</td>
</tr>
</tbody>
</table>

*Hydrolysis probe

suppl. Information, -4/R1-
References

