Nitroaspirins and Morpholinosydnonimine but Not Aspirin Inhibit the Formation of Superoxide and the Expression of gp91^{phox} Induced by Endotoxin and Cytokines in Pig Pulmonary Artery Vascular Smooth Muscle Cells and Endothelial Cells

Saima Muzaffar, PhD; Nilima Shukla, PhD; Gianni Angelini, FRCS; Jamie Y. Jeremy, PhD

Background—Although nonsteroidal antiinflammatory drugs (NSAIDs) are ineffective in treating acute respiratory distress syndrome (ARDS), inhalational NO has proved to be useful. NO-donating NSAIDs may therefore be more effective in treating ARDS than NSAIDs alone. Because oxidant stress is central to the pathophysiology of ARDS, the effect of nitroaspirins (NCX 4016, NCX 4040, and NCX 4050) compared with morpholinosydnonimine (SIN-1; an NO donor) and aspirin (ASA) on superoxide (O_2^-) formation and gp91^{phox} (an active catalytic subunit of NADPH oxidase) expression in pig pulmonary artery vascular smooth muscle cells (PAVSMCs) and endothelial cells (PAECs) was investigated.

Methods and Results—Cultured PAVSMCs and PAECs were incubated with lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, and interleukin (IL)-1α (with or without NO-ASA, SIN-1, or ASA) for 16 hours, and O_2^- release was measured by use of the reduction of ferricytochrome c. The expression of gp91^{phox} was assessed by use of Western blotting. LPS, TNF-α, and IL-1α all stimulated the formation of O_2^- and expression of gp91^{phox} in both PAVSMCs and PAECs, an effect inhibited by NADPH oxidase inhibitors, diphenyleneiodonium, and apocynin. SIN-1, NCX 4016, and NCX 4050 but not ASA alone inhibited the formation of O_2^- and expression of gp91^{phox}.

Conclusions—LPS and cytokines promote the formation of O_2^- in PAVSMCs and PAECs through an augmentation of NADPH oxidase activity, which in turn is prevented by NO. Thus, NO may play a protective role in preventing excess O_2^- formation, but its negation by O_2^- may augment the progress of ARDS. The inhibitory effect of nitroaspirins suggests that they may be therapeutically useful in treating ARDS through the suppression of NADPH oxidase upregulation and O_2^- formation. (Circulation. 2004;110:1140-1147.)

Key Words: superoxides ■ NADPH oxidase ■ nitric oxide ■ respiratory distress syndrome, adult ■ pulmonary artery
intrinsically “self-defeating” in this particular scenario. Notably, we have recently demonstrated that PGI₂ inhibits the formation of O₂⁻ via a downregulation of NADPH oxidase activity induced by cytokines and endotoxin in pulmonary arterial cells. NSAIDs would therefore remove this protective system, thereby augmenting oxidative stress and the depletion of NO as described above. In this context, inhaled NO has proved more effective in treating ARDS and reducing leukocyte activity and oxidant stress in ARDS. NO acts at multiple sites to limit inflammation, including the inhibition of leukocyte and platelet adhesion and of release substances, including that of cytokines. Because NO and PGI₂ have similar properties, including vasodilatation, the inhibition of adhesion molecule expression, inhibition of platelet and leukocyte activity, and a reduction in oxidative stress, it is reasonable to suggest that NO may also inhibit NADPH oxidase expression.

A novel class of NSAIDs that may be effective in treating ARDS is the NO-donating aspirins (NO-ASA). NO-ASA releases NO in vivo while retaining the antiinflammatory capacity of aspirin. The donation of NO may also compensate for the inhibition of PGI₂ by NSAIDs. Indeed, drugs of this class have proved effective in preventing gastropathy associated with aspirin by virtue of their NO-donating capacity. The NO moiety of NO-ASA may also act by preventing excess O₂⁻ formation, which, as proposed above, would be of potential therapeutic benefit in treating ARDS. To test these proposals, the effect of the NO-ASA adduct NCX 4016, NCX 4040, and NCX 4050 compared with an NO donor alone (morpholinosydnonimine, SIN-1) and ASA alone on formation and gp91phox (a catalytic subunit of NADPH oxidase) in response to cytokines and endotoxin in pig pulmonary artery vascular smooth muscle cells and endothelial cells was investigated.

Methods

Dissection of Pulmonary Arteries

Lungs were obtained from White Landrace male pigs of body weight ranging from 20 to 35 kg. All animal experiments were conducted in accordance with the rules and regulations of Bristol University and the Home Office for the care and use of experimental animals. Pigs were anesthetized with an intravenous injection of ketamine hydrochloride (10 mg/kg; Ketaset Injection, Fort Dodge Animal Health) and inhaled oxygenated halothane. The internal carotid artery was exposed, a cannula was placed in the carotid artery, and the animals were then exsanguinated. The chest was opened by median sternotomy, and the lungs were then excised from the chest. Pulmonary arteries (PAs) of 3- to 4-mm diameter were dissected from the lungs within 30 minutes and placed in DMEM with glutamax-1 (DMEM; GibcoBRL).

Culture of Pulmonary Artery Vascular Smooth Muscle Cells and Endothelial Cells

Pulmonary artery vascular smooth muscle cells (PAVSMCs) and endothelial cells (PAECs) were prepared according to previously published methods. PAVSMCs and PAECs were grown in endothelial cell growth medium (PromoCell) at 37°C in a 95% air–5% CO₂ incubator (Heraeus, Hera Cell, Kandor Lab Incubation). PAVSMCs were cultured in DMEM (supplemented with 10% FCS, 100 U/mL penicillin, and 100 μg/mL streptomycin) at 37°C in a 95% air–5% CO₂ incubator. Subconfluent cultures of pulmonary VSMCs were growth arrested by washing in sterile PBS (GibcoBRL) and incubating in quiescing medium (serum-free DMEM supplemented with 0.5% lactalbumin hydrolysate, 100 U/mL penicillin, and 100 μg/mL streptomycin) for 72 hours. Cultured cells were then incubated in fresh serum-free medium supplemented with the factor(s) under investigation.

Studies on the Source of O₂⁻ Formation Elicited by Endotoxin and Cytokines

PAVSMCs and PAECs were incubated with LPS (1 μg/mL; *Escherichia coli* 026:B6; Sigma Chemical Co), human recombinant IL-1α (10 ng/mL; R&D Systems) or human recombinant TNF-α (10 ng/mL; R&D Systems) at 37°C in a 95% air–5% CO₂ incubator. The measurement of O₂⁻ release by cells was performed by detection of ferricytochrome c reduction. Thus, after incubation for 16 hours, pulmonary arterial cells were rinsed 3 times in PBS to remove drugs and stimulators and preequilibrated in DMEM without phenol red for 10 minutes at 37°C in a 95% air–5% CO₂ incubator. Then 20 μmol/L horseradish cytochrome c (Sigma Chemical Co) with or without 500 U/mL copper-zinc superoxide dismutase (SOD; Sigma Chemical Co) was added to the segments or cells and incubated at 37°C in a 95% air–5% CO₂ incubator for 1 hour. The reaction medium was then removed, and the maximum rate of reduction of cytochrome c was determined at 550 nm by use of a temperature-controlled Anthos Lucy 1 spectrometer (Laboratory-tech International and converted to nanomoles of O₂⁻ by use of ΔE₅₅₀nm = 21.1 mmol · L⁻¹ · cm⁻¹ as the extinction coefficient for (reduced-oxidized) cytochrome c. The

![Figure 1. Effect of DPI (10 μmol/L), apocynin (1 μmol/L), rotenone (10 μmol/L), and allopurinol (100 μmol/L) on formation of superoxide (O₂⁻) by porcine PAECs and PAVSMCs in response to (A) LPS (1 μg/mL), (B) IL-1α (10 ng/mL), and (C) TNF-α (10 ng/mL) after a 16-hour incubation. Each point indicates mean±SEM, n=6. *P<0.01, LPS/cytokine-stimulated values vs controls. $P<0.01$, drug effects vs LPS/cytokine-stimulated values.](image-url)
reduction of cytochrome c that was inhibitable with SOD reflected actual \(\text{O}_2^- \) release. Segments were blotted, dried, and weighed, data being expressed as nmol of \(\text{O}_2^- \cdot mg \) tissue \(\cdot h^-1 \).

To determine the source of the \(\text{O}_2^- \), PAECs and PAVSMCs were preincubated with diphenyleneiodonium chloride (DPI; 10 \(\mu \)mol/L; NADPH oxidase inhibitors; Sigma Chemical Co), rotenone (10 \(\mu \)mol/L; an inhibitor of mitochondrial respiration; Sigma Chemical Co), and allopurinol (100 \(\mu \)mol/L; an inhibitor of xanthine oxidase; Sigma Chemical Co) for 2 hours before the measurement of \(\text{O}_2^- \).

Effect of Nitroaspirins, SIN-1, and Aspirin on \(\text{O}_2^- \) Formation and gp91phox Expression

The NO-ASA adducts studied were NCX 4016, NCX 4040, NCX 4050, SIN-1 alone, and aspirin alone on (A) LPS- (1 \(\mu \)g/mL), (B) IL-1\(\alpha \) (10 ng/mL), and (C) TNF-\(\alpha \) (10 ng/mL)–induced SOD-inhibitable superoxide (\(\text{O}_2^- \)) formation by PAECs after a 16-hour incubation. Each point indicates mean \(\pm \) SEM, \(n=6 \). \(*P<0.01 \), significantly inhibited vs LPS- or cytokine-treated (0) cells.

**Figure 2. Effect of nitroaspirins NCX 4016, NCX 4040, NCX 4050, SIN-1 alone, and aspirin alone on (A) LPS- (1 \(\mu \)g/mL), (B) IL-1\(\alpha \) (10 ng/mL), and (C) TNF-\(\alpha \) (10 ng/mL)–induced SOD-inhibitable superoxide (\(\text{O}_2^- \)) formation by PAECs after a 16-hour incubation. Each point indicates mean \(\pm \) SEM, \(n=6 \). \(*P<0.01 \), significantly inhibited vs LPS- or cytokine-treated (0) cells.

**Figure 3. Effect of nitroaspirins NCX 4016, NCX 4040, NCX 4050, SIN-1 alone, and aspirin alone on (A) LPS- (1 \(\mu \)g/mL), (B) IL-1\(\alpha \) (10 ng/mL), and (C) TNF-\(\alpha \) (10 ng/mL)–induced SOD-inhibitable superoxide (\(\text{O}_2^- \)) formation by PAVSMCs after a 16-hour incubation. Each point indicates mean \(\pm \) SEM, \(n=6 \). \(*P<0.01 \), significantly inhibited vs LPS- or cytokine-treated cells.
(1:1000 dilution) and developed by enhanced chemiluminescence (Amersham International). Rainbow markers (14 to 220 kDa; Amersham) were used for molecular weight determination.

Effects of Guanylyl Cyclase Inhibition With Oxadiazoloquinoxalinone on O_2^- Release

To determine whether the effects of nitroaspirins and SIN-1 on O_2^- formation were mediated by the NO-cGMP axis, PAECs and PAVSMCs were incubated with various concentrations of the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) over a 16-hour incubation with LPS, IL-1α, or TNF-α (with or without nitroaspirins, SIN-1, or aspirin). The production of O_2^- was measured by ferricytochrome c assay, as described above.

Effect of Nitroaspirins, SIN-1, and Aspirin on the Direct Quenching of O_2^-

Although in preceding experiments, cells were washed free of drugs, their direct effects on O_2^- levels (quenching) was studied by use of a xanthine/xanthine oxidase system in the absence of cells. Nitroaspirins, aspirin, and SIN-1 (all 0 to 10 μmol/L) were incubated with a xanthine (100 μmol/L)/xanthine oxidase (0.15 U/mL) mixture (Sigma Chemical Co), which generates a steady flux of superoxide radicals, and assayed for O_2^- formation by use of conditions identical to those described above.

Effect of Drugs on PGI$_2$ Formation

As mentioned in the introduction, the nitroaspirins possess the potential to compensate for the intrinsic negative effect of aspirin on PGI$_2$ formation. To confirm that nitroaspirins inhibit PGI$_2$ formation, PAECs and PAVSMCs were incubated with various concentrations of the nitroaspirin (NCX 4016, NCX 4040, or NCX 4050; all 0.1 μmol/L) after a 16-hour incubation with LPS, IL-1α, or TNF-α (10 ng/mL). Each point indicates mean±SEM, n=6. *P<0.05, nitroaspirin-treated vs LPS- or cytokine-treated cells only.

Results

Source of O_2^- Formation Elicited by LPS, IL-1α, and TNF-α by PAECs and PAVSMCs

LPS (1 μg/mL) and TNF-α and IL-1α (both at 10 ng/mL) augmented O_2^- release from PAECs and PAVSMCs after a 16-hour time course (Figure 1). DPI and apocynin, both inhibitors of NADPH oxidase (but not rotenone or allopurinol) significantly inhibited O_2^- formation and release from PAECs and PAVSMCs after a 16-hour incubation with LPS, IL-1α, and TNF-α (Figure 1).

Effect of Nitroaspirins, NO Donor (SIN-1), Aspirin, and Guanylyl Cyclase Inhibitor (ODQ) on O_2^- Release and gp91phox Expression

The nitroaspirins (NCX 4016, NCX 4040, or NCX 4050) and SIN-1 but not aspirin alone inhibited LPS- and cytokine-induced O_2^- release (Figures 2 and 3). In both cell types, the maximum inhibition by nitroaspirins and SIN-1 was achieved at 0.1 μmol/L, which was reversed by the addition of NO-sensitive guanylyl cyclase inhibitor, ODQ, in a dose-dependent manner (Figure 4), indicating that the cGMP-protein kinase G axis mediates this inhibitory effect of NO. Furthermore, nitroaspirins (NCX 4016 and NCX 4050) and SIN-1 also inhibited any increase in LPS-, IL-1α-, and TNF-α-induced gp91phox protein expression in PAVSMCs (Figure 5) and PAECs (Figure 6). Aspirin alone, however, had no significant effect on LPS- or cytokine-induced gp91phox expression in both cell types (Figures 5 and 6).

Effect of Nitroaspirins, SIN-1, and Aspirin on Quenching of O_2^- and PGI$_2$ Formation

The nitroaspirins, aspirin, and SIN-1 had no significant quenching effect on O_2^- generated by the xanthine/xanthine oxidase system (Table, top). Nitroaspirins and aspirin all inhibited the formation of PGI$_2$ (as 6-keto-PGF$_1α$, R&D Systems) by use of enzyme-linked immunoassay kits.

Discussion

The present study demonstrates, first, that TNF-α, IL-1α, and LPS promote the formation of O_2^- in both PAVSMCs and
PAECs in a time-dependent manner and at concentrations that have been reported to appear in the blood of patients with ARDS. Furthermore, apocynin and DPI, both inhibitors of NADPH oxidase activity, completely inhibited the generation of O_2^- in response to TNF-α, IL-1α, and LPS, indicating that increased NADPH oxidase activity/levels mediate these effects, a conclusion confirmed by the upregulation of gp91phox by TNF-α, IL-1α, and LPS. These data consolidate the proposition that the pathogenic effect of endotoxins and cytokines in ARDS may be mediated, in part, through an induction of intrapulmonary arterial oxidative stress.

In a previous study, we demonstrated that the enhancement of O_2^- formation in intact pig pulmonary arteries by TNF-α, IL-1α, and LPS resulted in the formation of peroxynitrite (ONOO^-) by the reaction between O_2^- and NO.4 The lowering of NO bioavailability may result in vasoconstriction and pulmonary hypertension as well as a local increase in cytokines, because NO is a vasodilator20 and prevents the adhesion of platelets and neutrophils. ONOO$^-$ itself may be proinflammatory in this scenario, because it promotes adhesion molecule expression in leukocytes21 and inhibits PGI2 synthase activity. In addition, in the present study, the NO donor SIN-1 inhibited gp91phox expression and O_2^- formation through a guanylyl cyclase–dependent pathway, because the effects were reversed by ODQ. This effect could not be ascribed to a direct quenching effect, because the drugs were washed from of the system before O_2^- or gp91phox expression was measured, and the nitroaspirins and SIN-1 had no effect on O_2^- generated by xanthine/xanthine oxidase in the absence of cells. Thus, endogenous NO formation may protect the pulmonary vasculature by preventing the expression of NADPH oxidase induced by LPS and cytokines.

Figure 5. Western analysis of NAD(P)H oxidase in PAVSMCs by use of a monoclonal antibody directed against gp91phox-subunit of human neutrophil NAD(P)H oxidase (MoAb 48). Cells were either not treated or treated with (A) LPS (1 μg/mL), (B) IL-1α (10 ng/mL), or (C) TNF-α (10 ng/mL) for 16 hours with one of the following: NCX 4016 (100 nmol/L), NCX 4050 (100 nmol/L), SIN-1 (1 μmol/L), or aspirin (10 μmol/L). Bands detected are 91 kDa for heavily glycosylated form of gp91phox and 66 kDa for less glycosylated form of gp91phox. Bottom, Representative blots and top, results of densitometric analyses of 6 blots (expressed as relative optical density [O.D./mm2]). Pig neutrophil lysates were used as positive controls. *$P<0.05$, significantly inhibited vs LPS- or cytokine-treated cells.
verse is that the loss of NO availability by the overproduction of \(\text{O}_2^- \) would render the vasculature susceptible to augmented NADPH oxidase activity and therefore to increased NO destruction, thereby worsening the inflammatory cascades associated with ARDS.

In terms of treating ARDS, inhalational NO has been shown to be beneficial. In the present study, not only SIN-1 but also the NO-donating aspirins inhibited \(\text{O}_2^- \) formation and NADPH oxidase upregulation, again via a cGMP-dependent mechanism. In contrast, aspirin had no effect, indicating that the effects of the nitroaspirins are mediated by the NO rather than the aspirin moiety of the drug. Several studies have demonstrated that nitroaspirins exert both NO-mediated effects and the inhibition of cyclooxygenase and therefore of the generation of proinflammatory eicosanoids, such as thromboxane \(\text{A}_2 \) (TXA\(_2\)) and PGE\(_2\).

Although many clinical trials have demonstrated that NSAIDs are relatively ineffective in treating ARDS, they have been shown to inhibit the formation of proinflammatory eicosanoids in patients with sepsis. One possible explanation for the lack of efficacy of NSAIDs in ARDS is that they also inhibit the formation of the antiinflammatory eicosanoid PGI\(_2\). The possible importance of endogenous PGI\(_2\) in protecting against ARDS is exemplified by the therapeutic benefits of inhalational PGI\(_2\) to treat the condition. In a recent study, we also demonstrated that the PGI\(_2\) analogue iloprost inhibits the expression of NADPH oxidase and \(\text{O}_2^- \) formation in pig PAVSMCs and PAECs, again induced by LPS and cytokines. Thus, NSAIDs may intrinsically negate their therapeutic potential through this “double-edged” effect on PGI\(_2\). In the present study, the nitroaspirins inhibited PGI\(_2\) formation but still blocked the gp91\(^{phox}\) expression and \(\text{O}_2^- \)
would lead to the negation of NO availability and the upregulation of NADPH oxidase activity. This is associated with systemic hypotension, which is evoked by contrast to the pulmonary hypertension seen in ARDS, sepsis with nonsepsis-mediated ARDS, nitroaspirins may still be appropriate.

One potential drawback of orally administered nitroaspirins, however, is their possible contraindication in sepsis, therefore excess O$_2^-$ release, (4) replacement of NO depleted by excess O$_2^-$ formation, and (5) inhibition of TXA$_2$ formation, a promoter of both oxidative stress and vasoconstriction. Apart from ARDS, these data indicate that the therapeutic action of NO donors, including nitroaspirins, may be mediated, in part, through the suppression of NADPH oxidase expression and therefore excess O$_2^-$ formation. Nitroaspirins may also be effective in treating vascular diseases associated with oxidative stress.

Acknowledgment

This research was funded by the British Heart Foundation (grant number FS/2001/041).

References

Nitroaspirins and Morpholinosydnonimine but Not Aspirin Inhibit the Formation of
Superoxide and the Expression of gp91 \(\text{phox} \) Induced by Endotoxin and Cytokines in Pig
Pulmonary Artery Vascular Smooth Muscle Cells and Endothelial Cells
Saima Muzaffar, Nilima Shukla, Gianni Angelini and Jamie Y. Jeremy

Circulation. 2004;110:1140-1147; originally published online August 23, 2004;
doi: 10.1161/01.CIR.0000139851.50067.E4
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/110/9/1140

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/