Modulation of Endothelial Function by Walnuts and Sex Hormones

To the Editor:

We read with interest the recent article by Dr Ros and colleagues dealing with the relationship between a walnut diet and endothelial function in hypercholesterolemic subjects. The results of their study demonstrated that the walnut diet significantly improved endothelium-dependent vasodilation. The authors indicated that changes of endothelium-dependent vasodilation correlated with those of plasma cholesterol-HDL ratios. They proposed that the improvement of endothelial function might explain the cardiovascular protective effect of walnut intake beyond cholesterol lowering.

Numerous studies have shown that estrogen may also have beneficial effects on cardiovascular functions. One of the mechanisms underlying the protective effect of estrogen may be the enhancement of nitric oxide (NO) production. There is evidence showing that vascular endothelial function is markedly influenced by estrogen and is improved by hormone replacement therapy in postmenopausal women. In an in vitro study presented earlier, we demonstrated that 17β-estradiol increased membrane fluidity (a reciprocal value of membrane microviscosity) of erythrocytes and improved the rigidity of cell membranes in postmenopausal women via the NO- and cGMP-dependent mechanism. Since abnormalities in membrane microviscosity could cause a disturbance in rheological behavior and microrculation, these findings suggest that estrogen deficiency might be involved in the pathogenesis of vascular complications in women. Recently, the role of estrogen in male physiology has also become evident, and normal physiological estrogen, which is converted from testosterone by aromatase, may confer cardiovascular benefits for men. In this context, we speculate that, wonder whether the estrogen level was related to improved stimulatory effect of endogenous sex hormones on NO synthesis might be enhanced by increased amounts of substrate. They also wonder whether the estrogen level was related to improved endothelial function during the walnut diet in our study. Unfortunately, we did not measure plasma estrogen. Nine out of 10 women in our study were postmenopausal, and none was receiving hormone replacement therapy. As stated, adjustment for sex did not influence the results of endothelial function studies. We regret that, like other key questions on the relation of estrogen to vascular health, the question from Drs Tsuda and Nishio remains unanswered. Given the paradox of the lack of clinical benefit (or even harm) of estrogen replacement in women with coronary heart disease in face of the indisputable salutary effects of estrogen on vascular reactivity, this is still an important research field.

Kazushi Tsuda, MD
Ichiro Nishio, MD
Division of Cardiology
Department of Medicine
Wakayama Medical University
Wakayama, Japan
tsudak@mail.wakayama-med.ac.jp


Response

Estrogen has a direct effect on relevant endothelial cell biological activities, such as vasomotor function, cell adhesion molecule expression, and angiogenesis through mechanisms that are complex and not always well understood. As pointed out by Drs Tsuda and Nishio, upregulation of endothelial nitric oxide (NO) production by estrogen may play an important role in its well-known vasodilatory effect. Indeed, attention must be paid to the menstrual cycle when performing endothelial function studies in premenopausal women because estrogen-mediated increases in brachial endothelium-dependent vasodilation occur during the follicular phase. A recent report suggests that residual endogenous estrogen in postmenopausal women also influences endothelial function.

Because walnuts contain significant amounts of L-arginine, the precursor of NO, Drs Tsuda and Nishio speculate that the stimulatory effect of endogenous sex hormones on NO synthesis might be enhanced by increased amounts of substrate. They also wonder whether the estrogen level was related to improved endothelial function during the walnut diet in our study. Unfortunately, we did not measure plasma estrogen. Nine out of 10 women in our study were postmenopausal, and none was receiving hormone replacement therapy. As stated, adjustment for sex did not influence the results of endothelial function studies. We regret that, like other key questions on the relation of estrogen to vascular health, the question from Drs Tsuda and Nishio remains unanswered. Given the paradox of the lack of clinical benefit (or even harm) of estrogen replacement in women with coronary heart disease in face of the indisputable salutary effects of estrogen on vascular reactivity, this is still an important research field.

Emilio Ros, MD
Isabel Núñez, MD
Ana Pérez-Heras, RD
Mercè Serra, RD
Rosa Gilabert, MD
Elena Casals, MD
Ramón Deulofeu, MD
The Lipid Clinic at the Nutrition and Dietetics Service
Centre de Diagnòstic per l’Imatge
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Hospital Clinic
Barcelona, Spain

Modulation of Endothelial Function by Walnuts and Sex Hormones
Kazushi Tsuda and Ichiro Nishio

Circulation. 2004;110:e73
doi: 10.1161/01.CIR.0000138897.48388.F5
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/110/7/e73

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/