Walnuts and Endothelial Function in Hypercholesterolemic Subjects

To the Editor:

Ros et al.1 recently reported that substituting walnuts for monounsaturated fat in a Mediterranean-type diet improves endothelial function in hypercholesterolemic subjects. The investigators explain that nuts contain sizable amounts of antioxidants, as well as L-arginine and α-linolenic acid, which might also confer additional antiatherogenic properties.

I should emphasize, however, that a walnut-enriched diet contains high magnesium levels (ie, 169 elements of magnesium per 100 g of nut). We previously demonstrated2 that magnesium supplementation in patients with coronary artery disease (CAD) was associated with significant improvement in brachial artery endothelial function and exercise tolerance. Our group also demonstrated that oral magnesium supplementation inhibits platelet-dependent thrombosis in CAD patients, independent of platelet aggregation or P-selectin expression, and was evident despite aspirin therapy.3 Magnesium is also an antioxidant4 and therefore may additively alter lipid profile and improve endothelial function. Therefore, the magnesium found in walnuts may explain some of the beneficial effects described by Ros et al.1

Michael Shechter, MD, MA
Chaim Sheba Medical Center
The Heart Institute
Tel Hashomer, Israel


Response

We appreciate the interest of Dr Shechter in our recent publication on the beneficial vascular effects of a walnut diet in hypercholesterolemic subjects.1 He comments on the relatively high magnesium content of walnuts as a potential factor that could influence endothelial function and cites the positive results of a clinical trial of magnesium supplementation in stable patients with coronary heart disease and latent magnesium deficiency.2 We did not measure serum magnesium concentrations in the participants of our study. Although not reported in our paper, we did measure the magnesium content of the walnuts used in the study; the magnesium content was 111±9 mg/100 g (mean±SD of 3 determinations). Depending on individual energy requirements, the walnut diet contained 40 to 65 g of walnuts daily. Thus, the extra amount of magnesium provided ranged from 44 to 72 mg per day. These doses of magnesium are substantially lower than the 365 mg used in the study of Shechter et al.2 and their contribution to improved endothelial function is probably minor in face of other highly bioactive nutrients from walnuts, such as plant n-3 fatty acids and L-arginine.

Magnesium is an important micronutrient abundant in vegetable foods, especially in seeds, herbs, and nuts, and its intake has been independently associated with protection from cardiovascular diseases.3,4 We thank Dr Shechter for reminding us of still another beneficial component of walnuts.

Emilio Ros, MD
Isabel Núñez, MD
Ana Pérez-Heras, RD
Mercè Serra, RD
Rosa Gilabert, MD
Elena Casals, MD
Ramón Deulofeu, MD

Lipid Clinic at the Nutrition and Dietetics Service
Centre de Diagnòstic per l’Image
Centre de Diagnòstic Biòlogic
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Hospital Clinic
Barcelona, Spain

Walnuts and Endothelial Function in Hypercholesterolemic Subjects
Michael Shechter

_Circulation_. 2004;110:e58
doi: 10.1161/01.CIR.0000141264.99616.17
_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/110/5/e58

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/