Rhythm Control and Increased Risk of Noncardiovascular Death in the Atrial Fibrillation Follow-up Investigation of Rhythm Management Trial

In their recent analysis of the causes of death that occurred in the course of the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) trial,1 the AFFIRM investigators speculate that a favorable effect of oral anticoagulants and/or an unfavorable effect of amiodarone could explain the higher noncardiovascular death rate—especially pulmonary and cancer-related deaths—recorded among patients originally randomized to rhythm control (versus rate control). Cause-specific mortality was analyzed on an intention-to-treat basis.1 However, in view of the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3 The necessity for this is stressed by the high crossover rates (21% of the population during the course of the study),2 we think that exposure times to each of the strategies and therapies need to be taken into account. To do this, a time-dependent, on-treatment analysis would be necessary, whereby patients are analyzed according to the actual therapy received, and adverse events or outcomes are attributed to the treatments actually applied.3

There are multiple problems inherent to an on-treatment analysis, including the potential introduction of bias by investigators’ actions regarding changes of drug therapy and the loss of balance of clinical factors inherent to randomized groups. Compounding the problems with this type of analysis are our lack of specific start/stop dates for medications and an absence of knowledge of patients’ compliance with drug administration. Furthermore, it is difficult to assess when a drug effect ends, even if the stop date of the drug is known, especially for amiodarone. It is also difficult to assess patients who repeatedly change drugs, dropping in and out of the assigned randomized arms (common in the management of atrial fibrillation). Additionally, we imposed protocol restrictions on antiarrhythmic drugs, dictating which drugs could be prescribed to certain clinical subgroups, making bias certain in drug administration. Data were not collected on “environmental, lifestyle and occupational factors,” except for smoking history.

With these limitations in mind, it is noteworthy that another recent AFFIRM paper4 performed a retrospective on-treatment analysis and found a negative association between rhythm-control drug use and all-cause mortality, in keeping with our findings. Thus, we continue to have a fundamental paucity of knowledge on how rhythm-control strategy or drugs may have adversely contributed to fatal outcomes.


Response

We thank Boriani et al for their interest in our paper describing modes of death in Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) patients, a study indicating a higher noncardiovascular death rate in the rhythm-control arm.1 They suggest that the analysis should be redone using a time-dependent, on-treatment methodology, rather than the intention-to-treat protocol that we followed.

Jonathan S. Steinberg, MD
St. Luke’s—Roosevelt Hospital Center and Columbia University New York, NY

Ara Sadaniantz, MD
Miriam Hospital Providence, RI

Jack Kron, MD
Oregon Health Sciences University Portland, Ore

Andrew Krahn, MD
London Health Sciences Center London, Ontario, Canada

D. Marty Denny, MD
River Cities Cardiology Jeffersonville, Ind

James Daubert, MD
University of Rochester Rochester, NY

W. Barton Campbell, MD
St Thomas Hospital Nashville, Tenn

Edward Havranek, MD
Denver General Hospital Denver, Colo

Katherine Murray, MD
Vanderbilt University Nashville, Tenn

Brian Olshansky, MD
University of Iowa Iowa City, Iowa

Gearoid O’Neill, MD
Sutter Institute for Medical Research Sacramento, Calif

Magdi Sami, MD
Royal Victoria Hospital Montreal, Quebec, Canada
Stanley Schmidt, MD
West Virginia University Hospital
Morgantown, WV

Randle Storm, MD
Geisinger Medical Center
Danville, Pa

Miguel Zabalgoitia, MD
University of Texas Health Science Center
San Antonio, Tex

John Miller, MD
Krannert Institute of Cardiology
Indianapolis, Ind

Mary Chandler, MD
Elaine M. Nasco, BA
H. Leon Greene, MD
Axio Research Corp
Seattle, Wash


Rhythm Control and Increased Risk of Noncardiovascular Death in the Atrial Fibrillation Follow-up Investigation of Rhythm Management Trial
Giuseppe Boriani, Mauro Biffi and Stefano Mattioli

Circulation. 2004;110:e307-e308
doi: 10.1161/01.CIR.0000141502.16209.D4

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/110/11/e307

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/