Increased Sympathetic Nerve Activity in Pulmonary Artery Hypertension

Sonia Velez-Roa, MD*; Agnieszka Ciarka, MD*; Boutaina Najem, MD; Jean-Luc Vachiery, MD; Robert Naeije, MD, PhD; Philippe van de Borne, MD, PhD

Background—This study tested the hypothesis that sympathetic nerve activity is increased in pulmonary artery hypertension (PAH), a rare disease of poor prognosis and incompletely understood pathophysiology. We subsequently explored whether chemoreflex activation contributes to sympatoexcitation in PAH.

Methods and Results—We measured muscle sympathetic nerve activity (MSNA) by microneurography, heart rate (HR), and arterial oxygen saturation (SaO₂) in 17 patients with PAH and 12 control subjects. The patients also underwent cardiac echography, right heart catheterization, and a 6-minute walk test with dyspnea scoring. Circulating catecholamines were determined in 8 of the patients. Chemoreflex deactivation by 100% O₂ was assessed in 14 patients with the use of a randomized, double-blind, placebo-controlled, crossover study design. Compared with the controls, the PAH patients had increased MSNA (67±4 versus 40±3 bursts per minute; \(P<0.0001 \)) and HR (82±4 versus 68±3 bpm; \(P=0.02 \)). MSNA in the PAH patients was correlated with HR (\(r=0.64, P=0.006 \)), SaO₂ (\(r=-0.53, P=0.03 \)), the presence of pericardial effusion (\(r=0.51, P=0.046 \)), and NYHA class (\(r=0.52, P=0.033 \)). The PAH patients treated with prostacyclin derivatives had higher MSNA (\(P=0.009 \)), lower SaO₂ (\(P=0.01 \)), faster HR (\(P=0.003 \)), and worse NYHA class (\(P=0.04 \)). Plasma catecholamines were normal. Peripheral chemoreflex deactivation with hyperoxia increased SaO₂ (91.7±1% to 98.4±0.2%; \(P<0.0001 \)) and decreased MSNA (67±5 to 60±4 bursts per minute; \(P=0.0015 \)), thereby correcting approximately one fourth of the difference between PAH patients and controls.

Conclusions—We report for the first time direct evidence of increased sympathetic nerve traffic in advanced PAH. Sympathetic hyperactivity in PAH is partially chemoreflex mediated and may be related to disease severity.

Key Words: hypertension, pulmonary nervous system, sympathetic catecholamines chemoreceptors

Pulmonary artery hypertension (PAH) is a rare, incurable disease of poor prognosis.¹ The pathophysiology of PAH remains incompletely understood. A series of biological abnormalities have been described that involve all the compartments of the pulmonary arterial wall,² but little is known about a possible participation of the sympathetic nervous system. Circulating catecholamines in PAH have been reported either to be increased³,⁴ or to remain within normal limits.⁵⁶ These discrepancies may be related to the fact that circulating catecholamines are imperfect markers of sympathetic nervous system activity, being affected by a variety of processes, including changes in synthesis, metabolism, and facilitation of release by the peripheral nerve endings.⁷ Microneurography allows direct measurement of sympathetic nerve traffic directed to muscle circulation.⁸–¹¹ Muscle sympathetic nerve activity (MSNA) has been used previously to unravel the sympathetic component of abnormal neurohumoral activation in patients with left heart failure.¹¹ There has been no previous report of MSNA measurements in severe pulmonary hypertension without intrinsic alteration of left ventricular function.

We tested the hypothesis that sympathetic nerve activity is increased in PAH and determined resting MSNA in 17 patients with PAH and in 12 healthy controls matched for age, gender, and body mass index (BMI). Plasma catecholamine levels were also determined in 8 patients to assess whether these values correlated with direct sympathetic nerve traffic determinations in the patients with PAH.

Patients with PAH often present with mild to moderate decreases in arterial oxygenation, which are aggravated by exercise.¹² Chronic hypoxemia, as seen in patients with chronic obstructive pulmonary disease, is associated with increased MSNA and is improved by 100% oxygen administration.¹³ We tested the hypothesis that peripheral chemoreflex stimulation contributes to the activation of the sympathetic nervous system in 14 of the PAH patients using a...
randomized, double-blind, placebo-controlled, crossover study design. One hundred percent inspired oxygen was used to deactivate the peripheral chemoreceptors, and measures were compared with those recorded while patients breathed 21% oxygen.14,15

The results show a marked increase in sympathetic nerve activity in the patients with PAH that is partially chemoreflex mediated.

Methods

Patients

Seventeen patients with PAH (10 women and 7 men; mean±SEM age, 53±4 years) gave informed consent to the study, which was approved by the Ethics Committee of Erasme University Hospital. Three of the patients were in New York Heart Association (NYHA) functional class II, 9 in NYHA class III, and 5 in NYHA class IV. Their BMI was 25±1 kg/m². PAH was idiopathic in 14 patients and associated with fenfluramine intake in 3 patients. The patients were treated with prostacyclin analogues (intravenous epoprostenol, n=6; subcutaneous treprostinil, n=1; oral beraprost, n=2), calcium channel blockers (n=2), an endothelin-1 antagonist (bosentan; n=1), furosemide (n=10), bumetamide (n=2), spironolactone (n=9), acenocoumarol (n=12), and dobutamine (n=2). Two patients had undergone an atrial septostomy 7 and 24 months before inclusion in the study. The mean delay between onset of PAH symptoms and inclusion in the study was 48 months (range, 2 to 108 months).

Subjects

Twelve healthy subjects matched for age (50±4 years), gender (7 were female), and BMI (22±2 kg/m²) served as controls. All of them had a normal physical examination. None was taking any medication.

Measurements

All measurements were performed under quiet resting supine conditions. MSNA was recorded continuously in the patients and the controls by obtaining multunit recordings of postganglionic sympathetic activity, measured from a nerve fascicle in the peroneal nerve posterior to the fibular head.10 Electric activity in the nerve fascicle was measured with the use of tungsten microelectrodes (shaft diameter 200 μm, tapering to an uninsulated tip of 1 to 5 μm). A subcutaneous reference electrode was inserted 2 to 3 cm away from the recording electrode, which was inserted into the nerve fascicle. The neural signals were amplified, filtered, rectified, and integrated to obtain a mean voltage display of sympathetic nerve activity.15

Blood pressure (BP) was measured every 3 minutes with a Physiocontrol Colin BP-8800 sphygmomanometer (Colin Press Mate, Colin Corporation), and arterial oxygen saturation (\(\text{SaO}_2\)) (Nellcor, N100C pulse oximeter, Medical Resource) and heart rate (HR) (ECG Monitoring, Siemens Medical) were monitored continuously during the microneurographic recordings. HR and MSNA were recorded online on a Power Macintosh with a MacLab 8/s data acquisition system (AD Instruments) for subsequent analysis.

Cardiac echocardiographic studies were performed in the patients with the use of an Agilent Technology Sonos 5500 ultrasound system with standard S3 imaging transducer (Hewlett-Packard). All measurements were performed following the recommendations of the American Society of Echocardiography.10,12 Left ventricular outflow tract diameter was measured by 2-dimensional echocardiography. Pulsed-wave Doppler allowed measurements of stroke volume and cardiac output at the level of the left ventricular outflow tract. Peak tricuspid regurgitant jet velocity was determined by continuous-wave Doppler to calculate systolic tricuspid pressure. A 7.5F flow-directed thermocatheter Swan-Ganz catheter (Baxter) was inserted percutaneously in the patients under local anesthesia into an internal jugular or subclavian vein for measurements of resting right atrial pressure, pulmonary artery pressure, pulmonary artery occluded pressure, and cardiac output. Pulmonary vascular resistance was calculated as follows: (mean pulmonary artery pressure – pulmonary artery occluded pressure) / cardiac output.

Exercise capacity was determined by a 6-minute walk test,10 followed by an estimation of dyspnea with the use of the Borg scale.19

Echocardiography, right heart catheterization, and exercise testing data were obtained within 48 hours of microneurographic examination, with the patients being clinically stable and with unchanged treatment.

Plasma Catecholamines (n=8)

Blood samples for plasma epinephrine and norepinephrine were obtained in 8 patients within 24 hours after the MSNA recordings in carefully standardized supine resting conditions and while patients were taking their usual medications. Samples were collected in prechilled heparinized tubes (10 mL) and immediately placed on ice, then centrifuged at 4°C. Epinephrine and norepinephrine levels were assayed by high-performance liquid chromatography.20

Chemoreflex Deactivation (n=14)

We compared the effects of 21% and 100% oxygen administration on MSNA, HR, BP, and \(\text{SaO}_2\). The gases were administered for 15 minutes via a nonrebreathing mask at identical flow rates with the use of a double-blind, randomized, placebo-controlled, crossover study design. A 30-minute recovery period was observed between interventions. Measurements taken during the last 5 minutes of each intervention were averaged for the comparison.

Data Analysis

Sympathetic bursts were identified by careful inspection of the voltage neurogram by a trained observer (A.C.), blinded to subject and intervention. Sympathetic activity was expressed as burst frequency per minute and as integrated sympathetic activity, which corresponds to burst frequency multiplied by mean burst amplitude and is expressed in arbitrary units (AU). Integrated sympathetic activity depends on neural signal amplification, which varies from one recording site to another but remains constant throughout each experiment. Therefore, burst frequency permits comparison of sympathetic nerve activity between different subjects (patients versus controls), whereas both burst frequency and integrated sympathetic activity are used to assess the effects of hypoxia on sympathetic activity in patients with PAH.

Statistical Analysis

Results are expressed as mean±SEM. Effects of 100% oxygen were determined by Student paired \(t\) test (2 tailed) in patients. Comparisons between patients and controls and between patients with different therapy were performed by unpaired \(t\) tests (2 tailed). Relationships between parameters were estimated by linear regression analysis.

Results

Echocardiography of the patients showed enlarged right ventricle teleiadiastolic diameter (40±3 mm), with variable degrees of septal shift. Cardiac output and stroke volume calculated from echocardiography were low (3.3±0.2 L/min and 43±4 mL, respectively), and transtificus gradient was increased to 83±3 mm Hg. A pericardial effusion was present in 10 of the patients. All the patients had normal left ventricular ejection fraction (70±3%).

As shown in the Table, the hemodynamic profile of the patients was typical of advanced PAH,1 with a mean pulmonary artery pressure ∼3 times normal, decreased cardiac output, increased right atrial pressure, and normal pulmonary artery occluded pressure. Exercise capacity was limited, with a 6-minute walk distance of ∼300 m and increased Borg dyspnea...
score, consistent with advanced NYHA functional class. SaO2 was decreased, around >90%.

Plasma catecholamines were within the normal range, with epinephrine at 0.038 ± 0.005 ng/mL (normal: 0 to 0.16 ng/mL) and norepinephrine at 0.56 ± 0.008 ng/mL (normal: 0 to 0.8 ng/mL). However, as shown in Figures 1 and 2, MSNA was markedly higher in PAH patients than in the controls (67 ± 4 versus 40 ± 3 bursts per minute; P < 0.0001), even after correction for HR (83 ± 4 versus 60 ± 5 bursts per 100 heartbeats; P = 0.002). HR was also higher in the PAH patients (82 ± 4 versus 68 ± 3 bpm; P = 0.02), whereas SaO2 (91.6 ± 0.8% versus 97.0 ± 0.3%; P = 0.0003) and mean BP (81 ± 3 versus 89 ± 2 mm Hg; P = 0.046) were lower.

MSNA was positively correlated with HR, the presence of pericardial effusion (r = 0.51, P = 0.046), and NYHA class and inversely correlated with SaO2 (Figure 3). There was no correlation between MSNA and the echocardiographic estimation of cardiac output and pulmonary artery pressures, invasive hemodynamic variables, or dyspnea score.

Patients treated by prostacyclin analogues (n = 9) had faster HR (93 ± 5 versus 69 ± 4 bpm; P = 0.003), higher MSNA (76 ± 4 versus 57 ± 6 bursts per minute; P = 0.009), lower SaO2 (90 ± 1% versus 94 ± 1%; P = 0.01), and worse NYHA functional class (3.4 ± 0.2 versus 2.8 ± 0.2; P = 0.04) than patients without prostacyclin therapy (n = 8).

Patients who were either on no therapy (n = 4) or on only diuretic therapy (n = 3) also exhibited higher MSNA than the control subjects (56 ± 7 bursts per minute for patients versus 40 ± 3 bursts per minute for controls; P = 0.02).

Administration of hyperoxia to the patients increased SaO2 from 91.7 ± 1% to 98.4 ± 0.2% (P < 0.0001). This increase was accompanied by a reduction in HR from 81 ± 5 to 75 ± 5 bpm (P < 0.0001) and a decrease in MSNA burst frequency from 67 ± 5 to 60 ± 4 bursts per minute (P = 0.0015) and burst amplitude from 616 ± 72 to 530 ± 66 AU (P = 0.0007; Figure 4). During hyperoxic breathing, the PAH patients exhibited mean BP (both 81 ± 3 mm Hg; P = 0.76) and HR (75 ± 5 versus 68 ± 3 bpm; P = 0.24) similar to those of the controls,

Figure 1. MSNA (expressed in bursts per minute and bursts per 100 heartbeats [B/100 hb]), HR, and mean BP (MBP) in patients with PAH and matched controls (CTRL). Patients exhibit higher MSNA and HR and lower MBP than in closely matched controls.

Figure 3. Regression analysis between resting MSNA, HR (top), NYHA classification (middle), and SaO2 (bottom). MSNA was positively correlated with HR and NYHA class and inversely correlated with SaO2.
vasoconstriction compared with controls. The sympathetic
pathetic response to hypoxia as well as increased pulmonary
altitude pulmonary edema have exaggerated peripheral sym-
estingly, there is evidence that subjects susceptible to high-
PAH by acute vasoconstriction and minimal and rapidly
pulmonary edema is a particular condition that differs from
ation was accompanied by a reduction in HR and MSNA.
but their MSNA remained elevated (60±4 versus 40±3
bursts per minute; P = 0.0009) despite a higher SaO₂
(98.4±0.2% versus 97.0±0.3%; P = 0.0008). Changes in
MSNA during 100% oxygen administration did not correlate
with baseline oxygen saturation levels.

Discussion

We report the first direct evidence of increased sympathetic
tone in patients with PAH.

Early reports of PAH included testing for reversibility with
tolazoline, an α-receptor blocker, on the assumption that the
disease would be initiated and perpetuated by increased
pulmonary vasoreactivity and that increased sympathetic
tone could have affected the sympathetic nervous system by an
cause of sympathetic nervous system activation in left heart
failure remain incompletely understood, but increased filling
pressures, decreased cardiac output, and impaired baroreflex
control appear to play a role.11,34 Severe PAH leads to right
atrial pressures, decreased cardiac output, and impaired baroreflex
activation. Increased right atrial pressure in our patients may argue against this mechanism.

Sympathetic nerve activity has been shown repeatedly to
be increased in patients with left ventricular failure.11,15,33 The
causes of sympathetic nervous system activation in left heart
failure remain incompletely understood, but increased filling
pressures, decreased cardiac output, and impaired baroreflex
control appear to play a role.11,34 Severe PAH leads to right
ventricular failure and consequently to low systemic cardiac
output, as occurs in left ventricular failure. This in turn could
activate compensatory sympathetic response. This may mean
that PAH represents a pathophysiological model of sympa-
thetic response similar to that described in left ventricular
failure. Moreover, increased sympathetic drive could induce
potential adverse effects on myocytes of both failing ventri-
gles, as shown by chronic troponin leakage in patients with
left ventricular failure and primary pulmonary hypertension, a
finding invariably related to poor prognosis.35,36
The decrease of MSNA and HR after administration of 100% oxygen suggests that peripheral chemoreflex activation contributes in part to increased MSNA in PAH patients. To our knowledge, there are no previous studies providing direct evidence of decrease in sympathetic activation by hyperoxic breathing in PAH. A study on pulmonary vascular impedance in patients with pulmonary hypertension of various etiologies reported a decrease in circulating norepinephrine after hyperoxic breathing. In our patients hyperoxia on average corrected one fourth of abnormally increased MSNA, indicating that most of the increased sympathetic activity in PAH patients is not the consequence of mild hypoxemia-related chemoreflex activation. Interestingly, sympathetic and HR responses to hyperoxic breathing in our patients with PAH contrast with those of patients with congestive left ventricular failure, in whom we observed that hyperoxia did not improve sympathetic hyperactivity. This may be explained by the fact that patients with PAH are often more hypoxic than patients with left ventricular failure.

In conclusion, we report direct evidence of increased sympathetic nerve traffic in advanced PAH. Sympathetic hyperactivity is partially chemoreflex mediated and may be correlated with disease severity.

Acknowledgments
This study was supported by the Erasme Foundation (Belgium) (Dr Velez-Roa), National Fund for Research, Foundation for Cardiac Surgery, Mark Hurard Foundation (Belgium) (Dr van de Borne), The Stefan Batory Foundation (Dr Ciarka), and a Pfizer grant (Belgium) (Dr Najem). We thank Françoise Pignee for secretarial assistance.

References
Increased Sympathetic Nerve Activity in Pulmonary Artery Hypertension
Sonia Velez-Roa, Agnieszka Ciarka, Boutaina Najem, Jean-Luc Vachiery, Robert Naeije and Philippe van de Borne

Circulation. 2004;110:1308-1312; originally published online August 30, 2004;
doi: 10.1161/01.CIR.0000140724.90898.D3
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/110/10/1308

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/