Complications Following Infundibular Resection in Fallot’s Tetralogy

By Malcolm C. McCord, M.D. and S. Gilbert Blount, Jr., M.D.

Two patients are presented to demonstrate complications that may arise following infundibular resection in patients with the tetralogy of Fallot. An aneurysm of the infundibular chamber developed in one patient following removal of the infundibular stenosis. A left to right blood flow at the ventricular level occurred postoperatively in a second patient with marked cardiac enlargement and left ventricular hypertrophy.

The introduction of the Blalock-Taussig procedure in 1945 resulted in a dramatic change in the prognosis of patients with the tetralogy of Fallot.1 Thousands of patients with this anomaly have experienced an amelioration of symptoms and an increase in life span as a result of this operative procedure. However, this form of surgical therapy is admittedly palliative, consisting as it does in the creation of an additional cardiovascular defect. The ultimate goal in the operative therapy of patients with the tetralogy of Fallot is correction of the basic defect, namely the valvular and/or infundibular stenosis and the ventricular septal defect. A partial realization of this goal has been accomplished by the correction of the valvular or infundibular stenosis.2, 3, 4 This procedure has been carried out by Brock with a reasonable mortality rate and with clinical results at least as beneficial as those described following the shunt procedure.

The evolution of techniques permitting open heart surgery has further enhanced the possibility of correction of the basic defects in this anomaly. Experience with infundibular resection using open heart techniques has been limited to a small number of patients at this institution; however, definite limitations of the procedure have already been realized. Two patients are presented at this time to emphasize complications that may arise from infundibular resection in the tetralogy of Fallot when concomitant closure of the ventricular defect is not accomplished.

From the Cardiovascular Laboratory, University of Colorado School of Medicine, Denver, Colo. This study was supported by a United States Public Health Service Grant H-1208.

Case Reports

Case 1. W. H., a four year-old white boy, had been cyanotic since birth, and showed a slow weight gain and delayed growth. Cyanosis became more pronounced with the onset of walking at 10 months of age and squatting was frequent. There was a progressive limitation in exercise tolerance to one half a block. Episodes of semiconsciousness with paroxysmal dyspnea had occurred with increasing frequency since one year of age.

Physical examination revealed a small boy falling in the 10th percentile for height and weight. There was cyanosis of the lips, mucous membranes and nailbeds with clubbing of the digits. A grade 4 systolic murmur of harsh quality was audible along the left sternal border with maximum intensity in the third intercostal space.

Fluoroscopic examination showed a heart at the upper limits of normal in size with a concavity in the region of the main pulmonary artery and an uplifted cardiac apex (fig. 1A). The peripheral lung fields were abnormally clear. The aorta was increased in size and descended on the left.

The electrocardiogram showed a pattern of right ventricular hypertrophy with an R wave 27 mm, in amplitude in precordial position V1 and an intrinsiceoid deflection time of 0.04 second.

On Jan. 28, 1954 thoracotomy was performed by Dr. Henry Swan, using hypothermia and inflow occlusion. An incision was made through the infundibular chamber and a localized stenotic ring of tissue was visualized. This structure was excised and the ventricular incision closed. The postoperative course was uneventful and the patient returned home on the fifteenth postoperative day.

The exercise tolerance increased significantly and the degree of cyanosis decreased. Seven weeks postoperatively the patient developed fever and cough productive of blood streaked sputum. Physical examination revealed a visible and palpable heaving pulsation in the left second and third intercostal spaces. A grade 2 rough systolic murmur was audible along the left sternal border. The second heart sound in the left second intercostal space was increased in intensity. Fluoroscopic examination disclosed a
pulsating mass in the region of the main pulmonary artery (fig. 1B). The electrocardiogram showed an inversion of previously upright T waves over the right precordial leads. The patient was hospitalized and an exploratory thoracotomy was performed on March 13, 1954. A large, thin-walled aneurysm was found arising from the infundibular chamber of the right ventricle. This was not a false aneurysm arising at the site of the previous incision in the infundibular chamber. Blood flow was occluded, and the aneurysm was opened and an endoaneurysmorrhaphy was performed with removal of the major portion of the sac. Cardiac arrest occurred with temporary re-institution of a regular rhythm but the patient died four hours later.

Postmortem examination revealed a heart weight of 120 Gm., as compared with a body weight of 12 Kg. The right ventricle was hypertrophied, the wall measuring 9 mm. in thickness. A fibrous base was present in the area of the excised infundibular stenosis. The infundibular chamber was thin walled and showed the recent incision. The original infundibular incision was well healed. A 1.7 by 1.5 cm. ventricular septal defect was present with the aorta overriding the defect. The aorta measured 4.5 cm. in circumference while the pulmonary artery was 1.5 cm. in circumference.

Comment. The development of an aneurysm of the infundibular chamber following resection of an infundibular stenosis constitutes an unusual complication of this surgical approach to the tetralogy of Fallot. In the absence of evidence of a false aneurysm at the site of the incision or of infarction of the myocardium in this area it seems justified to suggest that this aneurysm developed as a result of the sudden increase in pressure and increase in blood flow through the previously existing infundibular chamber. At the time of the initial surgery the infundibular chamber was a thin walled structure protected from the high right ventricular systolic pressure and from a high volume of blood flow by the presence of the infundibular stenosis. Following extirpation of the infundibular stenosis this chamber was suddenly exposed to the stress of the elevated right ventricular systolic pressure and to an increased blood flow. It is likely that an element of functional valvular pulmonic stenosis complicated the hemodynamic derangement as the small pulmonic valve ring would not accommodate the increase in blood flow. The critical factor in the production of this aneurysm is considered to be the abrupt change in the hemodynamic pattern more than the magnitude of the changes in themselves. Therefore, it is proposed that the formation of the aneurysm developed as a response to this abrupt change in hemodynamics before compensatory hypertrophy of
the myocardium in the wall of the infundibular chamber could become established.

Case 2. P. E., a 12-year-old boy, was cyanotic and presented cardiac murmurs at birth. Development was retarded with an onset of walking at 20 months of age and talking at 36 months of age. Cyanosis became more marked with the onset of walking and severe ease of fatigue, exertional dyspnea and squatting occurred. Episodes of paroxysmal dyspnea developed at 7 years of age and were associated with loss of consciousness and deep cyanosis. The patient's exercise tolerance was limited to walking one-half block prior to surgery.

Physical examination revealed cyanosis of the lips and nailbeds with severe clubbing of the digits. The heart was normal in size and no thrills or shocks were present. A harsh systolic murmur of grade 3 intensity was audible along the left sternal border with maximum intensity in the third intercostal space. The second heart sound in the second left intercostal space was normal in intensity and was pure in quality.

The fluoroscopic examination showed a decreased vascularity of the lung fields (fig. 2A). The right pulmonary artery was small and showed a reduced amplitude of pulsations. The aorta was increased in size and descended on the left. A slight concavity was present in the area of the main pulmonary artery. A small bulge was apparent high on the ventricular segment considered to represent an infundibular chamber. The cardiac apex was uplifted suggesting right ventricular hypertrophy. The electrocardiogram (fig. 3) presented a pattern suggesting right ventricular hypertrophy.

Cardiac catheterization was performed on March 16, 1953. The significant results are summarized in table 1. The catheter was introduced into the right ventricle where a pressure of 120/38 mm. Hg was recorded, and was advanced into the aorta and into the pulmonary artery. The pressure tracing recorded during the withdrawal of the catheter from the pulmonary artery to the right ventricular area is shown in figure 4. An intermediate pressure is present representing an infundibular chamber. Open heart surgery was performed by Dr. Henry Swan on April 21, 1953 utilizing hypothermia and inflow occlusion. The infundibular chamber was incised and a localized diaphragm-like infundibular stenosis excised under direct vision. The infundibular orifice was increased from an initial 3 mm. diameter to an estimated 10 mm. diameter. The incision was closed and circulation re-established after a total period of eight minutes of occlusion. The postoperative course was uneventful and the patient returned home May 11, 1953.

An immediate and striking increase in exercise tolerance occurred, so that the patient was able to ride a bicycle, play baseball, walk a distance of at least a mile and was able to “keep up” with friends in all respects. Re-examination Feb. 5, 1954 revealed no cyanosis and marked regression in the degree of clubbing of the digits. The heart was enlarged to percussion, a vigorous apical thrust was visible and palpable, and a systolic thrill was present along the sternal border. A harsh systolic murmur, grade 5 in intensity, was audible along the
Fig. 3. The preoperative, A, and postoperative, B, electrocardiogram of case 2 demonstrating a change from a pattern of right ventricular hypertrophy to a pattern of left ventricular hypertrophy and left bundle branch block.

left sternal border with maximum intensity in the fourth intercostal space. The second heart sound in the second left interspace was increased in intensity and was finely reduplicated.

Fluoroscopic examination showed a normal vascularity of the lung fields. The right pulmonary artery was small but exhibited a normal amplitude of pulsation. There was a marked increase in the heart size (fig. 2B) with a configuration suggesting left ventricular enlargement.

The electrocardiogram showed a striking change with the development of a pattern suggesting left bundle branch block with left ventricular hypertrophy (fig. 3).

Cardiac catheterization studies (table 1) demonstrated an increase in the pulmonary artery pressure
INFUNDIBULAR RESECTION IN FALLOT’S TETRALOGY

Table 1.—The Pre- and Postoperative Catheterization Data Determined in Case 2

<table>
<thead>
<tr>
<th>Hemoglobin</th>
<th>Pressure, mm. Hg</th>
<th>Blood Oxygenation, Volumes Per Cent, Per Cent Saturation</th>
<th>Cardiac Index, L/min./M²</th>
<th>Blood Shunt, L/min./M²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grams/Per Cent</td>
<td>Right atrium</td>
<td>Right ventricle</td>
<td>Pulmonary artery</td>
<td>Infundibular artery</td>
</tr>
<tr>
<td>Postop., 5 Feb. 1954</td>
<td>14.4</td>
<td>7</td>
<td>57</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 4. The preoperative pressure tracing in case 2 showing a low pulmonary artery pressure, P.A., and intermediate infundibular chamber pressure, I.C., and a high right ventricular pressure, R.V. A short segment of the infundibular pressure tracing was removed to facilitate graphic presentation.

Fig. 5. The postoperative pressure tracing in case 2 showing an increase in pulmonary artery pressure, P.A., and a decrease in right ventricular pressure, R.V. There is no intermediate pressure area indicating an infundibular chamber as seen preoperatively.

to 26/9 mm. Hg with a normal contour of the pulmonary artery pressure wave. The pressure tracing obtained on withdrawal of the catheter from the pulmonary artery into the right ventricle (fig. 5) shows an abrupt transition in pressure with no intermediate pressure levels representing an infundibular chamber as noted preoperatively (fig. 4). The catheter was advanced into the aorta and a pressure of 75/60 mm. Hg determined. On withdrawing the catheter from the aorta into the right ventricle a right ventricular pressure of 57/8 mm. Hg was recorded. The continuous pressure tracing during this drawback is shown in figure 6 and demonstrates the systolic pressure gradient from the aorta to the right ventricle.

Re-examination in September, 1954 revealed maintenance of normal exercise tolerance. A brachial arterial oxygen saturation of 98 per cent at rest and 87 per cent following vigorous exercise was determined. Auscultation revealed the appearance of a high pitched blowing diastolic murmur in the second left intercostal space. This murmur was interpreted as indicating the development of functional pulmonic insufficiency.

Comment. The sequence of events occurring in this patient represents a second form of cardiovascular response following resection of infundibular stenosis. The infundibular resection
removed the high resistance to blood flow into
the pulmonary artery and introduced into the
hemodynamic pattern the relatively low resis-
tance of the pulmonary vascular bed. The result
of the removal of the obstruction to pulmonary
flow was a decrease in right ventricular pres-
sure, the establishment of a systolic pressure
gradient between the left and right ventricles,
and a left to right blood flow through the
ventricular defect. The hemodynamic pattern
was therefore essentially that of an isolated
large ventricular septal defect. The residual
systolic pressure gradient noted postopera-
tively between the right ventricle and pul-
monary artery (fig. 5) suggests a mild degree
of valvular pulmonic stenosis, a mild degree of
residual infundibular stenosis, or functional
pulmonic stenosis resulting from the relatively
small pulmonic valve ring. The relative lack of
significance of the anatomic position of the
eaortic root in the hemodynamic pattern asso-
ciated with a ventricular defect is well illus-
trated in this patient. Despite the overriding
of the aorta in relation to the ventricular septal
defect the right ventricular pressure was sig-
nificantly less than the left (fig. 6) and the
previously existing right to left shunt was com-
pletely abolished at rest as demonstrated by
the full arterial oxygen saturation. It has been
proposed that the presence of a ventricular
defect and an overriding aorta results in an
identical systolic pressure in the left and right
ventricles so that infundibulectomy could not
reduce the right ventricular pressure in the
tetralogy of Fallot. The data presented at this
time and studies on patients with isolated
ventricular defects demonstrate that this
view is not necessarily valid. The presence of a
pressure gradient between the two ventricles
in patients with a ventricular defect depends
upon the relative resistance offered by the
pulmonary and systemic circulations and upon
the size of the ventricular defect, with the posi-
tion of the aortic root being of secondary
importance.

Following surgery, the dominant physiologic
abnormality consisted of the abrupt establish-
ment of a left to right shunt through the ven-
tricular defect. This was reflected dynamically
by the dilatation and hypertrophy of the left
ventricle, and by the increase in pulmonary
blood flow with progressive dilatation of the
pulmonic valve ring resulting in functional
pulmonic insufficiency. The immediate clinical
manifestation of these changes was a striking
improvement in symptomatology exceeding
that usually observed following a shunt pro-
cedure. However, the long term prognosis re-
mains in doubt as it is anticipated that this
patient will pursue the natural history of a pa-
tient with a large ventricular defect. Closure
of the ventricular defect is therefore planned in
this patient at such time as this operative pro-
cEDURE is feasible.

Discussion

The patients presented in this communi-
cation illustrate complications that may arise as
a result of surgical relief of the infundibular
stenosis without the concomitant closure of
the ventricular defect in patients with the
tetralogy of Fallot. The course in these two
patients emphasizes the inherent balance of
dynamic factors in this congenital anomaly.
The pulmonic stenosis controls the magnitude
of the left to right shunt through the ven-
tricular defect while the ventricular defect
limits the increase in right ventricular systolic
pressure. One application of this concept has
been the operative production of partial pul-
monary occlusion in patients with large ven-
tricular defects and high magnitude pulmonic
blood flow. Thus, sole correction of either the
pulmonic stenosis or the ventricular defect is
not a desirable definitive measure in patients
with the tetralogy of Fallot. Obviously, con-
siderable nicety of judgement is demanded at
the time of surgery to determine the precise
extent of infundibular resection that will re-
sult in a beneficial degree of increased pulmo-
nary blood flow.

It is recommended, therefore, that the direct
surgical approach to the pulmonic stenosis with
infundibular stenosis be considered as merely
an interim procedure pending the development
of techniques permitting simultaneous correc-
tion of both the valvular stenosis and/or the
infundibular stenosis and the ventricular de-
fect. It is anticipated that techniques per-
mitting such procedure on a wide scale with a reasonable mortality will soon be realized.

Conclusion

Two patients with a tetralogy of Fallot are presented who demonstrate complications that may occur following infundibular resection. An aneurysm of the infundibular chamber developed in one patient and a significant left to right blood flow developed in the second patient with resulting marked enlargement of the left ventricle.

Summario in Interlingua

Es presentate duo casos pro demonstrar complicationes que pote occurrer post resection infundibular in patientes con tetralogia de Fallot. Un aneurysma del camera infundibular se disveloppava in un del patientes post le elimination del stenosis infundibular. Un fluxo ab le sinistra verso le dextera se disveloppava al nivello ventricular post le operation in un secunde patiente qui habeva un marcate allargamento cardiac e hypertrophia sinistro-ventricular.

REFERENCES

1 Blalock, A. and Taussig, H. B.: The surgical treatment of malformations of the heart in which there is pulmonary stenosis or pulmonary atresia. J. A. M. A. **128**: 189, 1945.

6 Muller, W. H., Jr. and Dammann, J. F., Jr., Personal communication.
Complications Following Infundibular Resection in Fallot's Tetralogy
MALCOLM C. MCCORD and S. GILBERT BLOUNT, JR.

Circulation. 1955;11:754-760
doi: 10.1161/01.CIR.11.5.754

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1955 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/11/5/754

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/