The present study focuses on the physiological transient mPTP opening and ROS. We and others have implicated modest mitochondrial uncoupling as a critical event in preconditioning-induced protection. Mitochondrial reactive oxygen species (ROS) release may mediate the preconditioning signal. We have demonstrated that the prolonged (high-conductance) mitochondrial permeability transition pore (mPTP) opening, which mediates cell death at the time of reperfusion, can be inhibited by preconditioning.

The present study focuses on the physiological transient (low-conductance) form of mPTP opening, which does not lead to cell death and in fact may play several important functions that may contribute to IPC-induced protection. Transient (low-conductance) mPTP opening (1) can limit mitochondrial matrix calcium load by mediating mitochondrial calcium efflux; (2) can be induced by mitochondrial uncoupling and (3) can mediate mitochondrial ROS release.

This would suggest that low-conductance transient mPTP opening may contribute to the mechanism of IPC-induced protection. In this regard, the preconditioning mimetic diazoxide has been demonstrated to induce mPTP opening. On this basis, we hypothesized that both transient (low-conductance) mPTP opening and ROS, during the preconditioning phase, mediate both preconditioning and mitochondrial uncoupling–induced protection.

Methods

Isolated Perfused Rat Heart

Hearts excised from male Sprague-Dawley rats were Langendorff-perfused with Krebs-Henseleit buffer and subjected to 35 minutes of ischemia followed by 120 minutes of reperfusion. Presumed mitochondrial KATP channel mediates ROS release and may mediate the protection associated with IPC. Pharmacological open-

Key Words: ischemia ■ myocardial infarction ■ free radicals ■ reperfusion

Conclusions—We report that the protection associated with IPC, diazoxide, and mitochondrial uncoupling requires transient mPTP opening and ROS. (Circulation. 2004;109:1714-1717.)

Background—Transient (low-conductance) opening of the mitochondrial permeability transition pore (mPTP) may limit mitochondrial calcium load and mediate mitochondrial reactive oxygen species (ROS) signaling. We hypothesize that transient mPTP opening and ROS mediate the protection associated with myocardial preconditioning and mitochondrial uncoupling.

Methods and Results—Isolated perfused rat hearts were subjected to 35 minutes of ischemia/120 minutes of reperfusion, and the infarct-risk-volume ratio was determined by tetrazolium staining. Inhibiting mPTP opening during the preconditioning phase with cyclosporine-A (CsA, 0.2 μmol/L) or sanglifehrin-A (SfA, 1.0 μmol/L) abolished the protection associated with ischemic preconditioning (IPC) (20.2±3.6% versus 45.9±2.5% with CsA, 49.0±7.1% with SfA; P<0.001); and pharmacological preconditioning with diazoxide (Dzx, 30 μmol/L) (22.1±2.7% versus 46.3±3.0% with CsA, 48.4±5.5% with SfA; P<0.001), CCPA (the adenosine A1-receptor agonist, 200 nmol/L) (24.9±4.5% versus 54.4±6.6% with CsA, 42.6±9.0% with SfA; P<0.001), or 2,4-dinitrophenol (DNP, the mitochondrial uncoupler, 50 μmol/L) (15.7±2.7% versus 40.8±5.5% with CsA, 34.3±3.1% with SfA; P<0.001), suggesting that mPTP opening during the preconditioning phase is required to mediate protection in these settings. Inhibiting ROS during the preconditioning protocols with N-mercaptopropionylglycine (MPG, 1 mmol/L) also abolished the protection associated with IPC (20.2±3.6% versus 47.1±3.8% with MPG; P<0.001), diazoxide (22.1±2.7% versus 56.3±3.8% with MPG; P<0.001), and DNP (15.7±2.7% versus 50.7±6.6% with MPG; P<0.001) but not CCPA (24.9±4.5% versus 26.5±8.4% with MPG; P=NS). Further experiments in adult rat myocytes demonstrated that diazoxide induced CsA-sensitive, low-conductance transient mPTP opening (represented by a 28±3% reduction in mitochondrial calcine fluorescence compared with control; P<0.01).

Conclusions—We report that the protection associated with IPC, diazoxide, and mitochondrial uncoupling requires transient mPTP opening and ROS. (Circulation. 2004;109:1714-1717.)

Key Words: ischemia ■ myocardial infarction ■ free radicals ■ reperfusion
ischemia followed by 120 minutes of reperfusion, and the infarct-risk-volume ratio was determined by triphenyltetrazolium-chloride staining.

Treatment Protocols for Infarct Studies

The hearts were treated as follows (n=6/group):

1. Control hearts were perfused with 0.02% DMSO or 0.005% ethanol, or Krebs-Henseleit buffer alone during stabilization.
2. IPC hearts were treated with two 5-minute periods of global ischemia with a 10-minute intervening reperfusion.
3. Hearts underwent IPC in the presence of the ROS scavenger MPG and the mPTP inhibitors cyclosporine-A (CsA 0.2 µmol/L, Sigma) or sanglifehrin-A (SfA 1.0 µmol/L, Novartis),
4. Hearts were perfused with CsA/SfA/MPG during preconditioning phase by using MPG abolishes protection associated with IPC and Dzx.
5. Inhibiting mPTP opening during the preconditioning protocol, with the use of CsA/SfA, abolished the protection associated with IPC (20.2±3.6% versus 45.9±2.5% with CsA, 49.0±7.1% with SfA; P<0.001; Figure 1A).
6. Inhibiting mPTP opening during the preconditioning protocol, with the use of CsA/SfA, abolished the protection associated with IPC (20.2±3.6% versus 45.9±2.5% with CsA, 49.0±7.1% with SfA; P<0.001; Figure 1A).

Results

Opening of the mPTP Is Required for Protection

Ischemic preconditioning, diazoxide, CCPA, or DNP reduced infarct size from 49.9±3.8% in control to 20.2±3.6% with IPC, 22.1±2.7% with diazoxide, 24.9±4.5% with CCPA, and 15.7±2.7% with DNP (P<0.001; Figure 1A). Inhibiting mPTP opening during the preconditioning protocol, with the use of CsA/SfA, abolished the protection associated with IPC (20.2±3.6% versus 45.9±2.5% with CsA, 49.0±7.1% with SfA; P<0.001; Figure 1A).

Model for Detecting mPTP Opening in Intact Cells

We used an established method for detecting transient (low-conductance) mPTP opening in the intact cell. Adult rat myocytes isolated by collagenase perfusion from Sprague-Dawley rats, with the use of a previously described method, were incubated with calcein-AM (1.0 µmol/L) and cobalt-chloride (CoCl₂, 1.0 mmol/L), resulting in mitochondrial localization of calcein fluorescence. mPTP opening was indicated by a reduction in mitochondrial calcein fluorescence.

Reactive Oxygen Species Are Required for Protection

The presence of the ROS scavenger MPG during the preconditioning protocols abolished the protection associated with IPC (20.2±3.6% versus 47.1±3.8% with MPG; P<0.001; Figure 1A), diazoxide (22.1±2.7% versus 56.3±3.8% with MPG; P<0.001; Figure 1A), and DNP (15.7±2.7% versus 50.7±6.6% with MPG; P<0.001; Figure 1B), implicating ROS as a mediator of protection in these settings. However,
We report that transient (low-conductance) mPTP opening and ROS, during the preconditioning phase, are required to mediate the protection associated with ischemic and pharmacological preconditioning and mitochondrial uncoupling. In the infarct studies, we demonstrated that pharmacologically inhibiting mPTP opening during the preconditioning phase completely abrogated the protection associated with IPC, diazoxide, and CCPA, indicating that mPTP opening is required for protection in these settings. In the myocyte model of mPTP opening,12,15 we demonstrated that diazoxide induces transient (low-conductance) mPTP opening, confirming the findings of previous studies.12,17 We confirm that IPC and diazoxide-induced protection is ROS-dependent and found that CCPA-induced preconditioning is ROS-independent, supporting the findings of Cohen and colleagues.6

We have previously demonstrated that modest mitochondrial uncoupling is a critical event in preconditioning-induced protection.4,5 In the present study, we show that this protection can be abolished by inhibiting mPTP opening, suggesting that mPTP opening occurs downstream of mitochondrial uncoupling, which is supported by the fact that mitochondrial uncoupling can induce mPTP opening.10 Transient mPTP opening can induce mitochondrial ROS release,11 which may explain why we found mitochondrial uncoupling–induced protection to be ROS-dependent.

Transient mPTP opening during the preconditioning phase may mediate protection by (Figure 3) reducing mitochondrial calcium load4; In this regard, diazoxide has been shown to induce mitochondrial calcium efflux through mPTP opening.12 Transient mPTP opening during the preconditioning phase also may mediate protection by mediating mitochondrial ROS release/signaling11; We are undertaking further studies to determine whether preconditioning-induced mitochondrial ROS release occurs through mPTP opening.

Because transient mPTP opening can be induced by uncoupling, oxidation of NADH,10 and an alkaline pH,8 the

Figure 2. Mitochondrial calcein fluorescence (expressed as percentage of baseline fluorescence) in myocytes loaded with calcein and cobalt chloride demonstrate Dzx-induced reduction in mitochondrial calcein fluorescence, indicating transient (low-conductance) mPTP opening, which is abolished in the presence of either 5-HD (a mitochondrial K\textsubscript{ATP} channel blocker) or CsA (an mPTP inhibitor) (*P < 0.05).

MPG did not abolish the protection associated with CCPA (24.9 ± 4.5% versus 26.5 ± 8.4% with MPG; P < 0.001; Figure 1B). MPG alone did not influence infarct size (43.9 ± 1.4% in control versus 47.8 ± 6.4% with MPG; P = NS; Figure 1B).

Diazoxide Induces Low-Conductance Transient mPTP Opening

Treatment of calcein-loaded myocytes with diazoxide resulted in a reduction in mitochondrial calcein fluorescence to 72 ± 3% of baseline values (P < 0.01; Figure 2), indicating that diazoxide induces low-conductance transient mPTP opening in quiescent cells. This effect of diazoxide was abolished by cyclosporine-A (the mPTP inhibitor, confirming that the reduction in mitochondrial calcein fluorescence was due to mPTP opening) and by 5-HD (the mitochondrial K\textsubscript{ATP} channel blocker) (Figure 2).

Discussion

We report that transient (low-conductance) mPTP opening and ROS, during the preconditioning phase, are required to mediate the protection associated with ischemic and pharmacological preconditioning and mitochondrial uncoupling. In the infarct studies, we demonstrated that pharmacologically inhibiting mPTP opening during the preconditioning phase completely abrogated the protection associated with IPC, diazoxide, and CCPA, indicating that mPTP opening is required for protection in these settings. In the myocyte model of mPTP opening,12,15 we demonstrated that diazoxide induces transient (low-conductance) mPTP opening, confirming the findings of previous studies.12,17 We confirm that IPC and diazoxide-induced protection is ROS-dependent and found that CCPA-induced preconditioning is ROS-independent, supporting the findings of Cohen and colleagues.6

We have previously demonstrated that modest mitochondrial uncoupling is a critical event in preconditioning-induced protection.4,5 In the present study, we show that this protection can be abolished by inhibiting mPTP opening, suggesting that mPTP opening occurs downstream of mitochondrial uncoupling, which is supported by the fact that mitochondrial uncoupling can induce mPTP opening.10 Transient mPTP opening can induce mitochondrial ROS release,11 which may explain why we found mitochondrial uncoupling–induced protection to be ROS-dependent.

Transient mPTP opening during the preconditioning phase may mediate protection by (Figure 3) reducing mitochondrial calcium load4; In this regard, diazoxide has been shown to induce mitochondrial calcium efflux through mPTP opening.12 Transient mPTP opening during the preconditioning phase also may mediate protection by mediating mitochondrial ROS release/signaling11; We are undertaking further studies to determine whether preconditioning-induced mitochondrial ROS release occurs through mPTP opening.

Because transient mPTP opening can be induced by uncoupling, oxidation of NADH,10 and an alkaline pH,8 the

Figure 3. Hypothetical scheme outlining role for transient (low-conductance) mPTP opening in myocardial preconditioning. mPTP comprises the voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and cyclophilin D. Preconditioning induces transient mPTP (low-conductance) opening through mitochondrial uncoupling, ROS, and increasing matrix pH, which then protects the heart by reducing mitochondrial calcium load and facilitating ROS signaling.
preconditioning stimulus may induce transient mPTP opening by mediating uncoupling, producing mitochondrial ROS, which then oxidize NADH,10 or by increasing matrix pH through activation of the mitochondrial K$_{ATP}$ channel.18

In conclusion, we report for the first time that IPC, diazoxide, CCPA, and mitochondrial uncoupling all protect by inducing transient mPTP opening during the preconditioning phase. Given that the adenine nucleotide translocase (ANT) is believed to be a component of the mPTP,8 and the recent suggestion that the ANT forms part of the mitochondrial K$_{ATP}$ channel,19 it would be intriguing to speculate on whether agents that reportedly protect through opening of the mitochondrial K$_{ATP}$ channel actually protect through transient (low-conductance) opening of the mPTP.

Acknowledgments

Dr Derek Hausenloy is supported by the British Heart Foundation. We thank the Wellcome Trust for funding the confocal microscope.

References

Transient Mitochondrial Permeability Transition Pore Opening Mediates Preconditioning-Induced Protection
Derek Hausenloy, Abigail Wynne, Michael Duchen and Derek Yellon

Circulation. 2004;109:1714-1717; originally published online April 5, 2004;
doi: 10.1161/01.CIR.0000126294.81407.7D
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/109/14/1714

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/