Inhibition of Cardiac Myocyte Apoptosis Improves Cardiac Function and Abolishes Mortality in the Peripartum Cardiomyopathy of Gaq Transgenic Mice

Yukihiro Hayakawa, MD, PhD; Madhulika Chandra, MD; Wenfeng Miao, MD, PhD; Jamshid Shirani, MD; Joan Heller Brown, PhD; Gerald W. Dorn II, MD; Robert C. Armstrong, PhD; Richard N. Kitsis, MD

Background—Although the occurrence of cardiac myocyte apoptosis during heart failure has been documented, its importance in pathogenesis is unknown. Transgenic mice with cardiac-restricted overexpression of Gaq exhibit a lethal, peripartum cardiomyopathy accompanied by apoptosis. To test whether apoptosis is causally linked to heart failure, we assessed whether inhibiting this cell death would improve left ventricular function and survival in the Gaq peripartum cardiomyopathy model.

Methods and Results—The potent polycaspase inhibitor IDN-1965 or vehicle was administered subcutaneously to Gaq mice by osmotic minipump beginning on day 12 of pregnancy and continuing through euthanasia at day 14 postpartum. As expected, IDN-1965 markedly suppressed cardiac caspase-3–like activity (86.5%; \(P < 0.01 \)), accompanied by reduction in the frequency of cardiac myocyte apoptosis from 1.9 ± 0.3% to 0.2 ± 0.1% (\(P < 0.01 \)). Animals receiving IDN-1965 exhibited significant improvements in left ventricular end-diastolic dimension (vehicle, 4.7 ± 0.1 mm; IDN-1965, 4.2 ± 0.1 mm; \(P < 0.01 \)), fractional shortening (vehicle, 30.7 ± 1.2%; IDN-1965, 38.9 ± 1.0%; \(P < 0.01 \)), positive (vehicle, 3972 ± 412; IDN-1965, 5870 ± 295; \(P < 0.01 \)) and negative (vehicle, 2365 ± 213; IDN-1965, 3413 ± 201; \(P < 0.01 \)) dP/dt, and complete suppression of mortality (vehicle, 6 of 20 died; IDN-1965, 0 of 14 died; \(P < 0.05 \)).

Conclusions—Reduction in cardiac myocyte apoptosis by caspase inhibition improved left ventricular function and survival in pregnant Gaq mice. These data indicate that cardiac myocyte apoptosis plays a causal role in the pathogenesis of cardiomyopathy in this model. Caspase inhibition may provide a novel therapeutic target for heart failure. (Circulation. 2003;108:3036-3041.)

Key Words: apoptosis ■ caspases ■ cardiomyopathy

The pathogenesis of dilated cardiomyopathy is poorly understood. Although abnormalities in myocyte energetics,1 calcium handling,2,3 cytoskeleton,4 and adrenergic signaling5 have been implicated, the precise molecular events that mediate this complex syndrome are not known. Recently, cardiac myocytes have been noted to undergo apoptosis in various animal models of heart failure6–17 as well as in failing human hearts.18–21 The frequency of these cell deaths in human cardiomyopathy specimens is quite low (0.08% to 0.25%),19–21 although markedly higher than in controls (0.001% to 0.01%). Whether the cumulative effects of cardiac myocyte apoptosis contribute to the pathogenesis of heart failure, are an epiphenomenon, or are even a protective mechanism has not been determined.

The G protein Gq couples several cell surface receptors involved in cardiac myocyte hypertrophy (\(\alpha_1 \)-adrenergic receptor, angiotensin II type 1 receptor, and endothelin-1 receptor) to intracellular signaling pathways.22 Transgenic mice with cardiac-specific overexpression of the \(\alpha \)-subunit of Gq, Gaq, exhibit baseline cardiac hypertrophy and contractile dysfunction.23 When subjected to hemodynamic overload, these mice are particularly susceptible to heart failure.24 In addition, 30% to 50% of females develop lethal heart failure in the peripartum period, accompanied by cardiac myocyte apoptosis.9

Received March 4, 2003; revision received August 8, 2003; accepted August 8, 2003.
From the Program in Molecular Cardiology, Department of Medicine (Y.H., M.C., W.M., J.S., R.N.K.), and the Department of Cell Biology (Y.H., R.N.K.), Albert Einstein College of Medicine, Bronx, NY; the Department of Pharmacology, University of California San Diego, La Jolla (J.H.B.); the Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (G.W.D.); and Idun Pharmaceuticals, San Diego, Calif (R.C.A.).
Dr Armstrong is an employee of and Dr Kitsis has served as a consultant to Idun Pharmaceuticals, Inc. The study itself, however, was not supported by funds from Idun Pharmaceuticals, Inc.
Correspondence to Richard N. Kitsis, MD, Program in Molecular Cardiology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461. E-mail kitsis@aecom.yu.edu
© 2003 American Heart Association, Inc.
Circulation is available at http://www.circulationaha.org DOI: 10.1161/01.CIR.0000101920.72665.58

3036
Apoptosis in all metazoan cells is mediated in part by a family of aspartate-specific cysteine proteases called caspases. Caspase activation is brought about by two overlapping central death pathways: one involving cell surface receptors and the other mitochondria. Both the death receptor and mitochondrial pathways have been shown to be important for apoptosis in cardiac myocytes. The mitochondrial pathway plays a key role in mediating apoptosis in response to Gaq overexpression, in which it has recently been shown to be activated only proapoptotic Bcl-2 protein.

In the present study, the Gaq peripartum cardiomyopathy model was used to test the hypothesis that cardiac myocyte apoptosis is a mechanistic component of heart failure. To achieve this, we reduced cardiac myocyte death markedly during pregnancy in Gaq mice by chronic administration of a caspase inhibitor and then assessed whether the expected onset of cardiomyopathy and organisam death was ameliorated. The results indicate that cardiac myocyte apoptosis is indeed causally linked to the pathogenesis of lethal dilated cardiomyopathy in this model.

Methods

Gaq Transgenic Mice

Construction and characterization of the Gaq transgenic mice, which overexpress mouse Gaq exclusively in the myocardium under the control of the mouse α-cardiac myosin heavy chain promoter, has been described elsewhere. The present study used the line containing 40 copies of the transgene on an FVB/N background, resulting in expression of the transgene protein at levels 5-fold higher than the endogenous protein.

Treatment Protocol

The protocol was approved by the Institute of Animal Studies of the Albert Einstein College of Medicine. Ten-week-old, pregnant Gaq transgenic mice bred in our laboratory (n = 34) were divided into 2 groups that received either vehicle (n = 20) or IDN-1965 (n = 14). Vehicle consisted of 50% DMSO, and the IN-1965 solution consisted of 60 μg/μL of the compound in 50% DMSO. Each infusion was administered by subcutaneous osmotic minipump (Alzet model 1002, Alza Corp) implanted into the back as described by the manufacturer, with a delivery rate of 0.25 μL/h starting on day 12 of pregnancy and continuing through postpartum day 14. This infusion volume delivered 15 μg/h of IDN-1965. Because each osmotic minipump contained only 100 μL, pumps were replaced on postpartum day 3. On postpartum day 14, animals underwent echocardiography and invasive hemodynamics, followed by euthanasia and retrieval of tissues for additional studies (see below). In addition to the vehicle- and IN-1965–treated pregnant Gaq transgenics, 2 additional groups were studied in some experiments. These consisted of age-matched, nonpregnant, female wild-type (n = 10) and Gaq (n = 10) mice.

Echocardiography and Cardiac Hemodynamics

Cardiac function and hemodynamics were assessed by transthoracic echocardiography and left ventricular (LV) catheterization as described previously. The operators were blinded to the treatment group.

Tissue Collection

The ventricular portion of the heart was cut perpendicular to the long axis into 2 portions. The most apical portion was frozen in liquid nitrogen and stored at −80°C until being used to assay caspase-3–like activity. The remaining portion was fixed in 10% buffered formalin for conventional histology, electron microscopy, and terminal deoxynucleotidyl dUTP nick end-labeling (TUNEL).

Caspase-3–Like Activity Assay

Caspase-3–like activity was measured by use of the ApoAlert Caspase-3 Fluorescent Assay Kit (Clontech) according to the manufacturer’s instructions. The substrate was DEVD-AFC. Approximately 150 μg of each cardiac homogenate was analyzed. The incubation time was 1 hour. Results were normalized to the exact amount of total protein assayed for each sample.

Conventional Histology and TUNEL

The formalin-fixed transverse ventricular slices were embedded in paraffin and cut into 4-μm serial sections that were used for hematoxylin and eosin staining and TUNEL. TUNEL was performed with the In Situ Cell Death Detection Kit (Roche Molecular Biochemicals) according to the manufacturer’s instructions. After TUNEL, all nuclei were counterstained with TOTO-3 iodide (1:200; Molecular Probes) and 1 μg/mL 4’,6-diamidino-2-phenylindole (DAPI). To identify myocytes, actin was stained with phallloid conjugated to tetramethyl rhodamine isothiocyanate (1:200; Sigma). For each specimen, the number of TUNEL-positive myocytes and the number of total myocytes were counted in 60 random high-power fields (×400). Approximately 3000 total myocytes were examined per section. The percentage of total myocytes that were TUNEL-positive (apoptotic index) was then calculated. This evaluation was performed by one person who was blinded to treatment group.

Electron Microscopy

Ventricular samples were cut into 1-mm cubes and fixed for 4 hours at 4°C in 2.5% glutaraldehyde in 0.1 mol/L sodium phosphate buffer (pH 7.4). They were postfixed in 1% buffered osmium tetroxide, dehydrated through graded ethanol, and embedded in epoxy resin. Thin sections (80 nm) were cut with a diamond knife, collected on 300-mesh copper grids, and double-stained with uranyl acetate and lead citrate before examination with an electron microscope (H-700, Hitachi).

Statistical Analysis

All values are presented as mean±SEM. Statistical significance was evaluated with Student’s t test for paired comparisons or ANOVA followed by Newman-Keuls test for analysis of multiple groups. Kaplan-Meier analysis was used for survival comparison between groups. Differences were considered statistically significant at a value of P<0.05.

Results

Caspase-3–Like Activity

To determine whether treatment with IDN-1965 decreased effector caspase activity in the hearts of pregnant Gaq transgenic mice, caspase-3–like (DEVD-ase) activity was assessed at postpartum day 14 and found to be 86.5% lower (P<0.01) in mice treated with IDN-1965 than in those receiving vehicle (Figure 1). The suppression was complete, because the caspase-3–like activity in the hearts of IDN-1965–treated mice did not differ from that in the hearts of nonpregnant Gaq transgenic and wild-type mice. Thus, continuous subcutaneous delivery of this potent polycaspase inhibitor is sufficient to suppress effector caspase activity.

Cardiac Myocyte Apoptosis

To determine the effect of caspase inhibition on cardiac myocyte apoptosis, cell death was assessed both by TUNEL staining using light microscopy and analysis of cellular morphology using electron microscopy. Figure 2A shows a typical example of intense TUNEL staining of a myocyte.
nucleus from the heart of a postpartum day 14 vehicle-treated Gq mouse. Figure 2B illustrates the classic pattern of chromatin condensation against the inner surface of the nuclear membrane in an apoptotic cardiac myocyte from another vehicle-treated postpartum Gq mouse. Necrotic morphology, as defined by disruption of the plasma membrane, was rarely seen in any of the specimens. The magnitude of cardiac myocyte apoptosis in the 2 groups was quantified by use of TUNEL (Figure 2C). The percentage of TUNEL-positive cardiac myocytes was 1.9 ± 0.3% in the vehicle-treated group, compared with 0.2 ± 0.1% in the group treated with IDN-1965 (P < 0.01). Therefore, treatment of pregnant Gq transgenic mice with IDN-1965 markedly decreased the frequency of cardiac myocyte apoptosis.

Echocardiography
To determine the effect on LV chamber size and contractile function of inhibiting cardiac myocyte apoptosis in pregnant Gq mice, echocardiography was performed at postpartum day 14 in vehicle- and IDN-1965–treated mice. Parallel studies were also performed in age-matched, nonpregnant, female wild-type and Gq mice. Before pregnancy, LV end-diastolic dimension (LVEDD) (Figure 3A) was increased in Gq mice compared with wild-type mice, consistent with the known baseline dilated cardiomyopathy in transgenics23 (wild-type, 2.3 ± 0.1 mm; transgenics, 3.5 ± 0.1 mm; P < 0.01). LVEDD in postpartum transgensics was increased further to 4.7 ± 0.1 mm (P < 0.01 compared with nonpregnant transgenics). Treatment of pregnant transgensics with IDN-1965 decreased LVEDD 10.6% compared with vehicle treatment (vehicle, 4.7 ± 0.1 mm; IDN-1965, 4.2 ± 0.1 mm; P < 0.01).

Abnormalities in fractional shortening (FS) (Figure 3B) paralleled those in LVEDD. Thus, FS was decreased in nonpregnant Gq mice compared with nonpregnant wild-type mice (wild-type, 75.9 ± 1.4%; transgenic, 44.1 ± 1.4%; P < 0.01), consistent with the baseline cardiomyopathy in transgenics. FS in postpartum transgenics was decreased...
further to $30.7\pm1.2\%$ ($P<0.01$ compared with nonpregnant transgenics). Treatment of pregnant transgenics with IDN-1965 increased FS 26.7% compared with vehicle-treatment (vehicle, $30.7\pm1.2\%$; IDN-1965, $38.9\pm1.0\%$; $P<0.01$). Thus, the echocardiographic data demonstrate that the Gaq mice have a baseline dilated cardiomyopathy that is significantly exacerbated by pregnancy. Treatment with IDN-1965 significantly ameliorates LV dilation and contractile dysfunction, although not completely back to prepregnancy levels.

LV Hemodynamics

To evaluate the effect of inhibiting cardiac myocyte apoptosis on cardiac function using a complementary approach, LV catheterization was performed. LV systolic pressure (LVSP) (Figure 4A) was decreased in nonpregnant Gaq transgenic compared with nonpregnant wild-type mice (wild-type, 118.8 ± 1.0 mm Hg; Gaq transgensics, 108.7 ± 1.6 mm Hg; $P<0.01$), again consistent with systolic dysfunction from the baseline cardiomyopathy in transgensics. LVSP in postpartum transgenics was decreased further to 97.1 ± 2.0 mm Hg ($P<0.01$ compared with nonpregnant transgenics). There was no significant difference in LVSP, however, between postpartum Gaq mice that had been treated with vehicle versus IDN-1965 (vehicle, 97.1 ± 2.0 mm Hg; IDN-1965, 95.5 ± 1.6 mm Hg; $P=NS$).

LV end-diastolic pressure (LVEDP) (Figure 4B) was higher in nonpregnant transgenics than in nonpregnant wild-type mice, consistent with the baseline cardiomyopathy in transgensics (wild-type, 1.1 ± 0.2 mm Hg; transgenics, 6.2 ± 0.2 mm Hg; $P<0.01$). LVEDP in postpartum transgenics was increased further to 10.9 ± 0.3 mm Hg ($P<0.01$ compared with nonpregnant transgenics). Treatment of pregnant transgenics with IDN-1965 decreased LVEDP 23.9% compared with vehicle treatment (vehicle, 10.9 ± 0.3 mm Hg; IDN-1965, 8.3 ± 0.3 mm Hg; $P<0.01$).

A similar pattern of changes was observed in $+dP/dt$ (Figure 4C) and $-dP/dt$ (Figure 4D). Thus, consistent with the baseline cardiomyopathy, $+dP/dt$ and $-dP/dt$ were lower in nonpregnant transgenics than in wild-type mice ($+dP/dt$: wild-type, 9899 ± 175 mm Hg/s; transgenic, 6498 ± 128 mm Hg/s; $P<0.01$; $-dP/dt$: wild-type, 7880 ± 143 mm Hg/s; transgenic, 3961 ± 119 mm Hg/s; $P<0.01$). $+dP/dt$ and $-dP/dt$ in postpartum transgenics was decreased further to 3972 ± 412 mm Hg/s and 2365 ± 213 mm Hg/s, respectively ($P<0.01$ compared with nonpregnant transgenics). Treatment of pregnant transgenics with IDN-1965 increased $+dP/dt$ and $-dP/dt$ by 47.8% and 44.3%, respectively, compared with vehicle treatment ($+dP/dt$: vehicle, 3972 ± 412 mm Hg/s; IDN-1965, 5870 ± 295 mm Hg/s; $P<0.01$; $-dP/dt$: vehicle, 2365 ± 213 mm Hg/s; IDN-1965, 3413 ± 201 mm Hg/s; $P<0.01$). Thus, the hemodynamic data are in agreement with the echocardiographic findings and indicate that treatment of pregnant Gaq mice with IDN-1965 significantly improves systolic and diastolic function, although not back to prepregnancy levels.

Survival

To determine the effect of reduction in cardiac myocyte apoptosis by caspase inhibition on the mortality of the peripartum cardiomyopathy of Gaq mice, a Kaplan-Meier analysis of survival was performed (Figure 5). All 34 pregnant Gaq mice that began the study were included in this analysis of all-cause mortality between pregnancy day 12 and postpartum day 14. The mortality in the vehicle-treated group was 6 of 20 (30%), with most of these deaths occurring between postpartum days 7 and 13. In contrast, 0 of the 14 IDN-1965–treated mice died (0%; $P<0.05$). Thus, treatment with IDN-1965 completely suppressed the mortality of the peripartum cardiomyopathy of the Gaq mice.

Discussion

This study tests whether cardiac myocyte apoptosis plays a causal role in the pathogenesis of heart failure. The model studied involves the overexpression of Gaq in the myocardi-um, which results in a baseline dilated cardiomyopathy that becomes fulminant and lethal during pregnancy. The results demonstrate that 89% reduction in cardiac myocyte apoptosis...
by caspase inhibition ameliorates the peripartum cardiac dysfunction approximately halfway to baseline. Strikingly, however, the 30% mortality characteristic of this model was completely ablated.

Over the past decade, the cardiac apoptosis field has struggled with understanding the importance, or lack thereof, of the low frequencies of cardiac myocyte apoptosis, 0.08% to 0.25%,[19-21] noted in human hearts with advanced failure. Does this cell death play a mechanistic role in the pathogenesis of dilated cardiomyopathy, or is it a parallel, unrelated event? A previous study from our laboratory addressed this issue directly by expressing a ligand-activatable procaspase-8 allele exclusively in the hearts of transgenic mice.[37] These mice exhibited spontaneous apoptotic indices of 0.023%, levels that are 15-fold elevated over baseline but that are still 4- to 10-fold lower than those seen in human heart failure, and they developed a lethal dilated cardiomyopathy over 2 to 6 months. This phenotype was preventable by caspase inhibition. Although this previous study established for the first time that very low levels of cardiac myocyte apoptosis are sufficient to produce heart failure (and, in fact, were necessary in that system), it did not assess whether cardiac myocyte apoptosis plays a critical role in heart failure pathogenesis in models of more physiological relevance.

Hence, in the present study, we turned our attention to a genetic model that accurately replicates the transition of compensated LV hypertrophy to dilated cardiomyopathy.[23] We chose this model for several reasons. First, hypertrophic signaling is generally thought to be involved in the pathogenesis of heart failure, and the myocardial overexpression of Gaq leads to activation of pathways downstream of multiple clinically relevant hypertrophic signals (eg, angiotensin II, endothelin-1, norepinephrine, etc).[22] Second, the functional abnormalities and mortality resulting from the peripartum cardiomyopathy of Gaq mice are both reproducible and robust.[9] Third, the defined 2- to 3-week time frame of the peripartum cardiomyopathy makes the model amenable for chronic administration of a caspase inhibitor. Our data show that reduction of cardiac myocyte apoptosis by caspase inhibition results in amelioration of cardiac dysfunction and complete suppression of mortality. This demonstrates that cardiac myocyte apoptosis indeed plays a critical role in the pathogenesis of heart failure in this model. Having shown the importance of cardiac myocyte apoptosis for the development of heart failure in this clinically relevant genetic model, it will be important to assess whether cardiac myocyte apoptosis is also important in surgical models of hemodynamic overload, including those caused by transverse aortic constriction and remote myocardial infarction, in which rates of cardiac myocyte apoptosis are substantially lower.

Elegant studies have recently elucidated a mechanism by which Gaq overexpression elicits apoptosis: the transcriptional upregulation of the BH3-only proapoptotic Bcl-2 family member Nix/Bnip3L, which localizes at the mitochondria and triggers cytochrome c release.[36] The relevance of this mechanism is underscored by the fact that a truncated, dominant negative Nix isoform ameliorates the Gaq peripartum cardiomyopathy. Given the importance of the mitochondrial death pathway in the Gaq transgenics, a key question concerns the mechanisms by which caspase inhibitors are blocking apoptosis and rescuing the peripartum cardiomyopathy phenotype. In light of the significant mitochondrial damage that results from Gaq overexpression in cardiac myocytes,[35] it would be surprising if mere inhibition of downstream (postmitochondrial) effector caspases 3, 6, and 7 were adequate to bring about rescue. In most biological systems, however, the mitochondrial release of cytochrome c is independent of caspase activation, and this has been shown to be the case for cardiac myocytes[30] and specifically in response to Gaq overexpression.[35] A possible resolution of this conundrum is that caspase inhibition may be blunting mitochondrial injury through another means. One possibility is by inhibiting the known caspase-dependent[38] mitochondrial release of Smac (second mitochondrial activator of cytochrome c)/DIABLO (direct IAP binding protein with low pI),[39,40] which promotes apoptosis after its release from mitochondria by binding to IAPs (inhibitor of apoptosis proteins), resulting in the competitive displacement and disinhibition of the caspases.[41] Future studies are needed to assess whether this mechanism operates in this and other models in which caspase inhibition seems to limit mitochondrial damage.

The data indicate that caspase inhibition resulted in an 89% reduction in cardiac myocyte apoptosis. This reduction in cell death is the most likely mechanism for the rescue of the Gaq peripartum cardiomyopathy. Another non-mutually exclusive possibility, however, is that caspase inhibition may have resulted in improvements in cardiac function apart from its inhibition of cell death. In support of this concept, several articles have provided preliminary evidence that sarcomeric components may be caspase substrates.[42-44] Further studies in which noncleavable mutants of these putative caspase targets are introduced into cultured cardiac myocytes will be needed to carefully sort out the functional significance of these cleavage events.

Whatever its precise mechanisms of action, the fact that caspase inhibitors so effectively rescued the Gaq cardiomyopathy raises the possibility that drugs in this class may ultimately be useful in treating human heart failure. The next steps in testing this notion are to evaluate the generality of these inhibitors in different rodent and selected large-animal models of
heart failure. Another issue that will need to be evaluated is the
long-term safety of these agents, especially with respect to
carcinogenesis. Dilated cardiomyopathy is a lethal syndrome,
however, and the use of antiapoptotic therapies may ultimately
require a risk-benefit analysis similar to that involved in the
decision to use anthracycline cancer chemotherapy, which can
cause dilated cardiomyopathy.

In summary, this study shows for the first time that
reduction of cardiac myocyte apoptosis by caspase inhibition
improves cardiac function and extinguishes mortality in the
Goq peripartum cardiomyopathy model. These data strongly
support the conclusion that myocyte apoptosis is a critical
component of heart failure in this model.

Acknowledgments
This study was funded by grants to Dr Kitsis from the National
Institutes of Health (RO1-HL-60065 and RO1-HL-61550). Dr Kitsis
is the Charles and Tamara Krause Faculty Scholar in Cardiovascular
Research of the Albert Einstein College of Medicine and the
recipient of the Monique Weill-Caulier Career Scientist Award. We
thank Drs Anthony J. Muslin and James Scheuer for insightful
comments on the manuscript. We are grateful to Idun Pharmaceuti-
cals for the polycaspase inhibitor IDN-1965.

References
This study was funded by grants to Dr Kitsis from the National
Institutes of Health (RO1-HL-60065 and RO1-HL-61550). Dr Kitsis
is the Charles and Tamara Krause Faculty Scholar in Cardiovascular
Research of the Albert Einstein College of Medicine and the
recipient of the Monique Weill-Caulier Career Scientist Award. We
thank Drs Anthony J. Muslin and James Scheuer for insightful
comments on the manuscript. We are grateful to Idun Pharmaceuti-
cals for the polycaspase inhibitor IDN-1965.

1. Taegtmeyer H. Switching metabolic genes to build a better heart. Circu-
gene is associated with markedly enhanced myocardial contractility and
3. Marks AR, Ryanodine receptors, FKBP12, and heart failure. Front
gene is associated with markedly enhanced myocardial contractility and
apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol.
2002;159:2043–2045.
programmed myocyte cell death characterize the cardiac myopathy induced
by rapid ventricular pacing in dogs. Lab Invest.
apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol.
1996;148:141–149.
the transition to heart failure in the spontaneously hypertensive rat. Am J
10. Adams JW, Pagel AL, Morris C, et al. Increased cardiomyocyte apo-
poptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2
during left ventricular adaptations to chronic pressure overload in the rat.
poptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2
during left ventricular adaptations to chronic pressure overload in the rat.
13. Zhang D, Gaussin V, Taffet GE, et al. TAK1 is activated in the myocar-
dium after pressure overload and is sufficient to provoke heart failure in
Inhibition of Cardiac Myocyte Apoptosis Improves Cardiac Function and Abolishes Mortality in the Peripartum Cardiomyopathy of G αq Transgenic Mice

Yukihiro Hayakawa, Madhulika Chandra, Wenfeng Miao, Jamshid Shirani, Joan Heller Brown, Gerald W. Dorn II, Robert C. Armstrong and Richard N. Kitsis

Circulation. 2003;108:3036-3041; originally published online November 24, 2003;
doi: 10.1161/01.CIR.0000101920.72665.58
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/108/24/3036

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/