Circulating Pregnancy-Associated Plasma Protein A Predicts Outcome in Patients With Acute Coronary Syndrome but No Troponin I Elevation

Juha Lund, MD; Qiu-Ping Qin, MD, PhD; Tuomo Ilva, MD; Kim Pettersson, PhD; Liisa-Maria Voipio-Pulkki, MD, PhD; Pekka Porela, MD, PhD; Kari Pulkki, MD, PhD

Background—Risk stratification in troponin (cTn)-negative acute coronary syndrome (ACS) remains a clinical challenge. We investigated the predictive value of circulating pregnancy-associated plasma protein A (PAPP-A), a novel marker of atherosclerotic plaque activity, in these patients.

Methods and Results—Two hundred consecutive hospitalized ACS patients were included, of whom 136 (69 men and 67 women; mean±SD age, 66±16 years) remained cTnI-negative for up to 24 hours. PAPP-A was measured at admission, 6 to 12 hours, and 24 hours. During 6-month follow-up, 26 (19.1%) of the cTnI-negative patients reached a primary end point (cardiovascular death, myocardial infarction, or revascularization). At a cutoff level of 2.9 mIU/L, elevated PAPP-A was an independent predictor of adverse outcome (adjusted risk ratio [RR], 4.6; 95% confidence interval, 1.8 to 11.8; \(P = 0.002 \)). Another independent predictor was admission CRP >2.0 mg/L (RR, 2.6; \(P = 0.03 \)).

Conclusions—Measurement of plasma PAPP-A, a zinc-binding matrix metalloproteinase, is a strong independent predictor of ischemic cardiac events and need of revascularization in patients who present with suspected myocardial infarction but remain troponin negative. (Circulation. 2003;108:1924-1926.)

Key Words: proteins ■ plasma ■ pregnancy ■ atherosclerosis ■ prognosis
using the Innolot AIO, analytical sensitivity 0.05 \(\mu g/L \), whereas the cutoff value at 10% imprecision (CV) was 0.22 \(\mu g/L \). This level was used retrospectively to define cTnI negativity in this study. We chose 2.0 \(mg/L \) as the cutoff level for CRP. The clinicians had no access to the investigational AIO cTnI, CRP, or PAPP-A information.

Statistical Analysis

Categorical variables were compared between groups using the 2-tailed Fisher exact test. Continuous variables were compared with the use of Wilcoxon’s rank-sum test. The univariate and multivariate associations were analyzed using Cox’s proportional-hazards model to evaluate the independent contributions of the variables to the 6-month risk of cardiovascular events. The associations were quantified with risk ratios (RR) and 95% confidence intervals (95% CI). Survival curves were estimated using the Kaplan-Meier method, and differences between curves were tested with the log rank test. Correlations were tested using Spearman’s correlation test. SAS system for Windows release 6.12/1996 (Cary, NC) was used. Probability values <0.05 were considered significant.

Results

PAPP-A and CRP Levels

Median [25th, 75th percentiles] admission PAPP-A in the 136 cTnI-negative patients was 2.3 mIU/L [1.6, 3.0]. Sixty-four of 136 patients were discharged from the emergency room. The mean \(\pm SD \) hospital stay in the remaining 72 patients was 4.3 \(\pm 2.5 \) days. The highest detected PAPP-A was 2.35 mIU/L [1.6, 2.9] in discharged and 3.3 mIU/L [2.1, 6.5] in hospitalized patients (\(P<0.001 \)). The median admission CRP was 2.1 mg/L [0.9, 8.1]. There was no correlation between CRP and PAPP-A levels (\(r=0.03, P=0.7 \)) or highest detected (\(r=0.02, P=0.8 \)) PAPP-A.

Outcome at 6 Months

There were 8 deaths (total mortality 5.9%) of which cardiovascular causes accounted for 5 (62.5%). Eight patients (5.9%) experienced MIs, 2 of which occurred late during the initial hospitalization. Thirteen patients (9.6%) underwent revascularization. There were 4 (2.9%) hospitalizations as a result of congestive heart failure, 7 (5.1%) as a result of unstable angina, and 1 for nonfatal stroke. At the end of the follow-up, 26 patients (19.1%) had met a primary and 12 (8.8%) a secondary end point.

PAPP-A as a Predictor of Adverse Events

In the 136 cTnI-negative subjects, PAPP-A 2.9 mIU/L (highest detected) was found to be the best cutoff value for the combined primary end point at 6 months (RR, 3.7; 95% CI, 1.6 to 8.9; \(P=0.0028 \)). Patients were then divided into 4 groups according to the highest detected PAPP-A levels: \(<2.0, 2.0 \) to 2.8, 2.9 to 4.4, and \(\geq 4.5 \) mIU/L. The Figure shows how the cumulative probability of a primary end point was only 8% if the highest detected PAPP-A was below 2.9 mIU/L, but increased to 25% if PAPP-A was 2.9 to 4.4 mIU/L (\(P=0.035 \)) and to 37.9% if the level was \(\geq 4.5 \) mIU/L (\(P=0.0012 \)). Twenty of the 61 (33%) patients whose PAPP-A levels were \(\geq 2.9 \) mIU/L suffered a primary end point. No statistically significant differences were found regarding any of the secondary end points. The Table shows the baseline clinical characteristics of the enrolled patients according to the highest detected PAPP-A level.

Only a single admission PAPP-A sample was available in 64 patients who were discharged from the emergency room. Among them, 17 (27%) patients had PAPP-A \(\geq 2.9 \) mIU/L. The corresponding number of primary end points was 2 of 17 (12.0%), compared with 2 of 47 (4.2%) in patients with lower PAPP-A levels (RR, 2.8, \(P=0.004 \)). Finally, we used only the admission PAPP-A value to predict outcome in the whole study group. Using the same cutoff value of 2.9 mIU/L, 12 of 40 (30.0%) versus 14 of 96 (14.6%) patients experienced a combined primary end point during the 6-month follow-up (RR, 2.3; 95% CI, 1.1 to 5.0; \(P=0.03 \)). Thus, a single admission PAPP-A \(\geq 2.9 \) mIU/L also showed a significant predictive value.

Multivariate Analysis

After adjusting for CRP, age, gender, diabetes (dietary or drug therapy), current smoking, hypertension, previous MI, and congestive heart failure (during index event), highest detected PAPP-A \(\geq 2.9 \) mIU/L was found to be an independent predictor of a combined primary adverse event during the 6-month follow-up (adjusted RR, 4.6; 95% CI, 1.8 to 19.25).

Characteristic	PAPP-A<2.9 mIU/L (n=75)	PAPP-A \(\geq 2.9 \) mIU/L (n=61)	\(P \)
Age, y	64 \(\pm 13 \)	69 \(\pm 13 \)	NS
Male gender	35 (46.7)	34 (56.7)	NS
Diabetes	6 (8.0)	13 (21.7)	0.027
Current smoker	21 (28.0)	11 (18.3)	NS
Hypertension	30 (40.0)	34 (56.7)	NS
Previous myocardial infarction	15 (20.0)	22 (36.7)	0.035
Aspirin	31 (41.3)	25 (41.6)	NS
Warfarin	5 (6.7)	11 (18.3)	NS
Statins	18 (24.0)	20 (33.3)	NS
Killip class \(\geq 2 \)*	7 (9.3)	20 (33.3)	<0.01

*Plus/minus values are mean \(\pm SD \); other values are number (percent). PAPP-A indicates pregnancy-associated plasma protein A; NS, not significant. *During index hospitalization.
Another independent risk factor was admission CRP (RR, 2.6; 95% CI, 1.1 to 6.5; P=0.03). The adjusted risk ratio for previous MI almost reached statistical significance (RR, 2.3; 95% CI, 0.9 to 5.7; P=0.065).

Discussion

In cTnI-negative ACS patients, PAPP-A levels ≥2.9 mIU/L were associated with a 4.6-fold higher adjusted risk of adverse outcome compared with patients whose circulating PAPP-A levels were <2.9 mIU/L. In patients with PAPP-A ≥4.5 mIU/L, the risk was even higher (RR, 6.9; 95% CI, 2.5 to 19.0; P<0.001) (Figure). Notably, 20 of 26 (77%) of all cardiovascular deaths, MIs, and revascularizations during the 6-month follow-up occurred in patients with PAPP-A ≥2.9 mIU/L.

Approximately two thirds of the patients who present with suspected MI have normal cTn, and one fourth have normal electrocardiograms, respectively. The 43-day risk of death or MI in cTnI-negative patients has been estimated to be 3.9% and the incidence of revascularization 7.3%. In-hospital mortality in ACS patients who present with normal electrocardiograms can be as high as 5.7%. In our consecutive cTnI-negative ACS patients, the cumulative 6-month mortality was 5.9% and the risk of all primary events was 19.1%. The Kaplan-Meier curves of event-free survival show that at 30 days, the cumulative event rate was 10.3% (Figure). Much of the further increase from 1 to 6 months was the result of the group with the highest baseline PAPP-A, probably with the most advanced forms of atherosclerosis. Thus, the short- to medium-term incidence of adverse events can be substantial in the so-called low-risk ACS population.

Sophisticated tools are not always available to perform individual risk stratification. Our results suggest that measurements of circulating PAPP-A can provide simple and efficient risk assessment in such patients. Even a single measurement of admission PAPP-A showed significant predictive power for the combined primary end point. Using the highest values over the first 24 hours, we were able to predict 3 of 4 adverse events that occurred during the following 6 months. However, the kinetics of PAPP-A release and the corresponding optimal sampling protocols in ACS remain to be determined.

PAPP-A is abundantly expressed in eroded and ruptured plaques, but not in stable plaques. It probably participates in the inflammatory reactions of the vascular wall, which lead to the disruption of the atherosclerotic plaque. Because PAPP-A is a matrix metalloproteinase, it could be involved in the processing of the plaque’s extracellular matrix and weakening of the fibrous cap. The fact that PAPP-A and CRP appear to be independent risk indicators points to different roles of the 2 in the events that lead to acute complications of coronary atherosclerosis.

To our knowledge, the present report is the first to show the predictive power of circulating PAPP-A in patients with atherosclerotic disease. As a point-of-care method, it could be used as a second test for risk stratification during the first 24 hours in cTnI-negative patients to increase the safety of early discharge. The accumulation of adverse events in PAPP-A-positive (≥2.9 mIU/L) patients is quite rapid (Figure), and the Kaplan-Meier curves continue to diverge during the entire follow-up of 6 months. The use of elevated PAPP-A as a tool to guide therapy in such patients remains to be studied.

Acknowledgments

This study was supported by grants from the EVO funds of the Turku and Helsinki University Hospitals and Finnish National Technology Agency.

References

Circulating Pregnancy-Associated Plasma Protein A Predicts Outcome in Patients With Acute Coronary Syndrome but No Troponin I Elevation
Juha Lund, Qiu-Ping Qin, Tuomo Ilva, Kim Pettersson, Liisa-Maria Voipio-Pulkki, Pekka Porela and Kari Pulkki

Circulation. 2003;108:1924-1926; originally published online October 6, 2003; doi: 10.1161/01.CIR.0000096054.18485.07
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/108/16/1924

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/