Enhanced G_i Signaling Selectively Negates β_2-Adrenergic Receptor (AR)–but Not β_1-AR–Mediated Positive Inotropic Effect in Myocytes From Failing Rat Hearts

Rui-Ping Xiao, MD, PhD; Sheng-Jun Zhang, MD; Khalid Chakir, PhD; Pavel Avdonin, PhD; Weizhong Zhu, MD, PhD; Richard A. Bond, PhD; C. William Balke, MD, PhD; Edward G. Lakatta, MD; Heping Cheng, PhD

Background—Myocardial contractile response to β_1- and β_2-adrenergic receptor (AR) stimulation is severely impaired in chronic heart failure, in which G_1 signaling and the ratio of β_2/β_1 are often increased. Because β_2-AR but not β_1-AR couples to G_1 and G_i with the G_1 coupling negating the G_i-mediated contractile response, we determined whether the heart failure–associated augmentation of G_1 signaling contributes differentially to the defects of these β-AR subtypes and, if so, whether inhibition of G_i or selective activation of β_2-AR/G_i by ligands restores β_2-AR contractile response in the failing heart.

Methods and Results—Cardiomyocytes were isolated from 18- to 24-month-old failing spontaneously hypertensive (SHR) or age-matched Wistar-Kyoto (WKY) rat hearts. In SHR cardiomyocytes, either β-AR subtype–mediated inotropic effect was markedly diminished, whereas G_1 proteins and the β_2/β_1 ratio were increased. Disruption of G_1 signaling by pertussis toxin (PTX) enabled β_2– but not β_1-AR to induce a full positive inotropic response in SHR myocytes. Furthermore, screening of a panel of β_2-AR ligands revealed that the contractile response mediated by most β_2-AR agonists, including zinterol, salbutamol, and procateterol, was potentiates by PTX, indicating concurrent G_1 and G_i activation. In contrast, fenoterol, another β_2-AR agonist, induced a full positive inotropic effect in SHR myocytes even in the absence of PTX.

Conclusions—We conclude that enhanced G_1 signaling is selectively involved in the dysfunction of β_2– but not β_1-AR in failing SHR hearts and that disruption of G_1 signaling by PTX or selective activation of β_2-AR/G_i, signaling by fenoterol restores the blunted β_2-AR contractile response in the failing heart. (Circulation. 2003;108:1633-1639.)

Key Words: receptors, adrenergic, beta  ■ heart failure  ■ proteins  ■ contractility

Stimulation of β-adrenergic receptors (β-ARs) by catecholamines plays a pivotal role in regulating cardiac function. At least 2 β-AR subtypes, β_1-AR and β_2-AR, are expressed in cardiac myocytes. Chronic heart failure in animal models and in humans is characterized by a severely diminished contractile response to both β-AR subtypes. The heart failure–associated defect of β-AR contractile response is accompanied by a selective downregulation of β_1-AR (resulting in a higher β_2/β_1 ratio) and an increase in the amount or activity of pertussis toxin (PTX)–sensitive inhibitory G proteins (G_i) without any abnormality in stimulatory G proteins (G_s).

Although β_1-AR and β_2-AR are closely related G protein–coupled receptors, these β-AR subtypes couple to different G proteins and exhibit different effects on phosphorylation of protein kinase A (PKA) target proteins, cardiac excitation-contraction coupling, and cardiac cell survival and cell death. Most importantly, β_1-AR stimulation activates the G_s-cAMP-PKA signaling cascade, whereas the cardiac β_2-AR subtypes couple to PTX-sensitive G_i proteins, G_i2 and G_i3, in addition to G_s, which confines the β_2-AR–G_s–stimulated cAMP/PKA signaling to a subsarcolemmal microdomain via the G_s-G_βγ–phosphatidylinositol 3-kinase pathway and negates the G_i-mediated protein phosphorylation and positive inotropic effect in ventricular myocytes of many mammalian species (for review, see Reference 22).

The overall goal of the present study was to determine whether G_i signaling is selectively involved in the heart failure–associated defective contractile response to β_2-AR.
stimulation and, if so, to determine whether \( \beta_2 \)-AR/G, selective activation by certain agonists is able to restore the contractile support by \( \beta_2 \)-AR stimulation in the failing heart. Specifically, we (1) determined the abundance and function of both \( \beta_2 \)-AR subtypes (\( \beta_2 \)-AR and \( \beta_2 \)-AR) and G proteins (G\( _1 \) and G\( _i \)) in cardiomyocytes from spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto rats (WKY), (2) investigated the potential role of G\( _i \) signaling in the defects of \( \beta_2 \)-AR subtype-mediated contractile response in failing SHR cardiomyocytes, (3) and screened a number of \( \beta_2 \)-AR ligands to identify “\( \beta_2 \)-AR/G\( _i \)-signaling–selective” agonists and tested the agonists in cardiomyocytes from failing SHR hearts.

**Methods**

**Echocardiography and Hemodynamic Studies**

Transthoracic echocardiographic studies were performed in rats as previously described. Briefly, a 2D short-axis view of the left ventricle (LV) was obtained at the level of the papillary muscles. M-mode tracings were recorded through the anterior and posterior LV walls. The percentage shortening of the endocardium was calculated as (LVDD–LVSD)/LVDD×100, where LVDD is LV internal diastolic dimension and LVSD is LV internal systolic dimension. The heart rates, blood pressures, and respiratory rates of all animals were monitored at monthly intervals. Blood pressure was measured by the tail-cuff method.

**Measurement of Cardiac Myocyte Contraction**

Myocytes were isolated from 18- to 24-month-old SHR or WKY rats by use of standard enzymatic techniques. Cells were perfused with a HEPES buffer containing (in mmol/L): 137 NaCl, 5.4 KCl, 1.2 MgCl2, 1 NaHPO4, 1 CaCl2, 20 glucose and 20 HEPES (pH 7.4) and electrically stimulated at 0.5 Hz at 23 \( \degree \)C. Cell length was monitored by an optical edge-tracking method as previously described. In a subset of experiments, aliquots of cells were incubated with PTX (1.5 \( \mu \)g/mL at 37 \( \degree \)C for 3 hours). An individual myocyte was exposed to only 1 dose of 1 agonist, and measurements were obtained under steady-state conditions after a 10-minute exposure to the designated agonist.

**Receptor Radioligand Binding**

\( \beta_2 \)-AR radioligand binding studies were performed in membranes from LVs by use of the nonselective \( \beta_2 \)-AR antagonist [\( ^{125} \)I]-labeled cyanopindolol (\( ^{125} \)I-CYP), as described previously. Maximal binding (B\( _\text{max} \)) was measured by use of a saturating amount of \( ^{125} \)I-CYP on 25 \( \mu \)g of membrane protein from LVs. Inclusion of 10 \( \mu \)mol/L propranolol defined nonspecific binding. For competition isotherms, membranes (25 \( \mu \)g total protein) were incubated with 50 \( \mu \)mol/L \( ^{125} \)I-CYP and increasing dilutions of ICI118,551 (ICI), a selective \( \beta_2 \)-AR antagonist, as described previously. The percentage of \( \beta_2 \)-AR was calculated by use of GraphPad Prism.

**Table 1. Hemodynamic and Echocardiographic Parameters, Heart Weight/Body Weight Ratios, and Resting Cell Length of 18- to 24-Month-Old WKYs and SHRs**

<table>
<thead>
<tr>
<th>Hemodynamic Parameters</th>
<th>Echocardiographic Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hemodynamic Parameters</strong></td>
<td><strong>Echocardiographic Parameters</strong></td>
</tr>
<tr>
<td>Rats, n</td>
<td>Heart Rate, beats/min</td>
</tr>
<tr>
<td>WKY (18–24 mo)</td>
<td>13</td>
</tr>
<tr>
<td>SHR (18–24 mo)</td>
<td>13</td>
</tr>
</tbody>
</table>

Data are mean±SD. \( *P<0.05 \) vs age- and sex-matched controls.

**Western Analysis of G\( _i \) and G\( _o \) Proteins**

Cardiac membranes from myocytes were used to determine G\( _i \) and G\( _o \) protein amounts by Western analysis. The antibodies recognizing the \( \alpha \)-subunits of G\( _i2 \), G\( _i3 \), and G\( _o \) were obtained from Santa Cruz Biotechnology.

**Statistical Analysis**

Results are expressed as mean±SEM. Significance was determined by use of Student's \( t \) test, with a value of \( P<0.05 \) considered to be statistically significant.

**Results**

**Chronic Heart Failure Model: SHR**

SHRs develop hypertension at \( \approx \)6 to 8 weeks of age. By the age of 18 to 24 months, \( \approx \)50% of these rats develop severe dilated chronic heart failure, many aspects of which have been characterized. At the time of study (ie, 18 to 24 months old), all SHRs used in this study had severe physical signs of heart failure (eg, resting tachycardia, tachypnea, pleural and/or pericardial effusions, and ascites). Cardiac dilation in the SHR group was evidenced by echocardiographic measurements (Table 1). Cardiac hypertrophy was confirmed by significant increases in the heart weight/body weight ratio, by echocardiographic measurements of LV posterior wall thickness, and by increased resting cell length (Table 1).

**Alterations in \( \beta_2 \)-AR Density and G Protein Abundance in Failing SHR Hearts**

We first examined total \( \beta_2 \)-AR density, \( \beta_2 \)-, and \( \beta_2 \)-AR subpopulations, and the abundance of G\( _i \) and G\( _o \) proteins in myocytes from 18- to 24-month-old SHR and age-matched WKY cardiac myocytes. There was a significant decrease (24%) in the B\( _\text{max} \) in SHR relative to WKY hearts, without alterations in the binding affinity (Table 2). To define the relative abundance of \( \beta_2 \)-AR and \( \beta_2 \)-AR, competition isotherms were performed by use of the selective \( \beta_2 \)-AR antagonist ICI. The \( \beta_2 /\beta_2 \)-AR ratio in control animals is 44/56, which is similar to the ratio previously reported. The \( \beta_2 /\beta_2 \)-AR ratio was significantly increased in SHR relative to WKY hearts (Table 2). This result indicates that the reduction in total \( \beta_2 \)-AR density is largely accounted for by the loss of \( \beta_2 \)-AR. Thus, a selective downregulation of \( \beta_2 \)-AR leads to a relative increase in the \( \beta_2 \)-AR density in the failing SHR heart, a situation similar to what has been reported in failing human heart.

In addition, both G\( _i \) and G\( _o \) but not G\( _i \) were elevated by \( \approx \)2-fold in SHR compared with WKY hearts (Figure 1),
resulting in an increase in the G/Gi ratio, as is the case in human heart failure.\textsuperscript{3–5} Taken together, these results suggest that the SHR heart failure model resembles human heart failure with respect to the major changes that occur in the proximal \( \beta \)-AR signaling system.

**Disruption of G\(_i\) Signaling by PTX Selectively Restores \( \beta_2 \)-AR– but Not \( \beta_1 \)-AR–Mediated Positive Inotropic Effect in Cardiomyocytes From Failing SHR Hearts**

Although the baseline contraction amplitude in myocytes from failing SHR hearts was not significantly different from that of control animals (see Figure 2 legend), the positive inotropic effect of either \( \beta \)-AR subtype stimulation was markedly attenuated. Figure 2A shows that myocyte contractile response to \( \beta_2 \)-AR stimulation by norepinephrine (NE) in the presence of \( \alpha_1 \)-AR and \( \beta_2 \)-AR blockade by prazosin (10\(^{-6}\) mol/L) and ICI (10\(^{-7}\) mol/L), respectively, was markedly blunted in SHR myocytes compared with that in WKY cells, consistent with the downregulation of the receptor density. Figure 2B illustrates that \( \beta_2 \)-AR stimulation by zinterol had only a minor positive inotropic effect in SHR ventricular myocytes, whereas it enhanced the contraction amplitude by >2-fold in control cardiomyocytes from age-matched WKY’s. The dose-response curve of zinterol to increase contraction amplitude was severely shifted downward in SHR compared with WKY. Thus, myocyte contractile response to either \( \beta_1 \)-AR or \( \beta_2 \)-AR was overtly attenuated in SHR cardiomyocytes relative to WKY myocytes, even though only \( \beta_2 \)-AR density was selectively downregulated, with little change in \( \beta_1 \)-AR density in SHR hearts (Table 2).

To test the hypothesis that exaggerated G\(_i\) signaling might be differentially involved in the impairment of \( \beta_2 \)-AR versus that of \( \beta_1 \)-AR in the failing heart, we treated myocytes with PTX to disrupt G\(_i\) function. Remarkably, PTX not only enhanced the contractile response to \( \beta_2 \)-AR stimulation in both failing SHR and control myocytes but also abolished the difference between the 2 groups (Figure 2B). In contrast, PTX did not affect the whole dose-response of \( \beta_1 \)-AR stimulation by NE in either WKY or SHR myocytes (Figure 2A). These results indicate that enhanced G\(_i\) signaling is specifically involved in the defect of \( \beta_2 \)-AR contractile response but not in the dysfunction of \( \beta_1 \)-AR signaling in the SHR heart failure model. These results also suggest that \( \beta_2 \)-AR–coupled G\(_i\) signaling remains largely intact in the failing heart.

**Screening for Ligands Bypassing \( \beta_2 \)-AR/G\(_i\) Pathway**

To determine whether disruption or avoidance of the \( \beta_1 \)-AR–coupled G\(_i\) signaling pathway is able to restore \( \beta_2 \)-AR–mediated contractile support in the failing SHR heart, we searched for ligands that activate \( \beta_2 \)-AR–coupled G\(_i\) signaling but not the G\(_i\) pathway. Six known \( \beta_2 \)-AR–selective agonists and 2 nonselective \( \beta_2 \)-AR agonists were tested in the presence of the \( \beta_1 \)-AR antagonist CGP20712A (CGP; 3\( \times \)10\(^{-7}\) mol/L). Zinterol had been well characterized in previous studies as a selective \( \beta_2 \)-AR agonist.\textsuperscript{6–9,10–15} The specificity of other tested agonists, including salbutamol, procaterol, and fenoterol, for \( \beta_2 \)-AR stimulation was verified by the fact that the highly selective \( \beta_2 \)-AR agonist CGP (3\( \times \)10\(^{-7}\) mol/L) did not block their contractile responses, whereas it fully abolished the effect induced by the \( \beta_1 \)-AR agonist NE (10\(^{-7}\) mol/L) (Figure 3). Cell contractile response to \( \beta_2 \)-AR stimulation and its PTX sensitivity were then measured to represent the overall readout of G\(_i\), (in PTX-treated cells) or combined G\(_i\)-G\(_s\) signaling (in non–PTX-treated cells).

Most ligands tested, including salbutamol, procaterol, and zinterol, enhanced the contraction amplitude of WKY myocytes in a dose-dependent manner, with a maximal increase of

### Table 2. \( \beta \)-AR Radioligand Binding Properties and Competition of \(^{[35]}\)ICYP Binding With \( \beta \)-AR Antagonist ICI in LV Membranes From 18- to 24-Month-Old SHRs and Age- and Sex-Matched WKYs

<table>
<thead>
<tr>
<th>Protein</th>
<th>( B_{\text{max}}, \text{fmol/mg protein} )</th>
<th>( K_p, \text{pmol} )</th>
<th>( \rho \text{Protein} )</th>
<th>( K_i, \text{pmol} )</th>
<th>( n_{\text{Hill}} )</th>
<th>( \beta_2 )-AR Density, ( \text{fmol/mg protein} )</th>
<th>% of ( \beta_2 )-AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WKY (n=8)</td>
<td>44.4±3.8</td>
<td>52.6±5.4</td>
<td>8.56±0.08</td>
<td>6.15±0.07</td>
<td>0.46±0.01</td>
<td>19.4±1.4</td>
<td>44.2±1.7</td>
</tr>
<tr>
<td>SHR (n=8)</td>
<td>33.8±1.9</td>
<td>50.0±7.9</td>
<td>8.64±0.08</td>
<td>6.23±0.08</td>
<td>0.45±0.01</td>
<td>16.6±1.8</td>
<td>53.1±1.4</td>
</tr>
</tbody>
</table>

*\( P<0.05 \), †\( P<0.01 \) vs WKY.

**Figure 1.** G\(_s\) and G\(_i\) protein abundance in SHR and WKY cardiac myocytes. A, Representative Western blots probed with antibodies reacting with \( \alpha \)-subunits of G\(_s\), G\(_i_3\), or G\(_i_2\), as indicated. B, Average data of G\(_s\), G\(_i_3\), and G\(_i_2\) levels in SHR and WKY cardiomyocyte membranes (\( P<0.01 \) vs WKY, n=6 experiments in cells from 12 hearts).
Figure 2. PTX selectively restores $\beta_2$- but not $\beta_1$-AR-mediated positive inotropic effect in SHR cardiomyocytes. A, Dose-response of $\beta_2$-AR stimulation by NE (plus $\alpha_1$-AR and $\beta_2$-AR blockade); B, dose-response of $\beta_2$-AR stimulation by zinterol to increase myocyte contraction in presence or absence of PTX. Baseline contraction amplitudes are $5.60\pm0.23\%$ (n=126 cells from 10 hearts) and $4.93\pm0.33\%$ (n=76 cells from at least 10 hearts) of resting cell length for WKY and SHR, respectively. Data are expressed as % of control (n=6 to 10 cells from 6 to 10 hearts). PTX does not alter basal contraction ($4.88\pm0.14\%$ and $5.52\pm0.34\%$ of resting cell length for SHR and WKY cells, respectively; n=28 cells from 6 hearts for each group).

Interestingly, another selective $\beta_2$-AR agonist, fenoterol, evoked a full contractile response that was insensitive to PTX (~2-fold (Figure 4A through 4C). Inhibition of $G_i$ function by PTX enabled the $\beta_2$-AR agonists to induce a full contractile response, with the maximal response being a 3-fold increase (Figure 4A through 4C). In other words, with respect to their inotropic effects, inhibition of $G_i$ signaling converted these partial $\beta_2$-AR agonists to full agonists. These results are consistent with previous findings that $\beta_2$-AR can simultaneously activate $G_i$ and $G_s$. A similar potentiating effect of PTX was observed for $\beta_1$-AR stimulation induced by other known $\beta_2$-AR agonists such as terbutaline and celenbuterol, or by nonselective agonists, epinephrine and isoproterenol, plus the $\beta_1$-AR blocker CGP (data not shown).

Interestingly, another selective $\beta_1$-AR agonist, fenoterol, evoked a full contractile response that was insensitive to PTX treatment (Figure 4D). It appears that fenoterol selectively stimulates the $\beta_2$-AR/Gi signaling pathway, whereas other $\beta_1$-AR agonists activate both $G_i$ and $G_s$ proteins in terms of their effects on cardiac myocyte contractility.

**Rescue of the Depressed $\beta_2$-AR Contractile Response by Fenoterol in Myocytes From Failing SHR Hearts**

We next determined whether the apparent $\beta_2$-AR/Gi signaling–specific agonist fenoterol could rescue the diminished contractile response to $\beta_2$-AR stimulation in myocytes from failing SHR hearts. Figure 5A shows typical continuous recordings of myocyte contractile responses to zinterol or fenoterol. Fenoterol induced a robust increase in contraction amplitude in a representative SHR cell. This effect was completely reversed by the $\beta_2$-AR antagonist ICI ($10^{-7}$ mol/L), indicating that the positive inotropic effect of fenoterol is mediated by selective $\beta_2$-AR stimulation. In contrast, zinterol had a very minor effect in another cell from the same heart. Figure 5B shows the average dose-response of contraction amplitude to fenoterol in cardiomyocytes from SHR and age-matched WKY rats. The 2 dose-response curves virtually overlapped each other, in sharp contrast to the markedly suppressed contractile response to zinterol in failing SHR heart cells (Figure 2B). Thus, fenoterol is able to restore a full contractile response to $\beta_2$-AR stimulation in SHR myocytes even in the absence of PTX, thereby abolishing the difference between SHR and WKY.

**Discussion**

**Enhanced $G_i$ Signaling Selectively Contributes to the Diminution of $\beta_2$-AR– but Not $\beta_1$-AR–Mediated Contractile Response in Myocytes From Failing SHR Hearts**

Although previous studies have demonstrated that PTX treatment partially restores the diminished contractile response to mixed $\beta$-AR stimulation in a rat myocardial infarction heart failure model and in myocytes from failing human hearts, the present study provides the first documentation that enhanced $G_i$ signaling is, in fact, selectively involved in heart failure–associated attenuation in $\beta_2$-AR– but not $\beta_1$-AR–mediated increase in myocyte contractility. This is because inhibition of $\beta_2$-AR/Gi signaling by PTX treatment enables $\beta_2$-AR stimulation to induce a full contractile response, thus abolishing the difference between the failing and normal hearts, whereas it does affect $\beta_1$-AR–induced inotropic effect. These findings are consistent with our previous notion that $\beta_1$-AR but not $\beta_2$-AR dually couples to $G_s$ and $G_i$, and that the $G_i$ coupling exhibits an inhibitory effect on the $G_s$ signaling.

Although the heart failure–associated defect of $\beta_1$-AR contractile response is largely attributable to enhanced $\beta_1$-AR/Gs signaling, multiple mechanisms might be involved in $\beta_2$-AR dysfunction, including receptor downregulation and receptor desensitization resulting from upregulated G protein–coupled receptor kinases. In this regard, it has been shown that the level and enzymatic activity of $\beta_2$-AR kinase 1 (BARK1), a prototypic G protein–coupled receptor kinase, are significantly elevated in human and SHR.
failing hearts. The increased βARK1 abundance/activity may contribute to the reduced β1-AR signaling in chronically failing hearts. Further studies are needed to determine the relative contributions of enhanced Gi function and βARK1 to subtype-specific defects of β-AR in the context of heart failure.

Selective Downregulation of β1-AR May Serve as a Protective Mechanism in Heart Failure

It has been highly controversial as to whether enhancing β-AR signaling is beneficial or deleterious for the failing heart. The prevalent view is that chronically increasing nonselective β-AR stimulation is toxic to the heart, because there is an inverse relationship between the plasma level of catecholamines and survival in heart failure patients and because β-AR blockade reduces both the morbidity and mortality in heart failure patients. More recent studies have demonstrated that β1-AR induces apoptosis in cultured rodent cardiomyocytes. Similarly, cardiac transgenic overexpression of β1-AR in mice leads to marked myocyte hypertrophy, apoptosis, and heart failure. Thus, chronic β1-AR stimulation is detrimental to the myocardium.

In contrast, selective enhancement of β2-AR signaling might be beneficial for the failing heart. This hypothesis is supported by the fact that β2-AR stimulation protects cardiac myocytes against a wide array of apoptotic insults. In addition, overexpression of cardiac β2-AR by 100- to 200-fold does not induce hypertrophy or heart failure, at least up to the age of 1 year. In fact, crossing transgenic mice overexpressing cardiac β2-AR at appropriate levels (30-fold) with transgenic mice overexpressing Gq not only improves cardiac performance but also prevents hypertrophy in the Gq overexpression heart failure model, although extremely high levels of β2-AR overexpression induce pathological phenotypes and fail to rescue the genetic mouse heart failure model. Furthermore, the beneficial effect of β2-AR stimulation in the context of heart failure is clearly supported by the analysis of polymorphisms of β2-AR in chronic heart failure patients. The prognosis of heart failure patients with Ile164 polymorphism (a Thr-to-Ile switch at amino acid 164...
with reduced β2-AR signaling) relative to patients without the β2-AR variant is much worse, and they are significantly more likely to receive earlier aggressive interventions or cardiac transplantation.39

In the present study, we found that in failing SHR hearts, β1-AR is selectively downregulated with little or no loss of β2-AR, similar to the situation of chronic human heart failure.1-3 In light of evidence for the opposing effects of β1-AR and β2-AR stimulation on cardiac myocyte apoptosis16-19 and the distinct phenotypes of transgenic overexpression of β1-AR versus β2-AR,33-35 the selective downregulation of β1-AR may represent a cardiac protective mechanism to slow the progression of cardiomyopathy and contractile dysfunction.

Selective Activation of β2-AR/Gs Signaling in Failing SHR Hearts

Because heart failure in many instances is related to a selective loss of β1-AR and because chronic stimulation of β2-AR exhibits no known detrimental effects, as discussed above,35 β2-AR would appear to be a potentially important therapeutic target for the treatment of chronic heart failure. However, most of the commonly used nonselective β-AR agonists (eg, isoproterenol) cannot discriminate β2-AR from β1-AR. In addition, most β2-AR agonists cannot discriminate β2-AR-coupled Gs signaling from Gi signaling. The situation is even worse in chronically failing hearts with elevated Gi signaling, such that β2-AR stimulation by zinterol elicits only a minor contractile response (Figure 2). To unmask the β2-AR/Gs signaling from the inhibition by Gi, we identified fenoterol as an apparent β2-AR/Gs-selective agonist, as evidenced by the lack of PTX sensitivity of its positive inotropic response in cells from nonfailing WKY heart cells (Figure 4). It is also noteworthy that there may be some advantages to use of fenoterol instead of β1-AR inverse agonist, ICI, can direct β2-AR stimulation to induce a full contractile response in myocytes from failing SHR hearts without affecting β1-AR contractile response. Second, β2-AR-coupled Gi and Gs pathways appear to be activated in an agonist-dependent manner. Most agonists tested stimulate both pathways, whereas fenoterol predominantly activates Gi signaling, as manifested by the lack of PTX sensitivity of its positive inotropic effect. Third, the apparent β2-AR/Gs-selective agonist fenoterol fully restores β2-AR contractile response in failing SHR hearts. Therefore, we conclude that enhanced Gi signaling is specifically involved in the dysfunction of β2-AR but not of β1-AR in regulating myocyte contractility in the failing heart and that an apparent selective activation of β2-AR-coupled Gi, bypassing the Gi pathway, provides a novel means to restore the diminished β2-AR responsiveness in the SHR heart failure model. Thus, signaling-selective receptor stimulation by agonists may offer a wide range of novel therapeutic opportunities by enhancing the desired effects while avoiding the adverse side effects of therapeutic agents.

Acknowledgments

This work was supported by the National Institutes of Health (NIH) intramural research programs (Drs Xiao, Lakatta, and Cheng), NIH extramural grants (Drs Bond and Balke), and the American Heart Association (Dr Balke).

References


Enhanced $G_i$ Signaling Selectively Negates $\beta_2$-Adrenergic Receptor (AR)–Mediated Positive Inotropic Effect in Myocytes From Failing Rat Hearts


_Circulation_. 2003;108:1633-1639; originally published online September 15, 2003;
doi: 10.1161/01.CIR.0000087595.17277.73

_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2003 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/108/13/1633

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:

http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:

http://circ.ahajournals.org//subscriptions/