Differentiation of Heart Failure Related to Dilated Cardiomyopathy and Coronary Artery Disease Using Gadolinium-Enhanced Cardiovascular Magnetic Resonance

J.A. McCrohon, FRACP, PhD; J.C.C. Moon, MB, BS, MRCP; S.K. Prasad, MD, MRCP; W.J. McKenna, MD, FRCP, FESC; C.H. Lorenz, PhD; A.J.S. Coats, DM, FRCP, FESC; D.J. Pennell, MD, FRCP, FESC

Background—Heart failure treatment depends partly on the underlying cause of the disease. We evaluated cardiovascular magnetic resonance (CMR) for the problem of differentiating dilated cardiomyopathy (DCM) from left ventricular (LV) dysfunction caused by coronary artery disease (CAD).

Methods and Results—Late gadolinium enhancement with CMR was performed in 90 patients with heart failure and LV systolic dysfunction (63 patients with DCM and unobstructed coronary arteries and 27 with significant CAD at angiography). We also studied 15 control subjects with no coronary risk factors and/or unobstructed coronary arteries. None (0%) of the control subjects had myocardial gadolinium enhancement; however, all patients (100%) with LV dysfunction and CAD had enhancement, which was subendocardial or transmural. In patients with DCM, there were 3 findings: no enhancement (59%); myocardial enhancement indistinguishable from the patients with CAD (13%); and patchy or longitudinal striae of midwall enhancement clearly different from the distribution in patients with CAD (28%).

Conclusions—Gadolinium CMR is a powerful technique to distinguish DCM from LV dysfunction related to CAD and yields new insights in DCM. These data suggest that using the coronary angiogram as the arbiter for the presence of LV dysfunction caused by CAD could have lead to an incorrect assignment of DCM cause in 13% of patients, possibly because of coronary recalibration after infarction. The midwall myocardial enhancement in patients with DCM is similar to the fibrosis found at autopsy; it has not previously been visualized in vivo and warrants further investigation. CMR may become a useful alternative to routine coronary angiography in the diagnostic workup of DCM. (Circulation. 2003;108:54-59.)

Key Words: magnetic resonance imaging ■ cardiomyopathy ■ heart failure

The treatment of patients with left ventricular (LV) systolic dysfunction is determined in part by the identification of the underlying disease process. The primary diagnostic issue centers on differentiating an underlying cause for the LV dysfunction that is related to dilated cardiomyopathy (DCM) or coronary artery disease (CAD). In many centers, coronary angiography is routinely performed for this task. In those patients with unobstructed coronary arteries and no other etiological factor, the diagnosis of DCM is usually made. This differentiation is important clinically for several reasons in patients with CAD: They have a worse prognosis, they may benefit from revascularization and/or aneurysmectomy, and secondary preventive pharmacotherapy with statins and aspirin are typically used. Conversely, in patients with DCM, secondary causes such as excess ethanol ingestion or myocardial iron overload need to be excluded, and as genetic studies of DCM begin to identify inherited abnormalities, accurate phenotyping and family screening will become more important for early diagnosis.

The value of cardiovascular magnetic resonance (CMR) in the treatment of heart failure is becoming established in initial functional assessment and in serial follow-up of ventricular function, CMR offers excellent interstudy reproducibility that allows the technique to be used to determine treatment responses. Gadolinium-enhanced CMR can also characterize areas of myocardial infarction and limited results suggest that gadolinium enhancement is absent in nonischemic LV dysfunction. We therefore evaluated whether gadolinium enhancement might be a useful clinical tool in distinguishing LV dysfunction related to DCM or CAD and whether it may also offer new insights in DCM.
Methods

Patient Population

We prospectively acquired 105 gadolinium-enhanced CMR studies in 90 patients with chronic stable heart failure with dilated heart and LV systolic dysfunction and 15 control subjects (normal ventricular function and ECG and no cardiac risk factors). All patients were recruited from a specialist heart failure clinic. The patients with idiopathic DCM were a consecutive series who consented to participate during their routine outpatient appointment from atypical chest pain. The patients with cardiomyopathy, previous revascularization, significant valve disease, or a history of myocarditis. All participants gave written consent and sequential 8-mm short-axis slices (2-mm gap between slices) having been performed for atypical chest pain. The A Siemens Sonata 1.5-T scanner was used (Erlangen, Germany). Steady-state, free precession cines were acquired during 8-second breath-holds (TE/TR 1.6/3.2 ms, flip angle 60°) in long-axis planes and sequential 8-mm short-axis slices (2-mm gap between slices) from the atrioventricular ring to the apex. Intravenous gadolinium-DTPA was given (0.1 mmol/kg) and contrast-enhanced images were acquired after 10 to 15 minutes in 6 identical short-axis planes by using an inversion-recovery segmented gradient echo sequence, starting with a basal slice 1 cm below the aortic outflow tract and stopping before the apical slices, which can be affected by partial volume effects. Inversion times were adjusted to null normal myocardium (260 to 400 ms) with voxel sizes of 1.7×1.4×8.0 mm.

Data Analysis

Ventricular function parameters were assessed in a standard way, using in-house software (CMRtools, Imperial College). CMR has excellent reproducibility, and normal ranges are published. Wall motion and gadolinium enhancement were assessed blindly by using 12 segments in each of 6 short-axis slices. Segmental wall motion was visually assessed as 0=normal, 1=mild hypokinesis, 2=mild hypokinesis, 3=akinesia, and 4=dyskinesia. The average segmental transmural extent of enhancement in each segment was assessed visually by using the following scale: 0=none, 1=1% to 25%, 2=26% to 50%, 3=51% to 75%, and 4=76% to 100% enhancement. The segments scores were summed, yielding a range per patient of 0 (no enhancement in any slice) to 288. Coronary angiography was read blindly by a single cardiologist.

Statistical Analysis

All continuous variables are expressed as mean±SD; comparison between groups were made by means of unpaired t tests. ANOVA was used to assess differences between more than 2 groups. χ² testing or Fisher’s exact test were performed for noncontinuous variables where appropriate. A 2-tailed probability value of <0.05 was considered statistically significant.

Results

The DCM group was younger, with fewer men and fewer risk factors than in the ischemic group (Table 1). Q waves on the ECG were more common in the ischemic group, with poor R-wave progression being the most common ECG finding in the DCM group. The LV parameters were similar between groups, but the ischemic group had a higher New York Heart Range

<table>
<thead>
<tr>
<th>Functional Parameters Determined by CMR</th>
<th>Normal CMR</th>
<th>DCM</th>
<th>Ischemic LV</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV wall motion score</td>
<td>0</td>
<td>94±64</td>
<td>114±57</td>
<td>0.2</td>
</tr>
<tr>
<td>LVEDV, mL</td>
<td>136±30</td>
<td>246±79</td>
<td>261±62</td>
<td>0.4</td>
</tr>
<tr>
<td>LVEDV, mL/m²</td>
<td>69±11</td>
<td>127±37</td>
<td>140±43</td>
<td>0.2</td>
</tr>
<tr>
<td>LVESV, mL</td>
<td>45±14</td>
<td>155±78</td>
<td>177±66</td>
<td>0.2</td>
</tr>
<tr>
<td>LVESV, mL/m²</td>
<td>23±5</td>
<td>80±37</td>
<td>95±42</td>
<td>0.1</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>67±5</td>
<td>39±13</td>
<td>33±11</td>
<td>0.1</td>
</tr>
<tr>
<td>LVM, g</td>
<td>178±31</td>
<td>187±67</td>
<td>185±41</td>
<td>0.9</td>
</tr>
<tr>
<td>LVMI, g/m²</td>
<td>91±11</td>
<td>97±25</td>
<td>94±15</td>
<td>0.15</td>
</tr>
<tr>
<td>RVEDV, mL</td>
<td>157±35</td>
<td>177±45</td>
<td>148±50</td>
<td>0.01</td>
</tr>
<tr>
<td>RVEDV, mL/m²</td>
<td>80±13</td>
<td>91±21</td>
<td>77±24</td>
<td>0.01</td>
</tr>
<tr>
<td>RVESV, mL</td>
<td>63±20</td>
<td>99±36</td>
<td>79±36</td>
<td>0.02</td>
</tr>
<tr>
<td>RVESV, mL/m²</td>
<td>32±8</td>
<td>51±19</td>
<td>41±17</td>
<td>0.02</td>
</tr>
<tr>
<td>RVF, %</td>
<td>60±7</td>
<td>45±11</td>
<td>48±10</td>
<td>0.3</td>
</tr>
<tr>
<td>NYHA score</td>
<td>NA</td>
<td>1.6±0.8</td>
<td>2.1±0.5</td>
<td>0.005</td>
</tr>
</tbody>
</table>

EDV indicates end-diastolic volume; ESV, end-systolic volume; EF, ejection fraction; I, indexation to body surface area; M, mass; and NYHA, New York Heart Association.

All P values compare DCM and ischemic LV groups. Normal CMR ranges from reference is for a mixed-gender population.

Table 1: Baseline Characteristics of Subjects

<table>
<thead>
<tr>
<th>DCM</th>
<th>Ischemic LV</th>
<th>Control Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>63</td>
<td>27</td>
</tr>
<tr>
<td>Age, y*</td>
<td>54±14</td>
<td>67±10</td>
</tr>
<tr>
<td>Gender, M:F, %*</td>
<td>65:35</td>
<td>93:7</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>82±16</td>
<td>81±17</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.74±0.13</td>
<td>1.75±0.12</td>
</tr>
<tr>
<td>ECG characteristics, n (%)</td>
<td>AF</td>
<td>LBBB</td>
</tr>
<tr>
<td>AF</td>
<td>10 (16)</td>
<td>15 (23)</td>
</tr>
<tr>
<td>LBBB</td>
<td>4 (14)</td>
<td>8 (29)</td>
</tr>
<tr>
<td>Q waves*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Poor RWP*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Minor T-wave changes</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>No. of risk factors*</td>
<td>0.5±0.9</td>
<td>1.8±0.6</td>
</tr>
<tr>
<td>Interval angiography to CMR, y</td>
<td>2.2±2.2</td>
<td>3.4±3.5</td>
</tr>
</tbody>
</table>

VO indicates vessel disease; AF, atrial fibrillation; LBBB, left bundle-branch block; and RWP, R-wave progression.

*P<0.05 between DCM and ischemic LV groups.
†Control subjects had no ECG abnormalities.
Association grade and lower right ventricular (RV) volumes (Table 2). None (0%) of the control subjects had late enhancement. All patients (100%) in the ischemic group had subendocardial or transmural enhancement (Figure 1 and Table 3). The proportion of subjects with enhancement was higher in the ischemic group (100% versus 41%, \(P < 0.001\)), as was the gadolinium score (66 versus 15, \(P < 0.001\)).

In the DCM group, 37 (59%) had no gadolinium enhancement (subgroup 1, Figure 2). In the remaining 26 (41%), however, gadolinium enhancement occurred in 2 distinct patterns: subendocardial enhancement, which was indistinguishable (subendocardial extending toward the epicardium) from the ischemic group (subgroup 2, 13%, Figure 3), or midwall striae or patches of enhancement (subgroup 3, 28%, Figures 4 and 5). In DCM subgroup 2, there was marked wall thinning in the enhanced regions with more pronounced wall motion abnormalities in the enhancing versus the nonenhancing segments (6.3 ± 2.3 mm versus 10.7 ± 1.9 mm, \(P < 0.0001\)). In 50% of these 8 patients, the enhancement was extensive (Figure 3A). The remaining 4 patients had more limited subendocardial infarction and wall thinning (Figure 3B). In all cases, there was no event suggestive of infarction and no Q waves were present, but all had undergone hospitalization for heart failure decompensation of unknown cause.

In DCM subgroup 3, the enhancement was in the midwall of the myocardium, clearly distinct from the subendocardium and subepicardium. There were 2 distributions of enhancement: longitudinal striae, following the fiber orientation of...
the ventricular muscle bundles (Figure 4), and basal to midventricular patchy foci (Figure 5). Finally, 1 patient was diagnosed with arrhythmogenic RV dysplasia.16

Discussion
We investigated CMR for differentiating between DCM and CAD as the underlying cause of LV systolic dysfunction in patients with chronic stable heart failure. The differentiation between control subjects and patients with dysfunction caused by CAD was complete (0% versus 100% enhancement). The patients with DCM could be divided into 3 types: subgroup 1 (59%) showed no enhancement; subgroup 2 (13%) had subendocardial or transmural enhancement that was indistinguishable from the ischemic patients; and subgroup 3 (28%) had longitudinal or patchy midwall enhancement not in the territory of a coronary artery and not subendocardial or otherwise similar to the enhancement in the patients with CAD. The findings in DCM subgroups 1 and 3 are consistent with the clinical diagnosis of dilated cardiomyopathy. The most common pattern of no gadolinium enhancement (subgroup 1) clearly distinguishes these patients from those with CAD. The finding of no gadolinium enhancement in 20 patients with DCM has also been reported by Wu et al.10 However, our data suggest that CMR does have sufficient resolution to image foci of fibrosis for the first time in vivo. The overall extent of fibrosis in DCM is lower than that seen in CAD,19 and our results are consistent with this.

DCM subgroup 2 patients have normal luminal appearances by coronary angiography, but the pattern of subendocardial to transmural enhancement strongly suggests the presence of prior infarction. The occurrence of recanalization after an occlusive coronary event or embolization from minimally stenotic but unstable plaque is well documented.20,21 Autopsy studies in DCM have also described patients with endocardial and transmural fibrosis indistinguishable from myocardial infarction,22 which have been grouped as DCM variants or excluded as myocardial infarction.22 Half of the subgroup 2 patients had extensive gadolinium enhancement, and all had significant risk factors for CAD. This would be most consistent with the assertion that the correct clinical diagnosis should be LV dysfunction related to CAD. The more limited endocardial enhancement in the remaining fibrosis. Current CMR techniques are unlikely to detect diffuse microscopic fibrosis and hence most patients with DCM will have absent enhancement. However, our data suggest that CMR does have sufficient resolution to image foci of fibrosis for the first time in vivo. The overall extent of fibrosis in DCM is lower than that seen in CAD,19 and our results are consistent with this.
subjects suggests infarction of lesser degree. However, LV remodeling occurs with nonextensive infarctions, especially in the absence of suitable modern therapy, and it is noteworthy that none of these patients had a history of acute infarction, having presented directly with heart failure as their first cardiovascular symptom. This is consistent with untreated LV remodeling after ischemic damage as the cause, although the coexistence of LV dysfunction from DCM combined with CAD cannot be excluded. There was no clinical evidence for other potential pathologies such as viral myocarditis or sarcoidosis.

These data suggest therefore that the clinical diagnosis in 13% of our DCM population was either partly or wholly incorrect, which has important therapeutic implications. In addition, as genotyping of DCM matures, accurate phenotyping is important to prevent the unnecessary adverse psychological effects of investigating relatives. Accurate phenotyping also improves the power of gene studies, allowing smaller sample sizes in the investigation of genotypes and gene-environment interactions.

Clinical Implications

Noninvasive tests are not reliable in distinguishing dysfunction related to DCM or CAD because segmental wall motion abnormalities are common in DCM, and scintigraphic perfusion techniques are complicated by attenuation artifacts and denervation in large DCM hearts, leading to false-positive results. Our data show that the coronary disease risk score and RV volumes are different between the DCM and ischemic groups, but substantial overlap occurs. Thus, coronary angiography is usually performed in all cases so that LV dysfunction will not be missed. However, coronary angiography is flawed in identifying the myocardial substrate for heart failure because significant CAD may exist without infarction, and “normal” coronaries may exist in the presence of myocardial damage. This was graphically illustrated in the Assessment of Treatment with Lisinopril And Survival (ATLAS) study, which identified the incorrect assignment at autopsy of an ischemic/nonischemic cause in 17% of patients with an established clinical label of LV dysfunction caused by CAD and 28% of patients with an established clinical label of DCM. It is also implicit in reports attempting to deal with the contingent relation of coronary artery appearance and myocardial damage, which classify patients with heart failure as nonischemic who have single-vessel disease without prior history of infarction or revascularization. Our study suggests that CMR distinguishes LV dysfunction related to DCM or CAD on the basis of identifying gadolinium enhancement and patterns within the myocardium, which is the target tissue in question. This also suggests the potential to reduce the costs and inherent risks associated with invasive cardiac catheterization on which the diagnosis of DCM has until now depended. Although the newer noninvasive techniques of coronary angiography by magnetic resonance and computed tomography are likely to be cheaper and lower risk, the same limitations would apply.

Limitations

We used a dose of gadolinium of 0.1 mmol/kg, but higher doses up to 0.2 mmol/kg have been used for late gadolinium enhancement. An optimal dose has not been defined, although doses in the range of 0.1 to 0.2 mmol/kg are suitable, but higher dosing is more expensive and usually requires a longer delay after injection before imaging to allow...
blood pool signal to fall. A confounding possibility of the use of late gadolinium enhancement to identify DCM would be balanced severe ostial stenoses of left and right coronary arteries in the absence of any infarction potentially leading to a clinical picture of DCM with global dysfunction on the basis of pan–myocardial hibernation. This is very rare, and it is likely that such a patient would have severe unresponsive symptoms. Further studies will clarify this issue. Other conditions cause gadolinium uptake in the myocardium, and this must be considered in interpretation of results in patients with DCM.33,34

Conclusions
Our data suggest that gadolinium CMR can exclude the presence of LV dysfunction related to CAD in heart failure. Furthermore, CMR can identify 2 substantial subgroups of patients with DCM who have either midwall fibrosis or who have an infarction pattern of enhancement and require further evaluation for CAD. Further studies are needed to establish the relation of these new findings to prognosis in heart failure and to confirm whether gadolinium CMR could be used to avoid invasive coronary angiography in patients with DCM.

Acknowledgments
Dr McCrohon was supported by CORDA (The Marian Silcock Fellowship). Drs Moon and McKenna were supported by the British Heart Foundation. CAMRIC was founded by the British Heart Foundation. Research support was received from Siemens. We thank Ross Murphy for help in patient recruitment, Mary Sheppard for help in patient recruitment, Mary Sheppard for the role of myocarditis and BHF fellowship. Drs Moon and McKenna were supported by the British Heart Foundation. CAMRIC was founded by the British Heart Foundation. Research support was received from Siemens. We thank Ross Murphy for help in patient recruitment, Mary Sheppard for discussions on the histopathology of fibrosis in DCM, and Raymond Kim and Robert Judd, who provided training in gadolinium CMR techniques for Dr Moon.

References
Differentiation of Heart Failure Related to Dilated Cardiomyopathy and Coronary Artery Disease Using Gadolinium-Enhanced Cardiovascular Magnetic Resonance

Circulation. 2003;108:54-59; originally published online June 23, 2003;
doi: 10.1161/01.CIR.0000078641.19365.4C

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/108/1/54

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/