Reducions in Systemic and Skeletal Muscle Blood Flow and Oxygen Delivery Limit Maximal Aerobic Capacity in Humans

José González-Alonso, PhD; José A.L. Calbet, MD, PhD

Background—A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied.

Methods and Results—To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10°C and +1°C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4±0.1 L/min (8%), 0.5±0.2 L/min (11%), and 2.2±0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis.

Conclusions—These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle. (Circulation. 2003;107:824-830.)

Key Words: hemodynamics ■ blood flow, regional ■ cardiac output ■ hemodynamics ■ heat stress

During heavy exercise, large volumes of oxygen are transported through the links of the cardiorespiratory transport system to mitochondrial cytochromes for synthesis of ATP in the electron transport chain. The fastest rate at which the body can utilize O2 during heavy exercise is often preceded by a plateau or even a decline in VO2max.9 However, no study to date has determined whether central hemodynamics and skeletal muscle circulation are indeed impaired before fatigue during exercise that requires maximal aerobic capacity.

Therefore, the principal aim of this study was to identify the primary factor that limits VO2max in healthy trained humans. Another aim was to determine the mechanisms underlying the blunted VO2max and early fatigue associated with heat stress. To accomplish this, we used the novel approach of simultaneously measuring systemic hemodynamics and local skeletal muscle circulatory and metabolic factors limit VO2max.1-7

Severe heat stress has been shown to markedly suppress VO2max and work capacity without altering the initial rate of rise in whole-body VO2.8 The mechanisms underlying the compensatory adjustments to heat stress early in exercise and the subsequent precipitated fatigue have never been investigated. During heavy exercise in normal environments, fatigue is often preceded by a plateau or even a decline in VO2max.9

Methods

Eight healthy trained males gave written informed consent to participate in this study, which was approved by the ethics committee of Copenhagen and Frederiksborg. The subjects’ mean (±SD) age, body weight, leg muscle mass, height, maximal heart rate, and VO2max were 24±4 years, 78.1±7.4 kg, 9.8±0.9 kg, 181±5 cm, 191±6 bpm, and 4.7±0.5 L/min, respectively.

Received July 18, 2002; revision received October 24, 2002; accepted October 24, 2002.

From The Copenhagen Muscle Research Centre (J.G.-A.), Rigshospitalet, University of Copenhagen, Denmark, and the Department of Physical Education (J.A.L.C.), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.

Correspondence to José González-Alonso, PhD, The Copenhagen Muscle Research Centre, Rigshospitalet, Section 7652, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark. E-mail jga@cmrc.dk

© 2003 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

DOI: 10.1161/01.CIR.0000049746.29175.3F

824
On the day of the experiment, subjects reported to the laboratory 2 hours before the experiment after breakfast. On arrival, they rested in the supine position. Catheters were placed into the femoral artery, bilateral femoral veins, and antecubital forearm vein by the Seldinger technique under local anesthesia. The femoral artery and vein catheters were positioned 1 to 2 cm proximal or distal from the inguinal ligament. A thermistor to measure venous blood temperature was inserted through the femoral venous catheter oriented in the antegrade direction. The catheter for femoral venous blood sampling was inserted in the retrograde direction to avoid any contamination from blood coming from the great saphenous vein.

Thereafter, subjects completed 3 cycle ergometer exercise tests in the upright position (Excalibur), starting with either high (H; test 1) or normal (N, tests 2 and 3) skin and core temperatures (+10°C and +1°C, respectively, in H versus N). In tests 1 and 3, subjects cycled until volitional fatigue, whereas in test 2, they cycled for the same duration as in heat stress. In every test, power output was held constant at 356±14 W. Each exercise test was separated by 1 hour of rest and was preceded by 10 to 15 minutes of light-intensity cycling (<50% \(\dot{V}O_2 \text{max} \)) and 5 minutes of rest. The exercise intensity was selected such that the subjects would become exhausted within 5 to 10 minutes, and it elicited \(\dot{V}O_2 \text{max} \) in 3 to 5 minutes under normal environmental conditions (80% of 449±48 W peak power output obtained in pretests).

To restore bodily fluid compartments and bodily energy stores, subjects ingested 2 L of a carbohydrate-electrolyte solution (Gatorade) during resting periods. Internal body and skin temperatures were elevated before the maximal aerobic tests by perfusion of hot water (44°C) into a jacket in contact with the skin of trunk and arms while the subject was wearing rain trousers during the light cycling and rest periods. In N trials, subjects wore only shorts while cycling with 2 fans blowing at an ambient temperature of 14°C to 16°C. During the resting period before each intense exercise bout, a muscle biopsy from the vastus lateralis was obtained. During exercise, heart rate, pulmonary \(\dot{V}O_2 \), blood pressure, and venous blood temperature were recorded continuously. Cardiac output (Q) and leg blood flow (LBF) were measured periodically during exercise. Arterial and venous blood samples (10 mL) were drawn simultaneously at 0.5, 1.5, 3, 5.5±0.5, and 7.6±0.4 minutes of exercise. On completion of each exercise bout, a postexercise muscle biopsy was obtained within 20 to 40 seconds.

Pulmonary \(\dot{V}O_2 \) was measured online with an Applied Electrochemistry OCM-3 metabolic cart. Cardiac output was measured by indocyanine (ICG, Akon Inc) dye dilution. LBF was determined by the constant-infusion thermodilution technique. Heart rate was obtained from the continuously recorded ECG signal. Arterial blood pressure was continuously monitored from the femoral artery with the transducer positioned at the height of the inguinal ligament (Pressure Monitoring Kit, Baxter). Systemic and leg vascular conductances were calculated as the quotient between Q or LBF, respectively, and mean arterial blood pressure (MAP). Two-legged blood flow was calculated by multiplying LBF by 2. Two-legged \(\dot{V}O_2 \) uptake was calculated by multiplying 2-legged blood flow by the difference in concentrations of O\(_2\) between the femoral artery and vein. Hematocrit was measured in triplicate after microcentrifugation and corrected for trapped plasma (0.98). Hemoglobin concentration and blood O\(_2\) saturation were determined spectrophotometrically (OSM-3 Hemoximeter, Radiometer). \(\dot{P}O_2 \) was determined with the Astrup technique (ABL5, Radiometer) and corrected for measured blood temperature. Blood lactate was determined with an automated electrolyte-metabolite analyzer (EML 105/100, Radiometer). Plasma nonprotein and epinephrine concentrations were determined with high-performance liquid chromatography with electrochemical detection. Biopsy samples were frozen in liquid nitrogen within 5 to 10 seconds and stored at −80°C until analysis. Muscle biopsies were homogenized and analyzed for lactate, creatine phosphate, and glycogen by fluorometric assays and muscle ATP by a luminometric method. Leg muscle mass was calculated from the whole-body dual-energy x-ray absorptiometry scanning (Lunar DPXIQ®) as the lean mass of the region.

Results

\(\dot{V}O_2\text{max} \) and time to fatigue were significantly diminished in H compared with N (4.28±0.15 versus 4.72±0.18 L/min and 5.45±0.23 versus 7.63±0.42 minutes, respectively), despite attainment of similar peak values for femoral venous blood temperature, heart rate, and pulmonary ventilation (VE 167 to 177 [±6] L/min; Figure 1). Furthermore, whole-body \(\dot{V}O_2 \) during N declined by 0.27±0.09 L/min before exhaustion (\(P<0.05 \); Figure 1). In both H and N, Q, LBF, and MAP declined significantly before exhaustion compared with the corresponding peak exercise values (1.5 to 2.6 L/min and 13 to 14 mm Hg, respectively; Figure 2; \(P<0.05 \). The decline in
Cardiac output and 2-legged blood flow, MAP, and systemic and 2-legged vascular conductance during intense cycling exercise during heat stress and normal trials. Data are mean±SEE for 6 to 7 subjects. *Significantly lower than corresponding peak exercise values, P<0.05. †Significantly lower than normal trials, P<0.05.

Q during the last ∼2 minutes of the exhausting exercise bouts was associated with a greater reduction in stroke volume (10 to 20 mL/beat), because heart rate still increased from 185 to 187 bpm to maximal levels of 191 to 193 bpm (Figure 1). In all trials, the magnitude of changes in LBF paralleled those of MAP, and thus, leg vascular conductance was unchanged throughout exercise (Figure 2). Systemic vascular conductance was also maintained during the last ∼2 minutes of exercise in all the trials (Figure 2), despite the fact that arterial norepinephrine concentration increased over time (Table 1).

During both exhausting exercise bouts, the progressive declines in arterial O₂ saturation and P₀₂ were accompanied by a proportional increase in hemoglobin concentration (Table 1), which allowed the maintenance of arterial O₂ content during exercise (Figure 3). Before exhaustion in both H and N, systemic O₂ delivery and O₂ delivery to the legs decreased by 0.3 to 0.5 L/min compared with their corresponding peak values during exercise (Figures 3 and 4). In sharp contrast, leg O₂ extraction increased progressively by up to 91% in both exhausting trials, yet 2-legged V₀₂ decreased by 0.2 L/min in both trials (Figure 4). The suppression in V₀₂max and 2-legged V₀₂ in H compared with N was similar, amounting to 0.4 to 0.5 L/min.

Muscle glycogen, lactate, ATP, and creatine phosphate (PCr) were similar before the 3 exercise bouts. However, when subjects exercised for the same duration in H compared with N (5.5±0.2 minutes), muscle lactate accumulation, PCr hydrolysis, and ATP hydrolysis were greater, and the rate of leg lactate release tended to be higher (P=0.15; Table 2).

Discussion

There were 3 major findings in this study. First, heat stress drastically reduced V₀₂max compared with the normal condition by accelerating the declines in Q and MAP that led to decrements in locomotive skeletal muscle blood flow, O₂ delivery, and O₂ uptake. Second, the declining skeletal muscle V₀₂ before fatigue with or without heat stress was solely attributed to a similar lowering in systemic and skeletal muscle O₂ delivery, because arterial O₂ content, exercising leg O₂ extraction, and leg vascular conductance were unaltered. Third, the reduced leg V₀₂ with heat stress was accompanied by an enhanced muscle lactate accumulation and ATP and PCr hydrolysis, yet muscle energy stores were not depleted on fatigue. Together, the present findings suggest that impaired skeletal muscle aerobic energy provision and work capacity during maximal aerobic exercise in healthy trained humans are directly related to the inability of the heart to maintain Q and O₂ delivery to locomotive skeletal muscle.

This is the first study to demonstrate that Q, locomotive muscle blood flow, MAP, and systemic and locomotive muscle O₂ delivery decline significantly during exhaustive maximal aerobic exercise in humans. Although heat stress clearly exacerbated cardiovascular instability and drastically reduced V₀₂max, systemic and exercising LBF and O₂ delivery declined similarly before exhaustion when subjects were exposed to both severe heat stress and cold environmental conditions. Therefore, our present findings provide crucial insight into the long-standing debate about the factors that limit maximal aerobic capacity in humans and how blood flow is distributed in hot and cold environments.

During the early stages of exercise, we observed that when heat stress was added and the skin vasodilated, Q was higher (∼1.5 L/min) and blood flow to the legs was lower (0.7 to 2.7 L/min), but systemic and locomotive muscle V₀₂ were strikingly similar among conditions. Importantly, the lower LBF with heat stress was met by elevations in CₐO₂, arteriovenous O₂ difference, and O₂ extraction, which permitted V₀₂ by the legs to be maintained. These precise circulatory adjustments are consistent with evidence that acute alterations in CₐO₂ with anemia, hypoxia, anemia plus hypoxia, hyperoxia, CO plus normoxia, and CO plus hyperoxia evoke reciprocal changes in LBF and arteriovenous O₂ difference compared with normoxia, such that muscle V₀₂ is kept constant. They are also in accord with the progressive augmentation in arteriovenous O₂ difference but equal leg V₀₂ observed during prolonged exercise in the heat, when LBF declines in parallel to the dehydration-induced hemococoncentration. Hence, the distinct LBF response seen here during the initial part of exercise does not appear to be related to the presence of heat stress but rather to concomitant hemococoncentration. Nevertheless, the enhanced Q, the lower
There are several reports documenting a blunting of its absolute regulatory limit, where \(Q \) and \(O_2 \) transport to the heat stress more quickly pushes the cardiovascular system to cant fall in \(V_\text{O}_2 \) max and leg \(V_\text{O}_2 \) extraction afforded a similar initial rate of rise in \(V_\text{O}_2 \) with H compared with N. 18 This is consistent with the present study. The observations that leg arteriovenous \(O_2 \) difference and \(O_2 \) extraction increased progressively until the end of exercise preclude any sudden drop in \(O_2 \) delivery at the time \(O_2 \) delivery to the legs was falling. Thus, the greater decline in convective \(O_2 \) transport to the leg muscles was clearly the cause of the reductions in leg \(V_\text{O}_2 \) before exhaustion in either environmental condition (Figure 4). In the present study, however, leg \(O_2 \) extraction and femoral venous blood reached strikingly equal values of 91% (range 87% to 95%) and 20 mL/L (\(P_2 \) to 15 mm Hg) when exposed to either heat stress or normal conditions. The fact that there was some \(O_2 \) left in the femoral venous blood could be interpreted to mean that muscle \(O_2 \) extraction was not maximal. However, femoral venous blood reflects mixed blood from all leg tissues (skin, bone, connective tissue, and fat account for 20% of the 12.1 kg of leg in these subjects), including muscles with presumably different levels of activation, metabolism, and \(O_2 \) extraction during exercise. 20 It could then be envisioned that most active muscle fibers were extracting nearly all circulating \(O_2 \), particularly in those 4 subjects with 94% to 95% average leg \(O_2 \) extraction, and that the remaining \(O_2 \) in the femoral vein could be accounted for, at least in part, by the lower \(O_2 \) extraction of skin, connective tissue, fat, and bone. In this context, the contribution of muscle \(O_2 \) conductance in limiting locomotive muscle \(V_\text{O}_2 \) during whole-body exercise in trained humans is very small.

The observation that \(Q \), \(LBF \), and \(MAP \) declined significantly before maximal heart rate was reached indicates that
maximal cardiovascular function was attained below maximal heart rate. The decline in stroke volume clearly caused the drop in Q (1.5 to 2.9 L/min), although the underlying mechanisms remain obscure. The classic study of Rowell et al. using untrained men showed that heat stress during moderate exercise caused significantly lower stroke volume, central blood volume, and Q, yielding the hypothesis that the reduction in central blood volume and cardiac filling secondary to the increased skin blood flow and volume was the cause of the impaired stroke volume with heat stress.2,6 The present results that stroke volume was similar early in exercise and that, before exhaustion, it tended to decline even more in the cold than in the heat stress condition (20°C/110°C versus 10°C/H110°C mL/beat; P=0.15; Figure 5) strongly argue against a role of skin circulation. Instead, the fall in stroke volume during the last 2 minutes of exercise in both fatiguing trials coincided with a declining MAP, an internal body temperature of >39°C, and almost-maximal heart rate (185 to 187 bpm). The reduced MAP rules out an augmented afterload as a contributing factor. An alternative possibility is that different factors interact to alter preload and/or left ventricular systolic and diastolic function and impair stroke volume.18 In support of a role of hyperthermia and concomitant tachycardia, we have recently shown that blunting hyperthermia and thereby slowing the rate of rise in heart rate in dehydrated individuals restores 65% of the fall in VO2max evoked by hyperthermia alone or combined dehydration and hyperthermia.8 Therefore, the decline in stroke volume during heavy exercise could be related in part to the simple restriction in left ventricular filling time and left ventricular end-diastolic volume that accompanies severe tachycardia.

The declining systemic O2 delivery and VO2max during heavy exercise indicate that the mechanisms of fatigue were undoubtedly complex, possibly involving inhibitory signals that originated in different bodily tissues and organs. Clearly, the locomotive skeletal muscle was the main bodily tissue accounting for the reductions in peripheral blood flow and VO2. Consistent with our circulatory data, we observed that the reduced leg VO2 with heat stress was accompanied by enhanced net PCr hydrolysis, net ATP hydrolysis, muscle lactate accumulation, and somewhat higher net leg lactate release, which added together apparently sustained total leg energy turnover. Depletion of muscle ATP, PCr, and glycogen does not appear to be the cause of fatigue with or without heat stress, because the levels of these substrates were still high on exhaustion. Regardless of this, the dramatic metabolic changes in contracting muscle cells that preceded exhaustion were quite likely mirrored by increases in intramuscular Pn, ADP, and H+, which have been shown to depress contractile function in skinned and intact fibers.21 Moreover,
exhaustion in both trials coincided with a similar femoral venous blood temperature of 39.5°C to 39.7°C, which indicates that leg muscle temperature was 40°C to 41°C. Thus, it could be postulated that the abrupt accumulation in muscle cells of Pi, ADP, and H+ together with the high muscle temperature might have inhibited muscle contractile processes and thus contributed to fatigue during heavy exercise.

In summary, we showed that heat stress reduces V_O^max by accelerating the declines in Q and MAP that lead to decrements in locomotive skeletal muscle blood flow, O$_2$ delivery, and O$_2$ uptake. Furthermore, we showed that the fall in locomotive muscle O$_2$ before fatigue in either condition was associated with the reduction in systemic and muscle O$_2$ delivery. Finally, fatigue with or without exogenous heat stress was not related to depletion of muscle glycogen, PCr, or ATP. Taken collectively, our findings suggest that the suppressed systemic and locomotive skeletal muscle aerobic capacity that precedes fatigue with and without heat stress in trained subjects is closely related to the inability of the heart to maintain Q and O$_2$ delivery to locomotive muscle. Future experiments should address whether the same phenomenon occurs in untrained individuals of different ages and sexes.

Acknowledgments

This study was supported by grants from the Danish National Research Foundation (504-14), the Gatorade Sports Science Institute, and Team Denmark. The excellent technical assistance of Birgitte Jessen, Karin Hansen, Carsten Nielsen, Kristina Møller, and Ingelise Kring is acknowledged. Special thanks are given to Dr Lene Rørdam from the Department of Clinical Physiology, Bispebjerg Hospital, Copenhagen, for performing the body composition analysis by DEXA scanning.

References

Reductions in Systemic and Skeletal Muscle Blood Flow and Oxygen Delivery Limit Maximal Aerobic Capacity in Humans
José González-Alonso and José A.L. Calbet

Circulation. 2003;107:824-830; originally published online January 27, 2003;
doi: 10.1161/01.CIR.0000049746.29175.3F

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/107/6/824

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/