Vitamin E Reduces Progression of Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice With Established Vascular Lesions

Tillmann Cyrus, MD; Yuemang Yao, BSc; Joshua Rokach, PhD; Lina X. Tang, MD; Domenico Praticò, MD

Background—A growing body of evidence from animal studies supports the hypothesis that oxidative stress-mediated mechanisms play a central role in early atherogenesis. In contrast, clinical trials with antioxidant vitamins have not produced consistent results in humans with established atherosclerosis.

Methods and Results—Low-density lipoprotein receptor-deficient mice (LDLR KO) were fed a high-fat diet for 3 months to induce atheroma. At this time, 1 group of mice was euthanized for examination of atherosclerosis, and 2 other groups were randomized to receive high-fat diet either alone or supplemented with vitamin E for 3 additional months. At the end of the study, LDLR KO on a vitamin E-supplemented diet had decreased 8,12-iso-isoprostane (iP)F2α-V1 and monocyte chemoattractant protein-1 levels, but increased nitric oxide levels compared with mice on placebo. No difference in lipid levels was observed between the 2 groups. Compared with baseline, placebo group had progression of atherosclerosis. In contrast, vitamin E-treated animals showed a significant reduction in progression of atherosclerosis.

Conclusions—These results demonstrate that in LDLR KO, vitamin E supplementation reduces progression of established atherosclerosis by suppressing oxidative and inflammatory reactions and increasing nitric oxide levels. (Circulation. 2003;107:521-523.)

Key Words: atherosclerosis • antioxidants • lipids • inflammation • nitric oxide
divided in 3 groups of 14 animals each, with mean cholesterol levels that were not significantly different. One group of animals was killed immediately for analysis of atherosclerosis (baseline group). The remaining mice were randomized to receive high-fat diet alone or supplemented with vitamin E (2 IU/g diet) for 3 additional months. Blood samples were obtained from mice at baseline and then at monthly intervals until the end of the study.

Biochemical Analyses
Plasma cholesterol and triglyceride levels were measured enzymatically and vitamin E levels were assayed by high-performance liquid chromatography as previously described. Total plasma NO metabolites were evaluated with measurements of nitrite+nitrate by a colorimetric assay (Assay Design). Plasma 8,12-iso-iPF_{2α}-VI levels were measured by gas chromatography/mass spectrometry, as previously described. Levels of soluble intercellular adhesion molecules-1 (s-ICAM1) and monocyte chemoattractant protein-1 (MCP-1) were measured by ELISA kits (Endogen, Inc and R&D System).

Preparation of Mouse Aortas and Quantitation of Atherosclerosis
After the final blood collection, mice were euthanized and the aortic tree was perfused for 10 minutes with ice-cold PBS containing 20 μmol/L BHT and 2 mmol/L EDTA (pH 7.4) as previously described. After removal of the surrounding adventitial fat tissue, the aorta was opened longitudinally, fixed in formal-sucrose, and stained with Sudan IV. The extent of atherosclerosis was determined using the en face method, in a blinded fashion as previously described.

Histology and Immunohistochemistry
Briefly, serial frozen sections of the aortic root of the proximal aorta, starting at the sinus, were examined. Immunostaining for macrophage content was performed as previously described. Briefly, a Mab to mouse macrophages (MOMA-2; Accurate Chemicals), and a Mab anti-human smooth muscle α-actin (Sigma Chemical Co) for smooth muscle cells were used. Antibody reactivity was detected using a Nova red substrate kit (SK-4800, Vector Laboratory). Cross sections were counterstained with hematoxylin. As control, no primary antibody was added to the same sections. Images of immunostained sections were captured and analyzed in a blinded fashion as previously described.

Statistical Analysis
Results were expressed as mean±SEM. Data were analyzed by ANOVA and subsequently by Student’s unpaired 2-tailed t test, as indicated. Probability values less than 0.05 were considered as significant.

Results
Vitamin E Effects on Plasma Lipids
Compared with baseline group, mice from the placebo group showed a further significant increase in both plasma cholesterol and triglycerides. This increase was also evident in LDLR KO mice receiving the high-fat diet supplemented with vitamin E (Table). No significant difference in lipid levels was found between mice on vitamin E or high-fat diet alone. Compliance with vitamin E dietary regimen was demonstrated by a significant increase in its circulating levels in mice on vitamin E-enriched diet (Table). Elevation of plasma vitamin E levels was also evident when the values were normalized for cholesterol (data not shown).

Vitamin E Effects on Oxidative and Inflammatory Processes
Plasma levels of 8,12-iso-iPF_{2α}-VI, a major F_{2α}-isoprostane and a specific marker of lipid peroxidation, were further elevated in LDLR KO mice kept on a high-fat diet alone when compared with the baseline group. In contrast, vitamin E significantly reduced these levels to values that were similar to the ones observed in mice at baseline (Table). At the end of the study, mice on the high-fat diet alone had a further increase in s-ICAM-1 and MCP-1 circulating levels, whereas vitamin E significantly reduced them (Table). Because impaired NO synthesis has been described in hypercholesterolemia, we examined the effect of vitamin E supplementation on NO metabolite (NOx) levels. Compared with baseline, plasma NOx levels were further reduced in mice on a high-fat diet alone. In contrast, vitamin E supplementation preserved higher plasma NOx levels compared with both baseline and the placebo group (Table).

Vitamin E Effects on Preexisting Atherosclerotic Lesions
The Sudan IV-stained aorta preparations of the LDLR KO mice on the high-fat diet for 3 months showed atherosclerotic lesions mainly localized in the sinus and arch portions, covering 11.2±1.4% of the entire vessel (Figure 1). The aortas from mice receiving a high-fat diet for 3 additional months demonstrated further progression of atherosclerosis, which involved the thoracic and abdominal portions of the aorta. In contrast, this area was significantly reduced in LDLR KO mice on high-fat diet supplemented with vitamin E (Figure 1). No significant difference was observed with the baseline group (Figure 1).

Immunohistochemical analyses of aortic root sections showed no difference in the percentage area occupied by

<table>
<thead>
<tr>
<th>Characteristic of the 3 Groups of Mice</th>
<th>Baseline</th>
<th>Placebo</th>
<th>Vitamin E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol, mg/dL</td>
<td>800±50</td>
<td>1150±100†</td>
<td>1115±85</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>450±45</td>
<td>710±60†</td>
<td>680±70</td>
</tr>
<tr>
<td>Vitamin E, μM</td>
<td>20±2</td>
<td>16±1.8†</td>
<td>52±2.2*</td>
</tr>
<tr>
<td>8,12-iso-iPF_{2α}-VI, pg/mL</td>
<td>750±60</td>
<td>1100±55†</td>
<td>630±50</td>
</tr>
<tr>
<td>sICAM-1, ng/ml</td>
<td>11±1.5</td>
<td>14±2</td>
<td>10±2*</td>
</tr>
<tr>
<td>MCP-1, ng/ml</td>
<td>200±15</td>
<td>245±21</td>
<td>180±16*</td>
</tr>
<tr>
<td>Nox, μM</td>
<td>30±3.2</td>
<td>18±2.6†</td>
<td>48±2.4*</td>
</tr>
</tbody>
</table>

Each group includes 14 mice. Results are expressed as mean±SEM. *P<0.05 vs placebo; †P<0.05 vs baseline.

Figure 1. Percentage of total aortic atherosclerotic lesion areas in LDLR KO mice fed a high-fat diet for 3 months (baseline), and those fed a high-fat diet alone or with vitamin E for 12 additional weeks (n=14 per group). *P<0.01 versus placebo.
Discussion

In the current study, we demonstrated for the first time that chronic supplementation of vitamin E retards the progression of established atherosclerotic lesions in LDLR KO mice on a high-fat diet by decreasing oxidative and inflammatory reactions and increasing NO levels.

Lipid peroxidation, in particular oxidative modification of LDL in vivo, is thought to play a functional role in atherogenesis. Evidence consistent with this hypothesis includes the presence of oxidized lipids in atherosclerotic lesions and the reduction of murine atherosclerosis by structurally distinct antioxidants. Several trials have shown, however, that antioxidants do not reduce the risk of fatal or non-fatal infarction in an unselected population with established atherosclerosis. These conflicting results do not necessarily mean that the oxidative hypothesis of atherosclerosis is incorrect. It is possible that the animal intervention studies deal primarily with early lesions, whereas clinical trials deal with established ones. We have previously shown that in vivo lipid peroxidation is increased in the apolipoprotein E-deficient mice and LDLR KO mice, and that its inhibition by vitamin E coincides with a reduction in atherosclerosis. It is plausible that in humans antioxidants have little or no effect because they are given when lesions are already established. To test this hypothesis, LDLR KO mice initially kept on a high-fat diet for 3 months were subsequently randomized to either receive a high-fat diet supplemented with vitamin E or stay on the high-fat diet alone for 12 additional weeks. We found that vitamin E reduced progression of atherosclerosis without affecting lipid levels by suppressing oxidative stress. These results support the concept that vitamin E is effective in LDLR KO mice whether it is given at the early phase of atherogenesis or after the disease is established.

Atherosclerosis is associated with oxidative stress, which is characterized by a reduction of endogenous antioxidants and NO levels. We confirmed these data by showing that vitamin E restores and increases these levels. Reactive oxygen species can interact with NO and produce peroxynitrite, which in turn can further sustain oxidative injury to the endothelium. By restoring the endogenous antioxidant status, vitamin E increases NO levels and limits peroxynitrite formation, which could then act as additional antiatherogenic mechanisms by reducing vascular inflammation. Indeed, our present findings demonstrate that by reducing oxidative stress, vitamin E improves indices of inflammation and endothelial function, which are critically involved in the progression of atherosclerosis.

In interpreting our results, we must consider an important limitation of this study; no animal model mimics perfectly human atherosclerosis. Despite this fact, our study supports the hypothesis that the discrepancies between animal studies and clinical trials with vitamin E cannot be explained by the timing of the intervention, ie, early versus established lesions.

Acknowledgments

This work was supported by a grant from the American Heart Association (030211N) to Dr Praticò.

References

Vitamin E Reduces Progression of Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice With Established Vascular Lesions
Tillmann Cyrus, Yuemang Yao, Joshua Rokach, Lina X. Tang and Domenico Praticò

Circulation. 2003;107:521-523; originally published online January 20, 2003;
doi: 10.1161/01.CIR.0000055186.40785.C4
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/107/4/521

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/