Simvastatin Reduces Neointimal Thickening After Experimental Angioplasty

To the Editor:

We read with interest the study by Chen and associates that showed that simvastatin reduces neointimal proliferation in mice after vascular injury in a cholesterol-independent manner.1 However, we already documented this finding in vitro and in vivo in a previous article.2

In fact, it has been documented that simvastatin inhibits in vitro smooth muscle cell proliferation independent of cholesterol.2 In addition, in vivo experiments have shown that statins potently affect neointimal proliferation in a dose-dependent manner in a reliable model of balloon injury in the rat.2 This effect was abolished by local administration of mevalonate.2 We are delighted that the study of Chen et al confirms,1 in genetically modified mice, our findings.2

With regard to the potential mechanism of statin on neointimal proliferation, we previously discussed a key role of ras pathway in neointimal proliferation after balloon injury.3 Recently, we also showed that statins powerfully inhibit ras farnesilation and activation.4 Therefore, statin-induced Ras-MAPKKs pathway inhibition may play a critical role in the effect of simvastatin on neointimal formation after vascular injury.

Ciro Indolfi, MD
Antonio Curcio, MD
Division of Cardiology
Magna Graecia University
Catanzaro, Italy

Massimo Chiariello, MD
Division of Cardiology
Frederico II University
Naples, Italy


Simvastatin Reduces Neointimal Thickening After Experimental Angioplasty
Ciro Indolfi, Antonio Curcio and Massimo Chiariello

Circulation. 2003;107:e25
doi: 10.1161/01.CIR.0000050549.85811.9D
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/107/3/e25

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/