FKBP12.6-Mediated Stabilization of Calcium-Release Channel (Ryanodine Receptor) as a Novel Therapeutic Strategy Against Heart Failure

Masafumi Yano, MD, PhD; Shigeki Kobayashi, MD, PhD; Masateru Kohno, MD; Masahiro Doi, MD; Takahiro Tokuhisa, MD; Shinichi Okuda, MD; Masae Suetsugu, BS; Takayuki Hisaoka, MD, PhD; Masakazu Obayashi, MD, PhD; Tomoko Ohkusa, MD, PhD; Michihiro Kohn, MD, PhD; Masunori Matsuzaki, MD, PhD

Background—The development of heart failure is tightly correlated with a decrease in the stoichiometric ratio for FKBP12.6 binding to the ryanodine receptor (RyR) in the sarcoplasmic reticulum (SR). We report that a new drug, the 1,4-benzothiazepine derivative JTV519, reverses this pathogenic process. JTV519 is known to have a protective effect against Ca2+ overload–induced myocardial injury.

Methods and Results—Heart failure was produced by 4 weeks of rapid right ventricular pacing, with or without JTV519; SR were then isolated from dog left ventricular (LV) muscles. First, in JTV519-treated dogs, no signs of heart failure were observed after 4 weeks of chronic right ventricular pacing, LV systolic and diastolic functions were largely preserved, and LV remodeling was prevented. Second, JTV519 acutely inhibited both the FK506-induced Ca2+ leak from RyR in normal SR and the spontaneous Ca2+ leak in failing SR. Third, there was no abnormal Ca2+ leak in SR vesicles isolated from JTV519-treated hearts. Fourth, in JTV519-treated hearts, both the stoichiometry of FKBP12.6 binding to RyR and the amount of RyR-bound FKBP12.6 were restored toward the values seen in normal SR. Fifth, in JTV519-untreated hearts, RyR was PKA-hyperphosphorylated, whereas it was reversed in JTV519-treated hearts, returning the channel phosphorylation toward the levels seen in normal hearts.

Conclusions—During the development of experimental heart failure, JTV519 prevented the amount of RyR-bound FKBP12.6 from decreasing. This in turn reduced the abnormal Ca2+ leak through the RyR, prevented LV remodeling, and led to less severe heart failure. (Circulation. 2003;107:477-484.)

Key Words: sarcoplasmic reticulum ■ heart failure ■ calcium ■ ion channels ■ remodeling
Production of Pacing-Induced Heart Failure

In beagle dogs weighing 10 to 14 kg (Kitayama Labs Co, Ltd, Nagano, Japan), we induced heart failure by 28 days of rapid right ventricular (RV) pacing at 250 bpm, using an externally programmable miniature pacemaker (Medtronic Inc), as described previously. Then, with the dogs under anesthesia, we chronically implanted a 5F micromanometer (Millar) in the left ventricle (LV) through the apex for the measurement of LV pressure. Because we found that JTV519 (0.5 mg/kg) significantly improved LV relaxation in dogs with rapid RV pacing (~14% reduction in the time constant of LV pressure decay) for at least 1 hour when it was acutely infused (unpublished data), we continuously infused JTV519 (12 [0.5×24] mg/kg per day) by means of an infusion pump. At this dose, the plasma concentrations in dogs with 1 week (1w) and 4 weeks (4w) of pacing were 822.9±6.0 ng/mL and 823.9±33.1 ng/mL (n=4), respectively. To obtain the diastolic pressure–diameter relation, phenylephrine (2 to 10 μg/kg per minute) was infused intravenously for 10 minutes to increase LV pressure in 8 conscious dogs [4 dogs, JTV519(−); 4 dogs, JTV519(+)].

Preparation of SR Vesicles

We prepared SR vesicles essentially by the method of Kranias et al, with modifications that have been described elsewhere. Ca²⁺ Uptake and Ca²⁺ Leak Assays

Ca²⁺ uptake and the following Ca²⁺ leak assays were done as described previously. Ca²⁺ uptake function under different [Ca²⁺] was measured with the use of Ca²⁺, as described previously. [³H]dihydro-FK506 and [³H]ryanodine Binding Assays

We performed [³H]dihydro-FK506 and [³H]ryanodine (Dupont NEN) binding assays as described previously. We calculated the stoichiometry of FKBP per RyR directly from the ratio of the Bₐ₄max values for [³H]dihydro-FK506 binding and [³H]ryanodine binding. Site-Directed Labeling of RyR

We performed specific fluorescent labeling of RyR in SR vesicles by using the cleavable heterobifunctional cross-linking reagent [3 H]dihydro-FK506 and [3 H]ryanodine from PIERCE, with polyly

TABLE 1. Hemodynamic and Hormonal Data

<table>
<thead>
<tr>
<th></th>
<th>HR, bpm</th>
<th>PSP, mm Hg</th>
<th>EDP, mm Hg</th>
<th>+dP/dt, mm Hg/s</th>
<th>τ, ms</th>
<th>EDD, mm</th>
<th>ESD, mm</th>
<th>FS, %</th>
<th>Nor, pg/mL</th>
<th>EDP, pg/mL</th>
<th>ANP, pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTV519 untreated (n=11)</td>
<td></td>
</tr>
<tr>
<td>Preparing</td>
<td>134±14</td>
<td>130±9</td>
<td>5.7±3.2</td>
<td>3015±192</td>
<td>15.5±2.7</td>
<td>31.4±2.5</td>
<td>22.0±3.9</td>
<td>30.2±10.5</td>
<td>168±95</td>
<td>31±27</td>
<td>21±11</td>
</tr>
<tr>
<td>Pacing, 1w</td>
<td>130±21</td>
<td>118±7</td>
<td>15.2±3.3†</td>
<td>1590±261</td>
<td>27.5±5.2†</td>
<td>36.7±2.5†</td>
<td>30.2±2.4†</td>
<td>17.7±3.4†</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Pacing, 4w</td>
<td>136±5</td>
<td>124±22</td>
<td>30.8±4.0†</td>
<td>1448±309†</td>
<td>39.9±8.6†</td>
<td>39.6±2.0†</td>
<td>34.4±2.8†</td>
<td>13.2±3.3†</td>
<td>1044±365†</td>
<td>117±50†</td>
<td>193±59†</td>
</tr>
<tr>
<td>JTV519 treated (n=10)</td>
<td></td>
</tr>
<tr>
<td>Preparing</td>
<td>131±16</td>
<td>137±12</td>
<td>5.0±1.7</td>
<td>3256±262</td>
<td>15.7±2.5</td>
<td>30.9±2.8</td>
<td>22.6±3.7</td>
<td>27.0±9.3</td>
<td>199±36</td>
<td>19±12</td>
<td>21±9</td>
</tr>
<tr>
<td>Pacing, 1w</td>
<td>122±11</td>
<td>121±23</td>
<td>9.3±2.3§</td>
<td>1994±505†</td>
<td>21.9±2.3†</td>
<td>33.0±2.3§</td>
<td>26.7±2.7</td>
<td>19.1±6.5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Pacing, 4w</td>
<td>119±15</td>
<td>118±11</td>
<td>14.4±3.4§</td>
<td>1819±350†</td>
<td>23.6±2.2†</td>
<td>35.3±3.4§</td>
<td>28.9±4.4†</td>
<td>18.4±9.5</td>
<td>387±181§</td>
<td>22±7§</td>
<td>72±21§</td>
</tr>
</tbody>
</table>

HR indicates heart rate; PSP, left ventricular peak systolic pressure; EDP, left ventricular end-diastolic pressure; +dP/dt, peak +dP/dt of LV pressure; τ, time constant of left ventricular pressure decay during isovolumic relaxation period; EDD, left ventricular end-diastolic diameter; ESD, left ventricular end-systolic diameter; FS, fractional shortening; (LVEDD−LVEDD)/LVEDD×100; Nor, norepinephrine; All, angiotensin II; and ANP, atrial natriuretic peptide.

*P<0.05, †P<0.01 vs JTV519 untreated. §P<0.01 vs prepacing.

Figure 1. a, Representative M-mode echocardiograms in normal dog, and in JTV519-unreated (4w of pacing) and JTV519-treated (4w of pacing) dogs. Two-dimensional short-axis echocardiograms were obtained at the level of the head of the papillary muscle. LV end-diastolic and LV end-systolic diameters were smaller in JTV519-treated dogs than in JTV519-untreated dogs. b, Representative diastolic pressure–diameter relations obtained during phenylephrine infusion (2 to 10 μg/kg per minute) in JTV519-unreated and JTV519-treated dogs. Control (circles), 1w of pacing (triangles), and 4w of pacing (squares).
sine as a site-specific carrier, as described previously. Then, we monitored the time course of the FK506-induced changes in the fluorescence intensity (arbitrary units) of the RyR-bound methyl-coumarin-acetamido (MCA) probe under the same conditions as those used for the Ca2+-leak assay as described previously.

Immunoblot Analysis

We performed immunoblot analyses for FKBP12.6 and SR Ca2+-ATPase as previously described. As recommended by Marx et al, we achieved coimmunoprecipitation of FKBP12.6 from SR by using anti-RyR antibody (Oncogene Research Products) followed by immunoblotting with anti-FKBP12 (C-19) antibody (Santa Cruz Biotechnology). Specific antibodies against phospho-serine 16-phospholamban (PLB; Upstate biotech) and an epitope common to all PLB forms (PLB; Upstate biotech) were also used.

Dissociation and Reconstitution of FKBP12.6

We achieved dissociation of FKBP12.6 from, and its reconstitution into, SR vesicles by the method of Timerman et al, with slight modifications. Briefly, we preincubated SR vesicles (2 mg/mL) in imidazole homogenization medium (IHM) (5 mmol/L imidazole-Cl, pH 7.4, and 0.3 mol/L sucrose) containing 5 \mu mol/L FK506. We centrifuged samples to yield sedimentable and supernatant fractions. The pellet was resuspended in IHM buffer and is referred to as FKBP12.6-deficient SR. We also attempted to achieve reconstitution of FKBP12.6 or FKBP12 into failing SR vesicles by mixing rFKBP12.6 or rFKBP12 (1 \mu g/mL) with failing SR vesicles (2 mg/mL) at room temperature for 30 minutes in the presence or absence of 1 \mu mol/L JTV519.

Statistics

We used a 1-way or 2-way ANOVA to compare data between groups. When we identified a significant trend by the F test, we used Scheffe’s post hoc test to compare the data. Data are expressed as mean±SD. We accepted a probability value <0.05 as statistically significant (*P < 0.05, **P < 0.01 versus normal or prepping, #P < 0.05, ## P < 0.01 versus without JTV519 or JTV519-untreated. +P < 0.05, ++P < 0.01 versus 1w of pacing).
Results

Hemodynamic Data and Echocardiographic Assessment

In JTV519-treated dogs with chronic RV pacing, both systolic and diastolic functions were largely preserved, and heart failure developed in none of these dogs (Table 1 and Figure 1a). We obtained representative diastolic pressure (P)–diameter (D) relations during phenylephrine infusion (Figure 1b). These demonstrate that in the JTV519-untreated dog, the curve shifted to the right as the pacing period increased, indicating the development of LV remodeling (Figure 1b). In contrast, there was no such shift in the JTV519-treated dog. Plasma norepinephrine, angiotensin II, and atrial natriuretic peptide were all higher after rapid chronic pacing than in normal dogs without RV pacing. Chronic administration of JTV519 significantly reduced the levels of all these neurohormonal factors in the paced-heart dogs (Table 1). These data indicate that in the JTV519-treated dogs, there were no signs of heart failure after chronic RV pacing.

Restoration of Normal Mode of FKB12.6-Mediated Stabilization of RyR

JTV519 almost completely inhibited the FK506-induced Ca\(^{2+}\) leak in normal SR vesicles and also the spontaneous Ca\(^{2+}\) leak in failing SR vesicles (Figure 2a). Diltiazem partially inhibited both Ca\(^{2+}\) leaks at slightly higher concentrations than JTV519, and neither nifedipine nor verapamil affected either type of Ca\(^{2+}\) leak (Figure 2b). In JTV519-treated SR vesicles from 1w- and 4w-paced hearts, a spontaneous Ca\(^{2+}\) leak was not observed (Figure 2c).

The addition of FK506, after completion of Ca\(^{2+}\) uptake, led to an increase in MCA fluorescence in normal SR vesicles but virtually no change in MCA fluorescence in failing SR vesicles (Figure 2d). We proposed previously\(^4\) that an MCA fluorescence change of the type shown in Figure 2d reflects the time course of the conformational change in RyR produced by the FK506-induced dissociation of FKB12.6 from the RyR. JTV519 completely inhibited the FK506-induced change in MCA fluorescence in normal SR vesicles (Figure 2d). Interestingly, JTV519 decreased the level of MCA fluorescence in failing SR vesicles, although there was no change at all in normal SR vesicles. These results suggest the following. In failing SR vesicles, the RyR are in a state of high MCA fluorescence (corresponding to the FKBP-deficient RyR state), and the binding of JTV519 to the RyR produced a low MCA fluorescence state equivalent to a low Ca\(^{2+}\)-leak state (and corresponding to the FKBP-bound state).

The above view is supported by the following experiment (Figure 3). In normal SR, dissociation of FKB12.6 from RyR was induced by FK506 (0.3 μmol/L) and its effect on baseline MCA fluorescence level and Ca\(^{2+}\) leak. IP indicates fraction immunoprecipitated from SR using anti-RyR antibody followed by immunoblotting with anti-FKB12 antibody. S indicates supernatant containing soluble FKBP-FK506 complex; P, pellet. b, Inhibitory effect of JTV519 (1 μmol/L) on dissociation of FKB12.6 from RyR by various concentrations of FK506 in normal SR. c, Inhibitory effect of JTV519 (1 μmol/L) on dissociation of FKB12.6 from RyR induced by cAMP-dependent (0.3 μmol/L) PKA phosphorylation of RyR in normal SR. PKI indicates protein kinase A inhibitor. d, Reconstitution of rFKBP12.6 (1 μg/mL) into failing SR vesicles (2 mg/mL) and its effect on baseline MCA fluorescence level and Ca\(^{2+}\) leak. Both the immunoblotting of RyR and PKA back-phosphorylation of the RyR were also shown. Back-phosphorylation of the immunoprecipitated RyR was initiated with Mg-ATP containing 10% [\(^{32}\)P]ATP (NEN Life Sciences) in the presence of PKA (5 U).\(^6\) Note that the MCA fluorescence (net value, in arbitrary units; labeled SR minus unlabeled SR) increased as SR became FKB12.6-deficient but decreased as SR bound FKB12.6 again.

Figure 3. a, Dissociation of FKB12.6 by 30 μmol/L FK506 from normal SR and its effect on baseline MCA fluorescence level and Ca\(^{2+}\) leak. IP indicates fraction immunoprecipitated from SR using anti-RyR antibody followed by immunoblotting with anti-FKB12 antibody. S indicates supernatant containing soluble FKBP-FK506 complex; P, pellet. b, Inhibitory effect of JTV519 (1 μmol/L) on dissociation of FKB12.6 from RyR by various concentrations of FK506 in normal SR. c, Inhibitory effect of JTV519 (1 μmol/L) on dissociation of FKB12.6 from RyR induced by cAMP-dependent (0.3 μmol/L) PKA phosphorylation of RyR in normal SR. PKI indicates protein kinase A inhibitor. d, Reconstitution of rFKBP12.6 (1 μg/mL) into failing SR vesicles (2 mg/mL) and its effect on baseline MCA fluorescence level and Ca\(^{2+}\) leak. Both the immunoblotting of RyR and PKA back-phosphorylation of the RyR were also shown. Back-phosphorylation of the immunoprecipitated RyR was initiated with Mg-ATP containing 10% [\(^{32}\)P]ATP (NEN Life Sciences) in the presence of PKA (5 U).\(^6\) Note that the MCA fluorescence (net value, in arbitrary units; labeled SR minus unlabeled SR) increased as SR became FKB12.6-deficient but decreased as SR bound FKB12.6 again.

This article is a supplement to the main text, providing additional information and experimental details.
FKBP12.6 from RyR to the lower concentrations of FK506 (Figure 3b). Also, JTV519 inhibited the dissociation of FKBP12.6 from RyR induced by cAMP-dependent PKA phosphorylation (Figure 3c). JTV519 did not directly affect the phosphorylation level of RyR on reconstitution, as confirmed by back-phosphorylation (Figure 3d). The reconstitution of failing SR with FKBP12.6 occurred with significantly greater efficiency in the presence of JTV519, indicating that the binding of FKBP12.6 to RyR was strengthened by JTV519 (Figure 3d). Reconstitution was not made by mixing rFKBP12 instead of rFKBP12.6. In this part of the study, we made the important findings that addition of FKBP12.6 to failing SR (ie, reconstitution with FKBP12.6) almost completely prevented the Ca\(^{2+}\) leak seen in its absence (Figure 3d). The actual values obtained for MCA fluorescence showed that MCA fluorescence was lower in the normal SR than in the failing SR (Figure 3, a and d, boxes). On dissociation of FKBP12.6 from normal SR, the MCA fluorescence increased, whereas on addition of FKBP12.6 to failing SR, it decreased.

Effect of JTV519 on PKA Phosphorylation of RyR and the Amount of FKBP12.6

In JTV519-treated SR vesicles, the \(B_{\text{max}}\) values for \([\text{H}]\) dihydro-FK506 binding were significantly larger than the corresponding values for JTV519-untreated vesicles, though still significantly less than those for normal SR vesicles (Figure 4a and Table 2). The molar ratio was larger for JTV519-treated vesicles (3.58±0.74) than for JTV519-untreated vesicles (1.33±0.46) and very close to that obtained for normal SR vesicles (3.55±0.65) (Table 2). In the JTV519-untreated SR vesicles, RyR was PKA-hyperphosphorylated, whereas it was reversed in the

Figure 4. a. Representative examples of [\(\text{H}\)]dihydro-FK506 binding to SR vesicles. JTV519-untreated: control (○), 1w of pacing (●), 4w of pacing (□); JTV519-treated: 1w of pacing (▲), 4w of pacing (●). Inset: Schatchard replot of the binding data. b. PKA-mediated phosphorylation of RyR confirmed by back-phosphorylation (see legend to Figure 3d). Nonspecific phosphorylation (not inhibited by PKA inhibitor) was subtracted, and the resulting value was divided by the amount of RyR2 protein (determined by immunoblotting and densitometry) and expressed as the inverse of the specific PKA-dependent [\(\text{H}\)]ATP signal±SD. \#\(P<0.01\) vs normal, \#\(P<0.05\) vs 4w-pacing. IP indicates immunoprecipitation. PKI: PKA inhibitor.

c. Amount of FKBP12.6 associated with RyR in SR vesicles: lane 1, normal; lane 2, 2w of pacing; lane 3, 2w of pacing with JTV519; lane 4, 4w of pacing; lane 5, 4w of pacing with JTV519. **\(P<0.01\) vs normal, ##\(P<0.01\) vs 1W- or 4W-pacing.
Figure 5. a. Acute effect of JTV519 (1 μmol/L) on Ca\(^{2+}\) uptake function (free[Ca\(^{2+}\)]=0.3 μmol/L or 1 μmol/L) in normal and failing SR vesicles. b. Ca\(^{2+}\) uptake function in normal, JTV519-untreated failing, and JTV519-treated failing SR vesicles. c. Amount of SR Ca\(^{2+}\) ATPase in SR vesicles: lane 1, normal; lane 2, 1w of pacing; lane 3, JTV519-treated 1w of pacing; lane 4, 4w of pacing; lane 5, JTV519-treated 4w of pacing. d. Representative Western blot analysis of Ser16-phosphorylated PLB (p-PLB) and total PLB (t-PLB), and densitometric analysis of the Western blot. PLB (H) indicates high-molecular-weight PLB; PLB (L), low-molecular-weight PLB. The p-PLB values (sum of PLB(H) and PLB(L), in arbitrary units) were normalized by t-PLB values (sum of PLB(H) and PLB(L), in arbitrary units). Data are mean±SD. *P<0.05 vs normal SR. **P<0.01 vs normal SR. #P<0.05 vs 4w-pacing without JTV519.

TABLE 2. [\(^{3}\)H]dihydro-FK506 and [\(^{3}\)H]ryanodine binding to SR vesicles

<table>
<thead>
<tr>
<th></th>
<th>[(^{3})H]dihydro-FK506 Binding</th>
<th>[(^{3})H]ryanodine Binding</th>
<th>Stoichiometry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(B_{max}), pmol/mg</td>
<td>(K_{d}), nmol</td>
<td>(B_{max}), pmol/mg</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No pacing</td>
<td>7.93±0.52</td>
<td>8.71±2.92</td>
<td>2.28±0.34</td>
</tr>
<tr>
<td>JTV519 untreated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacing, 1w</td>
<td>4.70±0.13</td>
<td>6.32±0.67</td>
<td>1.69±0.26</td>
</tr>
<tr>
<td>Pacing, 4w</td>
<td>1.66±0.49†</td>
<td>4.93±2.22†</td>
<td>1.28±0.26†</td>
</tr>
<tr>
<td>JTV519 treated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacing, 1w</td>
<td>6.74±0.46§</td>
<td>9.05±1.60§</td>
<td>1.83±0.14</td>
</tr>
<tr>
<td>Pacing, 4w</td>
<td>4.97±0.92§</td>
<td>11.92±4.27†</td>
<td>1.43±0.31†</td>
</tr>
</tbody>
</table>

The parameters for [\(^{3}\)H]dihydro-FK506 binding and [\(^{3}\)H]ryanodine binding to cardiac muscle SR fractions were determined by Scatchard analysis. \(B_{max}\) indicates the maximal number of binding sites; \(K_{d}\), dissociation constant.

*P<0.05, †P<0.01 vs prepacing.
§P<0.05, ‡P<0.01 vs JTV519 untreated.
††P<0.01 vs 1w of pacing.
JTV519-treated vesicles, returning the channel phosphorylation toward the levels seen in normal hearts (Figure 4b). The amount of SR-associated FKBP12.6 was significantly larger in JTV519-treated vesicles than in JTV519-untreated SR in both the 1w and 4w RV pacing groups (Figure 4c).

Chronic treatment with JTV519 improves Ca\(^{2+}\) uptake function, and a phosphorylation level of PLB JTV519 had no acute effect on Ca\(^{2+}\) uptake function in both vesicles (Figure 5a). After 4w of rapid RV pacing, the decreases in both SR Ca\(^{2+}\) uptake and the amount of SR Ca\(^{2+}\)-ATPase were greater in JTV519-untreated SR vesicles than in JTV519-treated SR vesicles (Figure 5, b and c). Figure 5d compares the level of Ser16-phosphorylated PLB (p-PLB) and total PLB (t-PLB) in the SR vesicles. There was no change in the level of total PLB among all groups, but there was a significant decrease in the basal level of phosphorylated PLB in failing SR vesicles. In JTV-treated SR vesicles, the level of phosphorylated PLB was restored back toward normal.

Discussion

In a canine model of heart failure, it has been recently demonstrated that \(\beta\)-adrenergic receptor blocker indeed corrects the defective interaction of FKBP12.6 with RyR triggered by the PKA-mediated hyperphosphorylation of RyR (restoration of stoichiometry of the RyR2 macromolecular complex,\(^{16}\) normalization of single-channel function RyR,\(^{16}\) and prevention of Ca\(^{2+}\) leak from RyR\(^{17}\)). This study further strengthened the possibility that FKBP12.6-mediated stabilization of RyR can indeed be a new therapeutic strategy against heart failure.

The major findings of this study are that JTV519 prevented dissociation of FKBP12.6 from RyR, hence inhibiting conformational change in RyR and the subsequent abnormal Ca\(^{2+}\) leak, in the early developmental stage of heart failure, thereby leading to less severe heart failure. Since JTV519 inhibited the spontaneous Ca\(^{2+}\) leak in failing SR vesicles, from which FKBP12.6 was already partially lost, JTV519 would seem to exert an FKBP12.6-like channel-stabilizing effect directly.

JTV519, a benzothiazepine derivative, shares an analogous chemical structure with the dihydropyridine-binding Ca\(^{2+}\)-channel blocker diltiazem.\(^9\) Indeed, Kimura et al\(^{18}\) found that JTV519 (1 \(\mu\)mol/L) decreases the inward Ca\(^{2+}\) current by \(\approx20\%\). We therefore compared the effects of JTV519 on Ca\(^{2+}\) leak in normal and failing SR vesicles with those of three different Ca\(^{2+}\) antagonists (diltiazem, verapamil, and nifedipine). Neither nifedipine nor verapamil inhibited the Ca\(^{2+}\) leak in either type of RyR, but, interestingly, diltiazem did partially inhibit these leaks, albeit at higher concentrations than JTV519. Presumably, the common chemical structure shared by JTV519 and diltiazem may lead to them having a similar RyR-stabilizing effect, and this then leads to an inhibition of both types of Ca\(^{2+}\) leak. Because JTV519 has a capability of binding with annexin V, a component of the cytoskeleton structure after entering the cell,\(^9,19\) it is suggested that it also interacts directly with RyR2 after passing through the plasma membrane in vivo.

The improvement in LV relaxation induced by JTV519 may also be mediated through an enhancement of Ca\(^{2+}\)-ATPase activity because both Ca\(^{2+}\) uptake and the amount of Ca\(^{2+}\)-ATPase were increased at 4w of RV pacing (Figure 5, b and c), in association with the increase in the basal level of Ser16 phosphorylated PLB. In both normal and failing SR vesicles, JTV519 had no direct effect of PLB-phosphorylation induced by cAMP in vitro (unpublished data). As mentioned by Marks et al,\(^20\) PKA phosphorylation of specific targets within cardiomyocyte appears to be compartmentalized such that some proteins (eg, RyR) are PKA-hyperphosphorylated in failing hearts, whereas other Ca\(^{2+}\) handling proteins (eg, PLB) are hypo-phosphorylated in the same hearts.

In conclusion, the important novel finding made in this study of a canine model of heart failure is that chronic administration of JTV519 improved LV systolic and relaxation functions and led to less severe heart failure. Our results strongly suggest that this cardioprotective effect is produced by restoring the normal FKBP12.6-mediated stabilization of the RyR Ca\(^{2+}\) channel, defectiveness of which is the major cause of a variety of abnormal functions in the failing heart (Figure 6).

Acknowledgments

This work was supported by a grant-in-aid for scientific research from The Ministry of Education in Japan (grant Nos. 13877107 and 13670717). We thank Dr Noriaki Ikemoto (Department of Muscle Research, Boston Biomedical Research Institute, Boston) for a critical reading of this manuscript and helpful suggestions.
We also thank Drs Yuji Hisamatsu and Yasuhiro Ikeda in our department for technical advice.

References
FKBP12.6-Mediated Stabilization of Calcium-Release Channel (Ryanodine Receptor) as a
Novel Therapeutic Strategy Against Heart Failure
Masafumi Yano, Shigeki Kobayashi, Masateru Kohno, Masahiro Doi, Takahiro Tokuhisa,
Shinichi Okuda, Masae Suetsugu, Takayuki Hisaoka, Masakazu Obayashi, Tomoko Ohkusa,
Michihiro Kohno and Masunori Matsuzaki

Circulation. 2003;107:477-484; originally published online December 16, 2002;
doi: 10.1161/01.CIR.0000044917.74408.BE
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/107/3/477

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/