Letters to the Editor must not exceed 400 words in length and must be limited to three authors and five references. They should not have tables or figures and should relate solely to an article published in Circulation within the preceding 12 weeks. Authors of letters selected for publication will receive prepublication proofs, and authors of the article cited in the letter will be invited to reply. Replies must be signed by all authors listed in the original publication. Please submit three typewritten, double-spaced copies of the letter to Herbert L. Fred, MD, % the Circulation Editorial Office. Letters will not be returned.

Transient Limb Ischemia Induces Remote Ischemic Preconditioning In Vivo

To the Editor:

Kharbanda et al recently published experimental evidence for remote myocardial preconditioning (RMP) in swine. In addition, they provided evidence for remote skeletal preconditioning (RSP) in humans by showing protection against endothelial dysfunction produced by sustained ischemia and reperfusion in an arm after brief ischemia in the contralateral arm of healthy subjects. The authors did not determine the mechanisms of RSP and RMP in their study but pointed out the many similarities between classical myocardial preconditioning (CMP) and RMP and equated RMP produced by skeletal muscle ischemia with RSP. However, this appears to be an oversimplification. Firstly, the type of stimulus required to elicit RMP differs from that of CMP. Thus, three periods of 3-minute coronary artery occlusion (3×3-minute CAO) interspersed by 5 minutes of reperfusion elicits cardioprotection in rats that is superior to that of a single 15-minute CAO. In contrast, whereas a single 15-minute mesenteric artery occlusion affords similar protection as a 15-minute CAO, a 3×3-minute mesenteric artery occlusion protocol fails to elicit RMP. Secondly, while CMP does not involve an autonomic neurogenic pathway, we have shown that adenosine released in the small intestine during mesenteric artery occlusion stimulates afferent nerves within the mesenteric bed on reperfusion, which via a neurogenic pathway leads to activation of myocardial adenosine receptors and cardioprotection. Thirdly, while RMP by mesenteric and renal ischemia clearly involves an autonomic neurogenic pathway (as the ganglion blocker hexamethonium abolishes cardioprotection), RSP and RMP by skeletal muscle ischemia was not amenable to ganglion blockade, indicating that either a circulating substance or that a nonautonomic neurogenic pathway must be involved. Involvement of a neurogenic pathway may be of importance for mediators such as adenosine that are currently under clinical investigation for their ischemia-reperfusion damage-limiting effects. The mechanism by which these mediators exert their actions has been questioned, as circulating substances may not reach the jeopardized myocardium when a coronary artery is occluded. The neurogenic pathway offers an alternative explanation for the protection by these mediators, as they can reach remote tissues, where they activate a neurogenic pathway that leads to cardioprotection. However, as stated above, the pathway likely depends on the type and locus of the ischemic stimulus. In view of these considerations, it is unfortunate that Kharbanda et al did not study the mechanisms of RSP and RMP, although we can understand that the authors may have some reservations in using hexamethonium in clinical studies.

David A. Liem, MD
Pieter D. Verdouw, PhD
Dirk J. Duncker, MD, PhD
Experimental Cardiology
Thoraxcenter
Erasmus MC
University Medical Center Rotterdam
Rotterdam, the Netherlands
d.duncker@erasmusmc.nl


Response

The points made by Liem et al illustrate the complexity of the phenomenon of remote preconditioning and highlight the potential differences between species and models used to study the process. While pointing out similarities between remote and classical myocardial preconditioning, we do not equate the two. Indeed, we would caution against any assumption of mechanistic concordance in terms of either end-organ or interspecies responses. For example, although short intermittent periods of mesenteric ischemia fail to induce remote ischemic preconditioning (rIPC) in rats, our data show that short intermittent periods of skeletal muscle ischemia do induce rIPC in swine. Furthermore, our human study demonstrates that this stimulus also induces remote endothelial preconditioning—we did not measure markers of skeletal muscle injury. This stimulus has also been shown by others to reduce systemic inflammation and lung injury in a swine model of hindlimb ischemia-reperfusion. As we discussed in our paper, neurogenic mechanisms may be involved in remote preconditioning. Mesenteric and renal ischemia appear to induce rIPC through an autonomic pathway in rats. Liem et al question whether a neuronal mechanism is also involved when the stimulus for remote preconditioning is limb ischemia. They correctly point out that in the rat, skeletal muscle ischemia leads to skeletal muscle and myocardial preconditioning in the presence of hexamethonium-induced ganglion blockade. However, in the same model, rIPC induced by limb ischemia is partially abolished by reserpine, suggesting a role for adrenergic nerves.

A detailed investigation of the mechanisms involved in our models is important and is underway. Understanding the nature of the stimuli and the mechanisms through which rIPC is mediated may allow novel strategies for tissue protection in humans. We would reemphasize that these may differ between species and experimental models.

R.K. Kharbanda, MRCP
A. Hoschitzky, MSc, MRCSed
M. Vogel, MD, PhD
R. MacAllister, MD, FRCP
University College London, UK
rk285@cam.ac.uk


Transient Limb Ischemia Induces Remote Ischemic Preconditioning In Vivo
David A. Liem, Pieter D. Verdouw and Dirk J. Duncker

Circulation. 2003;107:e218-e219
doi: 10.1161/01.CIR.0000077520.36997.F9
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/107/24/e218

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/