Effect of Adrenergic Stimulation on Action Potential Duration Restitution in Humans

Peter Taggart, MD, DSc, FRCP; Peter Sutton, PhD; Zaid Chalabi, PhD; Mark R. Boyett, PhD; Ron Simon, BSc, MBBS, MRCP; Donna Elliott, MSc; Jaswinder S. Gill, MA, MD, FRCP

Background—Enhanced sympathetic activity facilitates complex ventricular arrhythmias and fibrillation. The restitution properties of action potential duration (APD) are important determinants of electrical stability in the myocardium. Steepening of the slope of APD restitution has been shown to promote wave break and ventricular fibrillation. The effect of adrenergic stimulation on APD restitution in humans is unknown.

Methods and Results—Monophasic action potentials were recorded from the right ventricular septum in 18 patients. Standard APD restitution curves were constructed at 3 basic drive cycle lengths (CLs) of 600, 500, and 400 ms under resting conditions and during infusion of isoprenaline (15 patients) or adrenaline (3 patients). The maximum slope of the restitution curves was measured by piecewise linear regression segments of sequential 40-ms ranges of diastolic intervals in steps of 10 ms. Under control conditions, the maximum slope was steeper at longer basic CLs; eg, mean values for the maximum slope were 1.053±0.092 at CL 600 ms and 0.711±0.049 at CL 400 ms (±SEM). Isoprenaline increased the steepness of the maximum slope of APD restitution, eg, from a maximum slope of 0.923±0.058 to a maximum slope of 1.202±0.121 at CL 500 ms. The effect of isoprenaline was greater at the shorter basic CLs. A similar overall effect was observed with adrenaline.

Conclusions—The adrenergic agonists isoprenaline and adrenaline increased the steepness of the slope of the APD restitution curve in humans over a wide range of diastolic intervals. These results may relate to the known effects of adrenergic stimulation in facilitating ventricular fibrillation. (Circulation. 2003;107:285-289.)

Key Words: action potentials | arrhythmia | catecholamines | electrophysiology

Substantial evidence links enhanced sympathetic activity with ventricular arrhythmias and sudden cardiac death.1-4 Several studies have demonstrated an increased susceptibility to complex arrhythmias and ventricular fibrillation as a result of sympathetic stimulation.1 One mechanism that has been shown to underlie the destabilization of activation wavefronts relates to the restitution properties of action potential duration (APD), which may be described as the change in APD in response to an abrupt change in the preceding diastolic interval. Steeply sloped restitution curves, ie, a large change in APD for a relatively small change in diastolic interval, have been shown to be associated with complex unstable dynamics.5-9 Computer modeling and experiments have shown that increasing the steepness of APD restitution results in progressive instability and spiral wave breakup,9,10 whereas reducing the slope by drugs suppresses ventricular fibrillation attributable to suppressing spiral breakup.11,12 We have previously shown in a porcine model that adrenaline increases the slope of the ventricular APD restitution curve.13 If adrenergic stimulation exerts a similar effect in humans, it could have an important bearing on the role of the sympathetic nervous system in arrhythmogenesis. It has been proposed that the destabilizing effect of steep APD restitution does not only depend on the steepness of the slope; also important is that the slope is steep over a wide range of diastolic intervals.10 We have examined the effect of the β-adrenergic agonist isoprenaline or the α- and β-adrenergic agonist adrenaline on the APD restitution curve in patients with normal ventricles over a wide range of diastolic intervals. We found that both isoprenaline and adrenaline steepen the APD restitution curve over a minimum range of diastolic intervals of 40 ms.

Methods

Patients

Patients were selected at random from the waiting list for radiofrequency ablation procedures for supraventricular arrhythmias. Eighteen patients, 10 men and 8 women, age 22 to 65 years (mean, 49...
years) participated in the study. Cardioactive drugs were discontinued 72 hours before the procedure. The hospital ethics committee approved the study protocol, and each patient gave written informed consent.

**Monophasic Action Potential Recording**

Monophasic action potential (MAP) signals from the right ventricular septum were recorded on a Prucka Cardiolab system set to a frequency response of DC-500 Hz. The MAP is an established technique for the measurement of APD in humans.\(^\text{14,15}\)

**Restitution Curves**

Standard restitution curves at 3 basic paced cycle lengths (CLs) were constructed as follows. Ventricular pacing was established from the catheter electrode at a basic drive CL of 600 ms using a stimulus strength of twice diastolic threshold and 2-ms pulse width. After a 3-minute run-in period, test pulses, S2, were introduced after 9 beat trains of S1 stimuli decrementing by 20 ms from S1-S2 intervals of 400 to 300 ms and then by 5 ms from S1-S2 intervals of 300 ms to refractoriness. The protocol was repeated for basic drive CLs of 500 and 400 ms. Either isoprenaline (15 patients) or adrenaline (3 patients) was then infused in incremental doses of 0.025, 0.05, and 0.10 μg/kg per minute. The pacing protocol was then repeated at the 3 basic drive CLs at each of the 3 dose levels. Because of the increase in intrinsic heart rate during infusion, it was not always possible to obtain restitution curves at the longer basic drive CLs.

**Data Analysis**

The maximum effect on the slope was observed at the first dose level during almost all infusions. When the maximum effect was not attained during the first dose, it was invariably achieved by the second dose. The data presented are comparison of control with maximum effect. Monophasic action potentials were measured at 90% repolarization. Diastolic interval was measured as the S1-S2 interval minus the APD of S1 with appropriate correction for latency at very short S1-S2 intervals. Signals without a smooth and stable baseline and amplitude of >10 mV were excluded from the analysis. In 2 patients, deflections during the repolarization phase resembling afterdepolarizations developed during the infusion. To avoid ambiguity attributable to uncertainties as to whether such deflections are real or artifact, these patients have not been included.

**Analysis of Restitution Curves**

The standard methods of fitting a simple function such as an exponential, a polynomial, or a sigmoid may not always be suitable for modeling the cardiac restitution data, for several reasons. The first reason is that a single-function model is too restrictive. For example, the implicit assumption in an exponential model is that the maximum slope always occurs at the lowest bound of the diastolic interval and then monotonically decreases with increasing diastolic interval. This assumption may not always be true.\(^\text{16,17}\)

The second reason is that a single function is unable to track faithfully the fluctuations in the data, which could have a physiological basis. There is of course a balance to achieve between the goodness of fit of the model and the smoothness of fit of the model. On the one hand, if the model underfits the data, it may smooth out physiologically meaningful fluctuations. The third reason is that any procedure that fits a single function to the data over a wide range of diastolic intervals is unlikely to be robust. This is because the support of a single function is not local; any data scatter in one region of the diastolic interval may affect greatly the fit in another region. The lack of robustness in the fit of a single function is often reflected in large standard errors in the least-squares estimates of the parameter values of that function and in high correlations between its estimated parameter values. Because of the above-mentioned reasons, the data were fitted using overlapping least-squares linear segments (Figure 1). The restitution curves were analyzed in 40-ms diastolic interval segments in steps of 10 ms, commencing from the shortest diastolic interval range that contains data points.

**Results**

**APD Restitution Under Control Conditions**

Under control conditions (ie, before the infusion of isoprenaline or adrenaline), the maximum slope of the APD restitution curve was steeper at the longer basic CLs, ie, at slower heart rates. An example from one subject at basic CL of 600 and 400 ms is shown in Figure 2A. The regression lines for the steepest segment of each curve are superimposed, showing a steeper maximum slope at the longer basic CL (600 ms) compared with the shorter CL (400 ms). Mean values±SEM for the maximum slope of the APD restitution curves during control conditions for each of the 3 basic CLs were 1.053±0.092 ms/ms (CL 600 ms), 0.923±0.058 (CL 500 ms), and 0.711±0.049 (CL 400 ms).

**Effect of Isoprenaline**

Isoprenaline increased the maximum slope of APD restitution. The intrinsic sinus rate increased from 77±3 (mean±SEM) before infusion to 108±5 during isoprenaline infusion. An example showing APD restitution before and during isoprena-
line infusion at a paced CL of 400 ms is shown in Figure 2B. In the example, the maximum slope increased from 0.707 (control) to 1.12 during infusion of isoprenaline. Mean values and 95% confidence intervals for the maximum slopes of the APD restitution curves obtained during control and in response to isoprenaline are shown in Figure 3A. Isoprenaline increased the maximum slope of restitution from 0.711±0.049 (control) to 1.076±0.101 (isoprenaline) at CL 400 ms and from 0.923±0.058 (control) to 1.202±0.121 at CL 500 ms, both significant at the 95% confidence level for the mean difference of paired samples. At a basic CL of 600 ms, although isoprenaline increased mean values for the slope from 1.053±0.092 (control) to 1.228±0.098 (isoprenaline), this was not statistically significant. In 5 patients, the restitution curve could be reasonably fit by a monoexponential during both control and isoprenaline at a CL of 600 and 400 ms. Isoprenaline increased the slope from 1.496 (control) to 1.837 (isoprenaline) at 600 ms and from 1.314 (control) to 2.277 (isoprenaline) at 400 ms. The range of diastolic intervals over which the slope was >1 increased from 15.971 (control) to 22.067 (isoprenaline) at 600 ms and from 11.017 (control) (slope <unity in two) to 17.331 (isoprenaline) (slope <unity in one) at 400 ms.

Effect of Adrenaline
In the 3 patients studied with adrenaline infusion, the intrinsic sinus rate increased from a mean value of 89 before infusion to 102 during infusion. Adrenaline resulted in a similar overall effect on the steepness of APD restitution, increasing the maximum slope in 3 of 3 subjects at a CL of 400 ms and in 3 of 3 subjects at a CL of 500 ms (Figure 3B). Mean values for the maximum slopes were 0.669 (control) and 0.987 (adrenaline) at CL 400 ms and 0.854 (control) and 1.142 (adrenaline) at CL 500 ms. It was only possible to obtain a restitution curve at a CL of 600 ms in 1 patient who showed no change in response to adrenaline.

Discussion
The main finding of the present study is that in humans, the adrenergic agonists isoprenaline and adrenaline steepened the maximum slope of the APD restitution curve over a wide range of diastolic intervals. The effect seemed to interact with basic CL such that the steepening of APD restitution was greater at shorter basic CLs.

Methodological Considerations
A limitation of the present study is that recordings were obtained from a single ventricular endocardial site, whereas heterogeneity of both ion channel expression and structure (both of which may affect APD) has been implicated in arrhythmias in many studies. Regional differences in the slope of APD restitution have been demonstrated on the epicardium in guinea pig hearts using optical mapping.

It is possible therefore that regional differences may exist in the slope of APD restitution in humans and the response to adrenergic agonists.

A second limitation is that the relationship between APD and diastolic interval is not straightforward but is influenced by other factors, including a history of previous excitation (memory function) and wave curvature. As a result, the APD restitution characteristics may not be represented truly by APD restitution curves obtained using pacing protocols. The optimum method to assess the APD restitution properties at
different phases of evolution of reentrant wavefronts and at different sites along the wave remains to be determined. Dynamic restitution constructed using continuous pacing at each S1-S2 interval to incorporate a component of memory has been shown to correspond more closely with APD restitution during ventricular fibrillation than unity to interact with CL such that the maximum steepness was significantly greater at longer basic CLs (Figure 2). This is in keeping with in vitro observations. Several studies of APD restitution show that the early rising phase of the curve is sometimes interrupted by a dip, creating a pattern referred to as a hump. In the patient population we studied, a hump was sometimes observed but was relatively inconspicuous, being prominent in only 3 patients.

Effect of Adrenergic Agonists

The effect of the adrenergic agonists isoprenaline and adrenaline in humans was to steepen the slope of the restitution curve. A similar effect on APD restitution has previously been reported on the epicardium in an in-vivo porcine model in response to adrenaline infusion and recently during sympathetic nerve stimulation in a guinea pig heart preparation. In the present studies, we observed a rate-dependent effect in that the steepening of the APD restitution curve by adrenergic agonists was more marked at shorter CLs.

Underlying Mechanisms

The processes involved in the shortening of the premature action potential are the following: (1) inactivation of L-type Ca2+ current (i_{Ca,L}); (2) reduction of inward Na+-Ca2+ exchange current (i_{NaCa}); and (3) activation of and rapid delayed-rectifier K+ currents (i_{K,s} and i_{K,r}). Isoprenaline is reduced as a result of a reduction in the intracellular Ca2+ transient (the driving force behind inward i_{NaCa}). The effect of the adrenergic agonists isoprenaline and adrenaline on the APD restitution curve is governed by reactivation of i_{Ca,L}, recovery of the Ca2+ transient, and thus inward i_{NaCa} and deactivation of i_{K,r} and i_{K,s}. In ferret ventricular cells, 80% recovery of i_{Ca,L}, i_{NaCa}, and i_{K,s} (i_{K,s} and i_{K,s}) occurs after ~32, ~189, and ~93 ms, respectively, at ~80 mV (close to the resting potential of a ventricular cell). A possible reason for the increase in the steepness of APD restitution at longer basic CLs is that different processes with different recovery kinetics may dominate APD restitution at different basic CLs. For example, at shorter basic CLs there could be a buildup of ultraslow inactivation of i_{Ca,L} and the slow activation of i_{K,s} (because the time between regular action potentials is too short for recovery of i_{Ca,L} from ultraslow inactivation and deactivation of i_{K,s}). As a consequence, the slow recovery of i_{Ca,L} from ultraslow inactivation and slow deactivation of i_{K,s} may come to play a more dominant role in APD restitution. The increase in the steepness of APD restitution by isoprenaline and adrenaline could be the result of an acceleration in the kinetics of recovery of one or more of the currents involved in APD restitution. Isoprenaline has been reported to accelerate deactivation of i_{K,s} in rabbit sinoatrial node cells and guinea-pig ventricular cells and in human ventricular muscle, adrenaline accelerates the mechanical restitution curve. This suggests that adrenaline accelerates the recovery of the Ca2+ transient, and, in turn, this is expected to accelerate recovery of inward i_{NaCa}. Alternatively, the increase in the steepness of APD restitution by isoprenaline and adrenaline could be the result of their well-known increase of i_{Ca,L}. The interaction discussed above between the effects of basic CL and isoprenaline may arise because both basic CL and isoprenaline affect the restitution curve by affecting the same currents (eg, i_{K,s}).
sum of the direct effects (which steepen the slope) and indirect effects as a consequence of an increase in heart rate (which reduces the slope). Although there is considerable evidence that steep APD restitution is proarrhythmic and in particular pro- 

vibrillatory, the concept of a critical restitution slope of \(<1\) or \(>1\) continues to be disputed.\(^{28}\) Other mechanisms may be important, such as the maintenance of VF by one or more rapidly activating foci.\(^{29}\) In addition, other variables, such as the influence scarring and fibrosis and heterogeneity of ion channel expression, may also be important. In the context of focal mechanisms, the effect of catecholamines in inducing both early and delayed afterde- 
polarizations is well known and may be crucial to adrenergically 
meditated arrhythmias. In extrapolating our data to the context of 
clinical arrhythmias, two limitations should be kept in mind. 

First, no arrhythmias were recorded in our study group. This 
occurs at heart rates faster than those that we studied. 

Second, the transition from VT to VF often 

initiation of VT. Second, the transition from VT to VF often 

normal hearts and the proarrhythmic effect of steepening APD 

of catecholamines in inducing both early and delayed afterde-
polarization, whereas reducing the slope suppresses it. It is tempt-

ing, therefore, to speculate that fluctuations in autonomic tone 

postatic nerves exerts the opposite effect and reduces the 

of electrical restitution in ventricular cells.\(^{30}\)

Clinical Implications

Abundant evidence implicates the autonomic nervous system 
as playing an important role in ventricular arrhythmias and 
sudden death. The adverse effects of enhanced sympathetic 
activity demonstrated experimentally are reflected clinically 
by the effectiveness of adrenergic blockade in preventing 
fatal arrhythmias. Although several mechanisms are likely to 
be involved, the present results showing a steepening of APD 
restoration over a wide range of diastolic intervals in response 
to adrenergic agonists suggest a mechanism whereby the 
sympathetic nervous system may contribute to the destabili-

zation of arrhythmias and ventricular fibrillation. There is 

strong evidence that vagal influences are protective and may 
suppress the development of ventricular fibrillation.\(^{3}\) A recent 

study in an isolated rabbit heart model\(^{22}\) has shown that 
simulation of the sympathetic nerves steepens APD restitution 
in the left ventricle, whereas stimulation of the parasympa-

thetic nerves exerts the opposite effect and reduces the 

steepness of the slope. In this model, steepening of the APD 

restitution slope facilitates the initiation of ventricular fibril-

lation, whereas reducing the slope suppresses it. It is tempt-
ing, therefore, to speculate that fluctuations in autonomic tone 

and autonomic balance may influence susceptibility to lethal 

arrhythmias by modulating the APD restitution properties.

References

1. Han J, de Jalón G, Moe GK. Adrenergic effects on ventricular vulnera-

2. Janse MJ, Wit A. Electrophysiological mechanisms of ventricular ar-

rhythmias resulting from myocardial ischaemia and infarction. Physiol 


In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to 

Cardiac Electrophysiology: From Cell to Bedside. 3rd ed. Philadelphia, 

5. Nolasco JB, Dahlen RW. A graphic method for the study of alternation in 

6. Vinet A, Chialvo DR, Michaels DC, et al. Nonlinear dynamics of rate-
dependent activation in models of single cardiac cells. Circ Res. 1990; 
67:1510–1524.

7. Chialvo DR, Gilmour RF, Jalife J. Low dimensional chaos in cardiac 

8. Frame LH, Simson MR. Oscillations of conduction, action potential 
duration, and refractoriness: a mechanism for spontaneous termination of 

9. Karma A. Electrical alternans and spiral wave break-up in cardiac tissue. 

10. Qu Z, Weiss JN, Garfinkel A. Cardiac electrical restitution properties and 
1999;276:H269–H283.

11. Riccio ML, Koller ML, Gilmour RF Jr. Electrical restitution and spatiotemporal 

fibrillation by flattening cardiac restitution. Proc Natl Acad Sci U S A. 

interbeat interval on ventricular repolarization in intact heart in vivo. 

14. Franz MR. Current status of monophasic action potential recordings: 

potential duration during short and long cycles: rapid modulation by 

16. Watanabe M, Otani NF, Gilmour RF. Biphasic restitution of action 
potential duration and complex dynamics in ventricular myocardium. 

17. Koller ML, Riccio ML, Gilmour RF Jr. Dynamic restitution of action 
potential duration during electrical alternans and ventricular fibrillation. 

18. Laurita KR, Giroudard SD, Rosenbaum DS. Modulation of ventricular 
repolarization by a premature stimulus: role of epicardial dispersion of 
repolarization kinetics demonstrated by optical mapping of the intact 

human action potential duration in vivo: effects of single extrastimuli, 
sudden sustained rate acceleration and deceleration and different steady 

20. Morgan JM, Cunningham D, Rowland E. Dispersion of monophasic 
action potential duration: demonstrable in humans after premature 

21. Boyett MR, Jewell BR. Analysis of the effects of change in rate and 
yrhythm upon the electrical activity of the heart. Prog Biophys Mol Biol. 

22. Ng GA, Brack KE, Coote JH. Effects of direct sympathetic and vagus 
nerve stimulation on the physiology of the whole heart: a novel model of 
isolated Langendorff perfused rabbit heart with intact dual autonomic 

current, k , by isoprenaline in rabbit isolated pacemaker cells. 

24. Janvier NC, McMorn SO, Harrison SM, et al. The role of Ca exchange 
current in electrical restitution in ventricular cells. J Physiol (Lond). 

25. Wier WG, Yue DT. Intracellular calcium transients underlying the 
short-term force-interval relationship in ferret ventricular myocardium. 

inactivation of the calcium current in guinea-pig and ventricular myocardies. 

27. Lei M, Brown HF, Terrar DA. Modulation of delayed rectifier potassium 
current, k , by isoprenaline in rabbit isolated pacemaker cells. Exp Physiol. 
2000;85:27–35.

28. Connors SP, Terrar DA. The effect of forskolin on activation and deac-
tiviation of time-dependent potassium current in ventricular cells isolated 

29. Cooper IC, Fry CH. Mechanical restitution in isolated mammalian myo-
cardium: species differences and underlying mechanisms. J Mol Cell 

30. Ideker RE, Huang J, Fast V, Smith WM. Recent fibrillation studies: 
Effect of Adrenergic Stimulation on Action Potential Duration Restitution in Humans
Peter Taggart, Peter Sutton, Zaid Chalabi, Mark R. Boyett, Ron Simon, Donna Elliott and
Jaswinder S. Gill

Circulation. 2003;107:285-289; originally published online December 30, 2002;
doi: 10.1161/01.CIR.0000044941.13346.74
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/107/2/285

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/