Effect of Nasal Continuous Positive Airway Pressure Treatment on Blood Pressure in Patients With Obstructive Sleep Apnea

Heinrich F. Becker, MD; Andreas Jerrentrup, MD; Thomas Ploch, Dipl Psych; Ludger Grote, MD; Thomas Penzel, PhD; Colin E. Sullivan, MD; J. Hermann Peter, MD

Background—There is increasing evidence that obstructive sleep apnea (OSA) is an independent risk factor for arterial hypertension. Because there are no controlled studies showing a substantial effect of nasal continuous positive airway pressure (nCPAP) therapy on hypertension in OSA, the impact of treatment on cardiovascular sequelae has been questioned altogether. Therefore, we studied the effect of nCPAP on arterial hypertension in patients with OSA.

Methods and Results—Sixty consecutive patients with moderate to severe OSA were randomly assigned to either effective or subtherapeutic nCPAP for 9 weeks on average. Nocturnal polysomnography and continuous noninvasive blood pressure recording for 19 hours was performed before and with treatment. Thirty-two patients, 16 in each group, completed the study. Apneas and hypopneas were reduced by \(\approx 95\% \) and 50\% in the therapeutic and subtherapeutic groups, respectively. Mean arterial blood pressure decreased by 9.9/11.4 mm Hg with effective nCPAP treatment, whereas no relevant change occurred with subtherapeutic nCPAP \((P<0.01)\). Mean, diastolic, and systolic blood pressures all decreased significantly by \(\approx 10 \) mm Hg, both at night and during the day.

Conclusions—Effective nCPAP treatment in patients with moderate to severe OSA leads to a substantial reduction in both day and night arterial blood pressure. The fact that a 50\% reduction in the apnea-hypopnea index did not result in a decrease in blood pressure emphasizes the importance of highly effective treatment. The drop in mean blood pressure by 10 mm Hg would be predicted to reduce coronary heart disease event risk by 37\% and stroke risk by 56\%.

(Circulation. 2003;107:68-73.)

Key Words: hypertension ■ cardiovascular diseases ■ sleep ■ blood pressure

In recent years it has been shown that obstructive sleep apnea (OSA) is a common disorder in adults.\(^1\) OSA is characterized by repetitive apneas and hypoxia caused by upper airway collapse during sleep, despite respiratory efforts of the diaphragm. Five or more apneas per hour of sleep are generally considered abnormal, and severely affected patients have several hundred apneas each night. Most apneas and hypopneas are terminated by a transient arousal from sleep and consecutive hyperventilation. Disruption of normal sleep by frequent arousals leads to excessive daytime sleepiness, the most prominent symptom in these patients.

Nocturnal arterial blood pressure is increased in OSA patients, and there is increasing evidence that OSA is an independent risk factor for arterial hypertension during the day.\(^2-5\) Although the exact mechanisms are still unclear, a persistent increase in sympathetic tone caused by chronically occurring repetitive hypoxia and arousal are thought to be the key mechanisms for the short- and long-term blood pressure increases in OSA.\(^6,7\) It has also recently been shown that patients with OSA have an impairment of resistance-vessel endothelium-dependent vasodilation.\(^8\)

Nasal continuous positive airway pressure (nCPAP) has become the standard treatment for OSA\(^9\) and has been shown in controlled studies to reduce symptoms and improve quality of life in OSA patients.\(^10,11\) Controlled studies showed either no effect\(^12,13\) or only a minor decrease in arterial blood pressure by 1.4 and 2.5 mm Hg, respectively.\(^14,15\) The effectiveness of this treatment on cardiovascular sequelae in OSA patients has been questioned altogether.\(^16\) Therefore, we performed a prospective randomized trial to evaluate the effect of nCPAP on arterial blood pressure in OSA patients.

Methods

Patients and Protocol
The study was conducted in the Sleep Unit at the University Hospital in Marburg, Germany. The Unit takes adult patients referred by general practitioners (\(\approx 35\% \)), pneumologists (\(\approx 35\% \)), or other subspecialties (\(\approx 30\% \)). During the study period, 283 patients ful-
filled the inclusion criteria of ≥5 apneas or hypopneas per hour of sleep and excessive daytime sleepiness (10 or more points out of a maximum of 24 on the Epworth sleepiness scale17; Figure 1). A maximum of 4 patients per week could be included in the study. If there was more than one patient eligible on one day, the patient with the most pronounced sleep apnea according to an ambulatory recording was asked first to participate in the study.

Exclusion criteria were predominantly central sleep apnea, respiratory failure, heart failure (NYHA class III or IV), myocardial infarction 3 months before the study, and relevant cardiac arrhythmia (second- and third-degree heart block or premature ventricular contractions in Lown classes IV or V). Professional drivers were also excluded. The local ethics committee approved the study, and all subjects gave written informed consent.

Sixty consecutive patients who consented to participate underwent baseline diagnostic polysomnography and continuous noninvasive blood pressure recording for 19.1 ± 1.3 hours using the Portapres device (TNO Biomedical Instrumentation). Patients were then randomized to receive either effective or subtherapeutic nCPAP treatment. Randomization was performed on the telephone by a person who was otherwise not involved in the study.

All study patients spent another 2 nights in the sleep laboratory to ensure adaptation to the nasal mask. Treatment was done with either the Sullivan IV (ResMed) or the Aria (Respironics) nCPAP device. In the effective treatment group, treatment pressure was increased as heart rate. Effective treatment pressure was 9.1 ± 1.3 cm H2O on average (range, 6 to 12 cm H2O). In the subtherapeutic treatment group, pressure was left unchanged at the lowest possible value for the nCPAP device used (3 or 4 cm H2O, respectively).

Patients then went home on the prescribed treatment for an average of 65.2 ± 49.6 days. They were then readmitted to the sleep laboratory, and polysomnography and continuous blood pressure measurements during daytime and sleep were repeated on either subtherapeutic or effective nCPAP treatment. Compliance was objectively measured by the built-in compliance software of the nCPAP devices.

Figure 1. Study profile. EDS indicates excessive daytime sleepiness.
Statistics

Mean arterial blood pressure during the entire recording period was the primary outcome variable. Secondary outcome variables were systolic and diastolic blood pressure during the entire recording period, as well as daytime and nighttime mean, systolic, and diastolic blood pressures. Tertiary outcome variables were the changes in polysomnographic parameters (AHI, sleep stages, SaO₂) and sleepiness (Epworth sleepiness scale).

Statistical analysis was performed using the SPSS statistical package, version 10.0 (SPSS). Two-factor ANOVA (group versus time) with repeated measures on the factor time (baseline minus treatment) was used to test the effect of therapeutic versus subtherapeutic nCPAP. To test for differences between the 2 treatment groups at baseline and for differences in nCPAP compliance, the unpaired t test (2 sided) was used. Data are reported as mean ± SD unless otherwise stated. Statistical significance was assumed at P<0.05.

Results

There was a decrease in mean arterial blood pressure over the 19.1±1.3-hour recording period by 18.1±14.3 mm Hg in the therapeutic nCPAP group, but an increase by 0.6±10.8 mm Hg in the subtherapeutic nCPAP group (P=0.01, ANOVA interaction time by group). Both diastolic and systolic blood pressures also decreased significantly by 10.3±11.4 mm Hg and 9.5±15.0 mm Hg, respectively, with therapeutic nCPAP.

<table>
<thead>
<tr>
<th>TABLE 2. Blood Pressure (mm Hg) at Baseline and on Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>Mean blood pressure</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
<tr>
<td>Mean daytime blood pressure</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
<tr>
<td>Mean nighttime blood pressure</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Mean blood pressure</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
<tr>
<td>Mean daytime blood pressure</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
<tr>
<td>Mean nighttime blood pressure</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
</tbody>
</table>
present, but less pronounced, when compared with the night and the first part of the day.

The results of polysomnography before and on treatment are presented in Table 3. There were no significant differences in any of the variables between the 2 groups at baseline. Except for total sleep time, all parameters improved with both treatment modalities. The improvements of AHI, sleepiness, and mean SaO2 were significantly larger with therapeutic nCPAP compared with subtherapeutic nCPAP (ANOVA interaction time by group).

Compliance with nCPAP was high in both groups: the average use per night was 5.5±2.0 hours in the therapeutic and 5.4±2.2 hours in the subtherapeutic group (P=NS). Body weight was similar in both groups at baseline (103.1±16.5 kg and 102.6±17.8 kg in the therapeutic and subtherapeutic groups, respectively; P=NS), and it remained virtually unchanged (103.0±16.0 kg and 102.3±17.1 kg in the therapeutic and subtherapeutic groups, respectively; P=NS, ANOVA interaction time by group).

TABLE 3. Polysomnography at Baseline and on Treatment

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Treatment</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Therapeutic nCPAP Group</td>
<td>Subtherapeutic nCPAP Group</td>
<td>Therapeutic nCPAP Group</td>
</tr>
<tr>
<td>Epworth sleepiness scale*</td>
<td>14.4±2.5</td>
<td>14.1±3.2</td>
<td>NS</td>
</tr>
<tr>
<td>AHI, n/h</td>
<td>62.5±17.8</td>
<td>65.0±26.7</td>
<td>NS</td>
</tr>
<tr>
<td>TST, min</td>
<td>349.4±42.7</td>
<td>341.8±59.3</td>
<td>NS</td>
</tr>
<tr>
<td>NREM III/IV, % of TST</td>
<td>82.4±11.6</td>
<td>79.7±11.2</td>
<td>NS</td>
</tr>
<tr>
<td>NREM III/IV, % of TST</td>
<td>6.2±7.2</td>
<td>6.0±8.4</td>
<td>NS</td>
</tr>
<tr>
<td>REM, % of TST</td>
<td>11.4±6.8</td>
<td>14.3±6.3</td>
<td>NS</td>
</tr>
<tr>
<td>Arousal, n/h</td>
<td>58.7±21.9</td>
<td>62.0±28.0</td>
<td>NS</td>
</tr>
<tr>
<td>Mean SaO2, %</td>
<td>89.9±4.0</td>
<td>90.2±4.9</td>
<td>NS</td>
</tr>
<tr>
<td>Minimum SaO2, %</td>
<td>64.1±14.7</td>
<td>61.2±14.9</td>
<td>NS</td>
</tr>
<tr>
<td>SaO2 <90%, % of TST</td>
<td>33.6±28.8</td>
<td>36.2±26.5</td>
<td>NS</td>
</tr>
</tbody>
</table>

TST indicates total sleep time; REM, rapid eye movement sleep; NREM VII, nonrapid eye movement sleep stages I and II; and NREM III/IV, nonrapid eye movement sleep stages III and IV.

*Maximum score: 24.

In contrast to these previously published controlled studies, our data show a pronounced reduction in day and night blood pressure with therapeutic nCPAP. Several factors may explain the discrepancy in the results. (1) The different results may have been caused by the fact that treatment duration was substantially longer in our study and that the use of nCPAP was high in our patients. (2) A total of 21 of our 32 patients were hypertensive, because mainly patients with moderate to severe OSA were included, whereas hypertensives were excluded in one study or less prevalent in the others. (3) The different methods of blood pressure measurement will influence the results. It has been shown that 24-hour ambulatory blood pressure measurement causes arousal from sleep in 64% of the recordings and leads to an increase in systolic and diastolic blood pressure by 13.7±15.9 mm Hg and 3.7±8.2 mm Hg, respectively. The ambulatory blood pressure measurement will therefore underestimate the changes in nighttime blood pressure caused by nCPAP. An important advantage of Portapres is that it does not cause arousal from sleep. Furthermore, continuous blood pressure data, as measured in our study, are in good concordance with invasively measured blood pressures, are highly reproducible, and therefore more accurately mirror the actual blood pressure than intermittent measurements.

There was no relevant change in body weight in either group, so this factor did not contribute to our results.

The increase in sympathetic activity caused by apnea-associated repetitive asphyxia and arousal are thought to be the key mechanisms in the pathogenesis of daytime arterial hypertension in patients with OSA. Treatment with nCPAP attenuates the increase in sympathetic activity. In an animal model, repetitive obstructive apneas and acoustic arousal from sleep led to a similar increase in nighttime blood pressure. However, recurrent arousal from sleep without airway obstruction did not lead to an increase in daytime blood pressure, whereas sustained hypertension developed if apneas had been produced in the animals. Although most
polysomnographic parameters improved more markedly with effective compared with subtherapeutic nCPAP, apart from the AHI and Epworth sleepiness scale scores, only mean SaO2 was significantly higher on therapeutic than on subtherapeutic nCPAP. This finding further emphasizes the role of hypoxia in the evolution of daytime arterial hypertension and the importance of preventing hypoxia to achieve optimal treatment of arterial hypertension in OSA patients.

In our study there was a substantial number of drop outs, mainly because of technical problems and changes in antihypertensive medication. Portapres is a complex device and is therefore more prone to technical problems than ambulatory blood pressure measurement. Because technical defects and accidental changes in medication occurred in both groups in a similar number of patients, this should not have influenced our results.

The reduced number of patients that could be included in the final analysis has reduced power from the statistical tests performed; however, because of the large effect of therapeutic nCPAP on blood pressure, differences in primary and secondary outcome variables were significant.

We used a single-blind study design because a method for applying therapeutic and subtherapeutic nCPAP in a double-blind fashion was not available. The knowledge of the allocation to one or the other treatment group might have influenced the analysis of our data. Polysomnography was therefore scored by a technician who was not informed about the study, and blood pressure analysis, including artifact recognition and elimination, was done exclusively by the software of the Portapres device. The risk of a bias due to the single-blind design was thus minimized.

Unexpectedly, nCPAP at a pressure of 3 or 4 cm H2O reduced mean AHI by ~50%, improved sleep structure, and reduced desaturation. NCPAP at the pressure applied is therefore not a placebo but a suboptimal form of treatment, because even the low treatment pressure used here may be sufficient to at least partly reverse upper airway obstruction in many patients. However, the reduction in AHI in the control group would have acted against our hypothesis that nCPAP lowers blood pressure. Despite the reduction in AHI in the subtherapeutic treatment group by ~50%, there was no reduction in blood pressure in this group. The unexpected result that suboptimal nCPAP has a substantial effect on AHI but no effect on blood pressure emphasizes the importance of optimal treatment to reduce cardiovascular sequelae.

This is the first prospective, randomized study to demonstrate a substantial reduction in arterial blood pressure during both the day and night with ~9 weeks of therapeutic nCPAP treatment compared with subtherapeutic nCPAP. Although AHI was reduced by 50% with subtherapeutic nCPAP, there was no effect on blood pressure, emphasizing the importance of optimal treatment. In our study, the drop in mean blood pressure was close to 10 mm Hg. This would be predicted to reduce coronary heart disease event risk by 37% and stroke risk by 56%.

Acknowledgments
Supported in part by grants from ResMed Germany (Mönchengladbach, Germany) and Heinen & Löwenstein (Bad Ems, Germany).

We thank Wilma Althaus for technical assistance with the scoring of the sleep studies and Werner Cassel for his assistance with the statistical analysis. We thank Dr John Stradling for his valuable comments and discussion of the manuscript.

References

Effect of Nasal Continuous Positive Airway Pressure Treatment on Blood Pressure in Patients With Obstructive Sleep Apnea

Circulation. 2003;107:68-73; originally published online December 9, 2002; doi: 10.1161/01.CIR.0000042706.47107.7A

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/107/1/68

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org/subscriptions/