Development of Heart Failure and Congenital Septal Defects in Mice Lacking Endothelial Nitric Oxide Synthase

Qingping Feng, MD, PhD; Wei Song, MD, PhD; Xiangru Lu, MD; Joel A. Hamilton, BSc; Ming Lei, MD; Tianqing Peng, MD; Siu-Pok Yee, PhD

Background—Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in the regulation of cell growth, apoptosis, and tissue perfusion. Recent studies showed that mice deficient in eNOS developed abnormal aortic bicuspid valves. The aim of the present study was to additionally investigate the role of eNOS in heart development.

Methods and Results—We examined postnatal mortality, cardiac function, and septum defects in eNOS−/−, eNOS+/−, and wild-type mice. Postnatal mortality was significantly increased in eNOS−/− (85.1%) and eNOS+/− (38.3%) compared with wild-type mice (13.3%, P<0.001). Postmortem examination found severe pulmonary congestion with focal alveolar edema in mice deficient in eNOS. Heart shortening determined by ultrasound crystals was significantly decreased in eNOS−/− compared with wild-type mice (P<0.05). Congenital atrial and ventricular septal defects were found in neonatal hearts. The incidence of atrial or ventricular septal defects was significantly increased in eNOS−/− (75%) and eNOS+/− (32.4%) neonates compared with those of the wild-type mice (4.9%). At embryonic days 12.5 and 15.5, cardiomyocyte apoptosis and myocardial caspase-3 activity were increased in the myocardium of eNOS−/− compared with wild-type embryos (P<0.01), and increases in apoptosis persisted to neonatal stage in eNOS−/− mice.

Conclusions—Deficiency in eNOS results in heart failure and congenital septal defects during cardiac development, which is associated with increases in cardiomyocyte apoptosis. Our data demonstrate that eNOS plays an important role in normal heart development. (Circulation. 2002;106:873-879.)

Key Words: nitric oxide ■ heart failure ■ heart defects, congenital ■ heart septal defects ■ apoptosis

Nitric oxide (NO) is produced from the guanidino group of L-arginine in an NADPH-dependent reaction catalyzed by a family of NO synthase (NOS) enzymes.1 There are at least 3 distinct isoforms of NOS: neural NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS).2 The neuronal isoform is highly expressed in neuronal cells and skeletal muscle, whereas the inducible isoform is expressed in many cell types primarily in response to inflammatory cytokines. The endothelial isoform originally was identified in endothelial cells. NO produced by eNOS plays an important role in the regulation of cell growth and apoptosis as well as vasodilatation and antithrombotic actions.2 Cardiomyocytes constitutively express eNOS starting from early embryonic stages and produce NO under normal physiological conditions.3-5 NO produced from cardiomyocytes may enhance myocardial relaxation and regulate contractility as well as coronary perfusion.6,7 It has also been shown that eNOS is involved in cardiomyogenesis and formation of limb vasculature during embryogenesis.3,8

NO produced from eNOS protects cell from apoptosis. Exposure to low concentrations of NO donors or stimulation of endogenous NO release has been demonstrated to decrease apoptosis in hepatocytes and endothelial cells by inhibiting caspase-3 activation.9,10 Apoptosis is a highly regulated physiological process in normal heart development. During early embryonic and postnatal heart development, apoptosis is demonstrated in various areas of the heart.11-13 Increases in myocardial apoptosis during embryonic development result in cardiac dysfunction and congenital heart defects.11 In the present study, we wished to examine the hypothesis that deficiency in eNOS results in myocardial apoptosis, which leads to cardiac dysfunction.

Development of the ativoventricular septal area is highly complex. Multiple primordia contribute to a central mesenchymal mass, including the mesenchyme on the leading edge of the primary atrial septum, the ativoventricular endocardial cushions, and the cap of mesenchyme on the spina vestibu. Fusion of these components closes the ostium primum, completing atrial and ativoventricular septation.14 The molecular mechanisms that govern the formation of ativoventricular septal area remain largely unknown. Recent studies showed...
that mice deficient in eNOS developed aortic bicuspid valves. In the present study, we additionally demonstrated that deficiency in NO results in congenital atrial and ventricular septal defects in mice. Our results suggest that NO plays an important role during cardiac development.

Methods

Animals

Breeding pairs of eNOS+/− (stock No. 002684) and wild-type C57BL/6 (eNOS+/+) mice were purchased from Jackson Laboratory (Bar Harbor, Maine). A breeding program was carried out to produce neonates. To generate eNOS−/− mice, eNOS+/− animals were bred with eNOS+/− mice. Genotyping of eNOS+/− and eNOS−/− mice was performed by a polymerase chain reaction (PCR) method using genomic DNA prepared from tail biopsies. All procedures involving mouse husbandry and manipulation were in accordance with the guidelines of the Canadian Council of Animal Care and approved by the Animal Use Subcommittee at the University of Western Ontario, Canada.

Histology, Microdissections, and Scanning Electron Microscopy

Neonatal eNOS−/−, eNOS+/−, and eNOS−/− mice were used for analysis. Neonatal hearts and lungs were isolated and fixed in 10% buffered formalin, dehydrated, and embedded in paraffin. Serial heart sections were made, stained with hematoxylin and eosin, and examined by light microscopy. To quantify the incidence of septal defects, neonatal hearts (36 eNOS−/−, 34 eNOS+/−, and 41 eNOS−/−) were fixed in 10% buffered formalin, and a standard procedure for microdissection of the heart was applied according to methods described previously. Briefly, the heart was exposed and examined under an operating microscope. The right ventricle was dissected with crafted microscissors proceeding from the apex to the ventricular cavity. The left ventricle was opened from the apex toward the base of heart and its internal relief examined. Hearts were dehydrated by graded methanol solutions, dried by a critical point dryer (Polaron E3000, Watford Hertfordshire), sputtered with gold coat, and the septum were scrutinized for anomalies. Hearts were dehydrated by extended the previously mentioned cuts of the right and left ventricles beyond the base of the heart. The ventricular cavity was isolated by extending the previously mentioned cuts of the right and left ventricles. The right ventricle was dissected with crafted microscissors proceeding from the apex to the ventricular cavity. The left ventricle was opened from the apex toward the base of heart and its internal relief examined. Hearts were dehydrated by extended the previously mentioned cuts of the right and left ventricles beyond the base of the heart. The ventricular cavity and the septum were scrutinized for anomalies. Hearts were dehydrated by extended the previously mentioned cuts of the right and left ventricles beyond the base of the heart. The ventricular cavity and the septum were scrutinized for anomalies. Hearts were dehydrated by extended the previously mentioned cuts of the right and left ventricles beyond the base of the heart. The ventricular cavity and the septum were scrutinized for anomalies. Mice were artificially ventilated with room air. Tidal volume was set at 25 μL with 90 beats/min and 40/60 inspiration/expiration ratio. Body temperature was maintained at 37°C. The heart was exposed through a midline sternotomy. The crystals (0.7 mm) were fixed on the heart surface to allow short-axis measurement similarly, as we previously described in adult mice.

The ultrasound signals were measured by a Digital Sonomicrometer (Sonometrics). Maximum and minimum distances as well as percent shortening were calculated.

In Situ Detection of Apoptotic Cells

To localize and quantitatively assess cells undergoing apoptosis in the heart, a terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay was performed on paraffin-embedded sections. Neonatal day 1 (E12.5) 12.5 mice using an in situ apoptosis detection kit (Roche Molecular Biochemicals) according to our previous report.

Enzyme Immunoassay for Cytoplasmic Histone-Associated DNA Fragments

For quantitative determination of apoptosis, we measured cytoplasmic histone-associated DNA fragments (mononucleotides and oligonucleotides) in E12.5, E15.5, and P1 mouse hearts using a photometric enzyme immunoassay (Cell Death Detection ELISA, Roche Molecular Biochemicals), as we described previously.

Caspase-3 Activity

Fetal myocardial caspase-3 activity was measured using a caspase-3 fluoroscent assay kit according to manufacturer’s protocol (BIOMOL Research Laboratories). Briefly, 5 to 7 hearts isolated from E12.5 or E15.5 mice were pooled together and homogenized, and protein concentration was determined by Bradford method. Samples (50 μg protein) in duplicates were incubated with caspase-3 substrate Ac-DEVD-AMC or Ac-DEVd-AMC plus inhibitor AC-DEVD-CHO at 37°C for 2 hours before measurements were made by a fluorescent spectrophotometer (excitation at 380 nm, emission at 405 nm). Signals from inhibitor-treated samples served as background.

Statistical Analysis

Data are presented as mean±SEM. Student’s t test, χ2 analysis, and ANOVA followed by Student-Newman-Keuls test were performed. Survival curves were created by the method of Kaplan and Meier and compared by log-rank test. P<0.05 was considered statistically significant.

Results

Postnatal Survival and Cardiac Function

Postnatal survival was followed for 21 days in eNOS−/−, eNOS+/−, and eNOS−/− mice (n=74, 81, and 60, respectively). Survival was significantly decreased in eNOS−/− and eNOS−/− compared with eNOS+/− mice with the same genetic background (P<0.001). Within 10 days after birth, 85.1% (63 of 74) of eNOS−/− and 38.3% (31 of 81) of eNOS−/− mice died, whereas only 13.3% (8 of 60) of eNOS−/− mice died during the same period (P<0.001, Figure 1A). These results demonstrated a dose-dependent effect between eNOS gene deficiency and postnatal mortality.

To determine if higher mortality observed in eNOS−/− was attributable to cardiac dysfunction, in vivo heart shortening was measured using the ultrasound crystals in eNOS−/−, eNOS+/−, and eNOS−/− mice at P1 (n=5 per group). Basal heart rate was similar among 3 groups (257±10, 284±18, and 252±15 beats/min, P=NS). Percent shortening of the heart was significantly decreased, whereas heart to chest ratio was increased in eNOS−/− compared with eNOS+/− mice (Figures 1B and 1C, P<0.05). Diastolic dimensions of the heart were significantly increased in eNOS−/− compared with eNOS+/− and eNOS−/− mice (3.37±0.04 versus 3.04±0.10 and 2.69±0.22 mm, respectively, P<0.05). Furthermore, LV and RV chamber size measured from serial sections of paraffin-embedded hearts at P1 was significantly increased in eNOS−/− compared with eNOS+/− mice (Figures 1D and 1E, n=5 per group, P<0.05). Dose-dependent relationship was evident between eNOS gene deficiency, heart shortening, and heart chamber size (Figures 1B through 1E). Postmortem examination showed that whereas lungs of eNOS−/− mice had normal and clear alveoli (Figure 1F), eNOS−/− mice had severe pulmonary congestion with focal alveolar edema (Figure 1G).
Congenital Septal Defects

Hearts were enlarged in eNOS−/− compared with eNOS+/− and eNOS+/+ mice (Figure 2A). Serial heart sections were made in eNOS−/− and eNOS+/− mice at P2 (n=10 per group). A normal structure of the heart from an eNOS+/+ mouse is shown in Figure 2B. Atrial or ventricular septal defects were found in 6 of 10 eNOS−/− mice, and only 1 of 10 eNOS+/− mice showed an atrial septal defect. Atrial septal defects were typical of ostium secundum defects (Figure 2C), ventricular septal defects were membranous and muscular defects in eNOS−/− mice (Figures 2D and 2E). Ventricular hypertrophy and enlargement of atria were obvious in eNOS−/− compared with eNOS+/+ mice with congenital septal defects (Figures 2C through 2E).

Microdissections were performed in all mice at P1. In mice with atrial or ventricular septal defects, clear openings were observed in the atrial or ventricular septum that were not covered by any tissues. Congenital septal defects were additionally confirmed by scanning electron microscopy (Figure 3). The incidence of atrial or ventricular septal defects was significantly increased in eNOS−/− (75%) and eNOS+/− (32.4%) neonates compared with those of the eNOS+/+ (4.9%, P<0.001). Whereas 11.2% of eNOS−/− neonates had ventricular septal defects, none were observed in the eNOS+/− and eNOS+/+ mice (Table). These data demonstrated a dose-dependent relationship between eNOS gene deficiency and septal defects. No obvious defects were observed in tricuspid and mitral valves in eNOS−/− mice.

Caspase Activity and Apoptosis in the Developing Heart

To investigate possible mechanisms responsible for development of heart failure and congenital septal defects in eNOS−/− mice, we studied caspase-3 activity and myocardial apoptosis during embryonic development. To measure myocardial caspase-3 activity, embryonic hearts were collected from 4 pregnant eNOS−/− (22 hearts) and 3 pregnant eNOS+/− mice (21 hearts) at E12.5. Fetal hearts were also collected from 3 pregnant eNOS−/− (18 hearts) and 3 pregnant eNOS+/− mice (21 hearts) at E15.5. Caspase-3 activity was significantly higher in E12.5 and E15.5 myocardium from eNOS−/− compared with eNOS+/+ mice (Figure 4, P<0.05). To determine apoptosis in the embryonic heart, TUNEL staining was performed in E12.5 hearts isolated from eNOS−/−, eNOS+/−, and eNOS+/+ mice (n=5 to 7 per group). Representative TUNEL staining of fetal hearts from 3 groups is shown in Figure 5. Apoptosis was detected in the heart, including atrioventricular endothelial cushions, septum primum, and right and left ventricular myocardium in all 3 groups (Figure 5). However, apoptosis in these regions was significantly

![Figure 1. Postnatal survival, cardiac dysfunction, and pulmonary edema in eNOS+/+, eNOS−/−, and eNOS−/− mice. Animals were monitored for 21 days after birth. P<0.001 versus eNOS+/+ mice. Heart shortening (B), heart/chest ratio (C), left ventricular (LV), and right ventricular (RV) chamber size (D and E) in neonatal eNOS−/−, eNOS−/−, and eNOS−/− mice (n=5 per group; *P<0.05 vs eNOS−/−). F, Normal alveolar structures of neonatal eNOS−/− mice. G, Pulmonary congestion and edema in neonatal eNOS−/− mice. The alveolar capillaries of the lung were distended and filled with red blood cells. In some areas, the alveolar spaces were filled with fluids. F and G were stained with hematoxylin and eosin.](image-url)
increased in eNOS^{−/−} compared with eNOS^{+/+} fetal hearts (Figure 6A, *P*<0.01). To additionally quantify the level of apoptosis during heart development, cell death detection ELISA assay was used. At E12.5, E15.5, and P1, apoptosis was significantly increased in the myocardium of eNOS^{−/−} compared with eNOS^{+/+} mice (Figure 6B, *P*<0.05).

Discussion

Ventricular and atrial septal defects are the most common forms of congenital heart disease (30% to 40%), affecting 1 to 2 in 200 live births in the United States.^{23,24} Although the embryology of heart development has been described in some detail, the molecular mechanisms governing cardiac growth and morphogenesis remain largely unknown. The present study demonstrated for the first time that deficiency of eNOS led to significant increases in cardiomyocyte apoptosis and cardiac dysfunction. Furthermore, deficiency of eNOS gene increased congenital septal defects and postnatal mortality in a gene dosage–dependent manner. These results suggest that NO production from eNOS plays an important role in normal heart development.
We started the present study by breeding the eNOS−/− and corresponding eNOS+/+ controls, and we consistently obtained fewer eNOS−/− mice compared with eNOS+/+ animals that survived to adulthood. Therefore, we began to monitor their breeding closely. To our surprise, most of the eNOS−/− newborns died within 6 days after birth. Mortality was markedly increased in eNOS−/− compared with the eNOS+/+ neonates (85.5% versus 13.3%). To investigate if there is a dose-dependent effect between eNOS gene deficiency and cardiac dysfunction, and postnatal mortality, eNOS−/− mice were bred with C57BL/6 mice to generate eNOS+/− animals. Consistent with our hypothesis, postnatal mortality of eNOS−/− mice was 38.3%, which was lower than eNOS+/− but higher than eNOS+/+ mice. We additionally investigated the cause of death in the eNOS−/− neonates. Dose-dependent relationship was observed between eNOS gene deficiency and cardiac dysfunction, as measured by in vivo heart shortening. There was also a dose-dependent effect between eNOS deficiency and cardiac dilatation. Postmortem examination in mice that died after birth showed severe pulmonary congestion and edema in eNOS−/− mice. Our data indicate that death of eNOS−/− mice is most likely attributable to heart failure.

Congenital septal defects were observed in mice deficient in the eNOS gene. The septal defects include ostium secundum defects, ventricular septal defects (membranous and muscular type), and atrioventricular septal defects. Quantitative analysis demonstrated that congenital septal defects were found in 75% of eNOS−/−, 32.4% of eNOS+/−, and 4.9% of eNOS+/+ mice. Our data showed a clear dose-dependent effect between eNOS gene deficiency and congenital septal defects, demonstrating an important role of eNOS in heart development. Although most eNOS−/− mice had atrial septal defects, it is unlikely that atrial septal defects alone resulted in cardiac dysfunction and high mortality in these animals. The lack of a complete penetrance also suggested that, in addition to eNOS, other modifier genes are involved in heart failure and congenital septal defects during development.

Mechanisms by which heart failure and congenital septal defects develop in eNOS−/− mice are not known. Apoptosis is an important physiological process in organ development. During early embryonic and postnatal heart development, apoptosis is demonstrated in several areas, including atrioventricular endocardial cushions, septum primum, and right and left ventricular myocardium in all 3 groups. Arrows indicate apoptotic nuclei. However, eNOS−/−+ had more apoptosis compared with eNOS+/+ and eNOS−/− mice. The area of septum primum and atrioventricular endocardial cushions (the boxed area) in A, C, and E is enlarged to B, D and F, respectively.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>eNOS−/−</th>
<th>eNOS−/−</th>
<th>eNOS−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>38 (95.1)</td>
<td>23 (67.6)*</td>
<td>9 (25.0)*</td>
</tr>
<tr>
<td>ASD</td>
<td>2 (4.9)</td>
<td>11 (32.4)*</td>
<td>23 (63.8)*</td>
</tr>
<tr>
<td>VSD</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (5.6)</td>
</tr>
<tr>
<td>ASD and VSD</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (5.6)</td>
</tr>
<tr>
<td>Total</td>
<td>41 (100)</td>
<td>34 (100)</td>
<td>36 (100)</td>
</tr>
</tbody>
</table>

Values are n (%). ASD indicates atrial septal defects; VSD, ventricular septal defects. *P<0.001 vs eNOS+/+ by χ2 analysis.
Myocardial apoptosis in eNOS^{−/−}, eNOS^{+/−} and eNOS^{+/+} mice. A. Apoptosis determined by TUNEL staining at E12.5. Apoptosis was significantly increased in atrioventricular endocardial cushion and septum primum (septum) and right and left ventricular myocardium (RV and LV) in eNOS^{−/−} compared with eNOS^{+/−} and eNOS^{+/+} mice (n=9 to 7, *P<0.01). B. Quantitative analysis of apoptosis by cell death detection ELISA in the heart at E12.5, E15.5, and P1 (neonate). Apoptosis was significantly increased at all time points in eNOS^{−/−} compared with eNOS^{+/−} mice (n=6 to 9 per group, *P<0.05).

In summary, the present study demonstrated that deficiency in eNOS results in heart failure and congenital septal defects. Our data suggest that NO production from eNOS plays an important role in normal heart development. Increased apoptosis during embryonic development represents one of the mechanisms that leads to heart failure and congenital septal defects in eNOS^{−/−} mice.

Acknowledgments

This study was supported by grants awarded to Dr Qingping Feng from the Canadian Institutes of Health Research (grant MT-14653) and the Heart and Stroke Foundation of Ontario (grant T4045). We thank Paul Coakwell and Dean Worsfold for expert animal care.

References

Development of Heart Failure and Congenital Septal Defects in Mice Lacking Endothelial Nitric Oxide Synthase
Qingping Feng, Wei Song, Xiangru Lu, Joel A. Hamilton, Ming Lei, Tianqing Peng and Siu-Pok Yee

Circulation. 2002;106:873-879; originally published online July 22, 2002;
doi: 10.1161/01.CIR.0000024114.82981.EA

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/106/7/873

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/